SAFE [SA
(version 3.0 with Interrupts per Thread)

Thomas F. Knight, Jr. André DeHon Andrew Sutherland Sumit Ray
Udit Dhawan Albert Kwon

October 4, 2012

Contents
1 Notes:] 6
LI _Threads o oo 6
L2 Gatesd . . . o o 6
2 _Atoms| 6
2.1 Atomic Groups| e e 6
2.1.1 Tinear Pointers| e 7
B2 Valdatlonl . . . - . o v o e e e e e e 7
3__Fat Pointers| 7
B.1 Bounds Checksl 7
4__Processor Statel 8
4.1 Thread Pointerl e 8
4.2 Timer Statel e 8
4.3 Transaction Statel. L e e 8
BT Behavior 8
6 _Thread Frame] 9
6.1 _Private Statel e 9
[6.1.1 Program Counter|.« . . e e 9
6.1.2 Authority] 10
613 Thread SEALUS . - -« « o v v oot e e 10
6.1.4 Gate Stackl e 11
[6.1.5 Interrupt Thread Table] o 11
6.1.6 Current Instructionl e e 11
[6.1.7 Operand N| e e 11
6.1.8 Memory or Stream Result| o o0 oo oo 11
6.1.0 TMURESUIT . . . o o oo e e e 12
[6.1.10 Non-Cachable TMU Entryl 12
[6.1.11 faulting Program Counter| 12
[6.1.12 faulting Authority| e 12
6.1.13 Live Register mask| L 13
6.1.14 Writeable Register mask|o 13
61715 Tonstruction Countl o o oo 13

6.2 Public Statel. e e 13
621 Fuvironment Pointer 14

[6.2.2 Faulting Thread Pointer| e 14

[6.2.3 General-Purpose Registers|. o o o 14

6.3 angle rea AME| . . . e e e e 14

[_Streams] 15
[[1 Stream Invarfants o o o e 15

8 TMU 15
8.1 Rule Checking] 15
B2 TMU Rule Inferfacel oottt 16
8.3 TMU Miss Handling| o 0 e 16
8.4 TMU Error Handling|. o 0 o o 16
8.5 TMU Bootstraping] o . . o e 16

9 __Gate Stackl 17
0.1 Gate Stack Faultl e 17
110 Memory Map| 17
10.1 Power On Resetl. e e e 17

18
[L1.1 Interrupt Priorities| o e 18
[11.2 Interrupt Semantics| L e 19
12 Transactions 19
21 Transaction ADorfl e 20
[13 Forwarding Pointers| 20
MBI PCBehavion . . .« o ot oot e e 20
[13.2 Memory Dereference Behavior|. o o 20

| ¥otd ic OP Codes 20
114.1 Operand Conventions| v v v v vttt e e e e e e e e e e e e e e e 21
14.1.1 |add <ri> <r2> <r3> |~ Add| 21

14.1.2 |addf <r1> <r2> <r3>|- Double-Precision Floating-Point Add|. 21

14.1.3 |sub <ri> <r2> <r3> |- Subtract| 22

14.1.4 |mul <ri> <r2> <r3> |- Multiply| 22

14.1.5 |and <ri1> <r2> <r3> |- Bitwise Andl 23

14.1.6 [or <r1> <r2> <r3>|-Bitwise Or 23

14.1.7 |xor <ri> <r2> <r3> |- Bitwise XOIl. 24

14.1.8 |not <ri1> <r3> ‘ — Bitwise Inversion (Logical Complement)l 24

14.1.9 [shl <ri> <r2> <r3> |- Shift Left| 24

14.1.10[shr <r1> <r2> <r3>|-Shift Right| 25
14.1.11[test <ri> <r2> <r3>|- Test Equality| 25

14.1.12| testgrp <ri1> <r2> [grpid] ‘ — Test Particular Group| 26

(15 Control Flow OP Codes| 26

5.1 Frame Local Control Flowl e 26
15.1.1 |jmp [offset] | — Unconditional Jump| 26
15.1.2 |beq <r1> [offset] |- Branch Equall 27
15.1.3 |bne <ri1> [offset] |- Branch Not Equal| 27
15.1.4 |bneg <ri1> [offset] |— Branch Negativel 28
15.1.5 |bpos <ri1> [offset] |- Branch Positive|. oo o 28

5.2 Inter-frame Control Flowl o . o 28
15.2.1 |fjmp <ri> |- Frame Jump|. 29
15.2.2 |gcall <ri> ‘ — Procedure call with authority change| 29
15.2.3 |gfcall <ri> <r2> <r3> [mask] |- Cacheable procedure call with authority changel . .. 30
15.2.4 | gjmp <ri> ‘ — Gate jump without gate returnl 31
15.2.5 |grtn ‘ — Return from Gate Calll 31
15.2.6 |call <ri> ‘ — Procedure Call, no authority changel 32
15.2.7 | gacall <ri> <rz> ‘ — Procedure call with authority change and augmentationl 33
15.2.8 | gajmp <ri1> |- Jump with authority change and augmentation without gate returnl 33
15.2.9 |acall <ri1> <r2> |- Procedure Call with caller specified authorityl 34
15.2.10| 1call <ri1> <r2>|— Procedure Call with caller specified reduction in authorityl 35
15.2.11| rcall <ri> <r2> |- Procedure Call with caller specified additional authority| 36
15.2.12|bcall <r1> <r3> [result-reg] |- Bracket Calll. 36
15.2.13| bgcall <ri> <r3> [result-reg] |- Bracket call with authority change] 37
15.2.14| bgfcall <ri1> <r2> <r3> [mask] |- Cacheable bracket procedure call with authority change| 38
15.2.15| bgacall <ri> <r2> <r3> [result-reg] | — Bracket call with authority change and aug-

| mentabtlonl L e 39
15.2.16/ brtn <r1> |- Return from Bracket Calll 40
15.2.17| tcall <ri> <r2> ‘ — Procedure Call with timeout, no authority change| 41
15.2.18| trtn |- Return from Timeout Gate Calll 42
15.2.19| trequire <ri> ‘ — Require Time to Continuel 42
15.2.20| gate <ri1> <r2> <r3> ‘7 Create Gatel 43
15.2.21| gatele <ri> <r2> <r3> ‘ — Create Gate with Linear Environmentl 43

U5.3 TImerl . . . e e e e e e e e e e e e e e e e e e e 44
15.3.1 |give-time <ri>|- Add time to SLOT| 44
15.3.2 |recover-time <ri> ‘ — Move time remaining from SLOT to <r1>| 45
15.3.3 |read-time <r1> |- Read time remaining in SLOT to <'r'1>| 45

[15.4 Inter-thread Control Flowl e 45
15.4.1 |runt <r1>|- Run Threadl 45
15.4.2 |resumet <ri1> [event] ‘ — Return to Thread from Trap Handlerl 46
15.4.3 |yield |- Yield remaining timel 46
15.4.4 |yield2 <ri> [event] |— Return to TTT Bypassing Stacked Thread| 47
15.4.5 | endt ‘ — Thread self terminationl 47

116 Memory OP Codes| 47

116.1 Memory Access| e e e e e e 48
16.1.1 [clear <r1> |- Clear Register], 48
16.1.2 | clearregs <ri> ‘ — Clear Group of Registersl 48
16.1.3 |livemask <ri> ‘ — Read the Live Register maskl 48
16.1.4 |writemask <ri> ‘f Read the Writeable Register maskl 49
16.1.5 |mvrr <ri> <r2> |- Move Register To Register| 49
16.1.6 |mvmr <ri> <r2>|- Move Memory To Register| 49
16.1.7 |mvrm <ri1> <r2>|— Move Register To Memory| 50
16.1.8 |cprr <ri> <r2> |- Copy Register To Register| 51
16.1.9 |cpmr <ri> <r2>|— Copy Memory To Register| 51
16.1.10| cprm <r1> <r2>|— Copy Register To Memory| 52

16.2 Pointersl e e e e e e e e e e e e e 52
16.2.1 |1cfp <ri1> [offset] |- Load Constant Frame Pointer| 52
16.2.2 |framptr <ri> <r2> <r3> ‘ — Create pointer to framel 53
16.2.3 [offp <r1> <r2> <r3> |- Offset Pointer| 53
16.2.4 |offlp <ri> <r2> |- Offset Linear Pointerl 54
16.2.5 |offtp <ri> <r2> |- Offset Thread Pointerl 54
16.2.6 |basep <ri> <r2> |- Pointer Basel 55
16.2.7 | sizep <ri1> <r2> |- Pointer Sizcl 55
16.2.8 | fphash <r1> <r2> |- Hash Frame Pointerl 56

[17 Security OP Codes| 56

17.1 Authority Management| 56
17.1.1 | seta <ri> ‘f Set Authorityl 56
17.1.2 |raisea <r1> |— Augment current authorityl 56
17.1.3 |lowera <r1> |- Refine current authorityl 57
17.1.4 |ina <r1> <r2> |- Inspect Authorityl 57
17.1.5 |inp <r1> <r2> |- Inspect Principall 57
17.1.6 |cpar <ri> <r2> |- Read Authority from Memoryl 58
17.1.7 |cpio <ri1> <r2> |- Read Opcode from Instruction in Memory| 58

117.2 TMU Management| e e e 59
17.2.1 [tmul <r1> <r2> <r3> |- TMULoad|. 59
17.2.2 [tmuu <r1> |- TMU Unload| 59
17.2.3 | tmurc <ri> <r2> ‘ — TMU Read Hit Counter| 60
17.2.4 | cphr <ri> <r2> ‘ — Read Hash from Memory| 60
17.2.5 |gfurite <ri> <r2> <r3> ‘f gfcache write] oo 60

117.3 Tag Management| L e e e 61
17.3.1 |newt <ri> <r2> |- New Taglottt 61
17.3.2 |intag <r1> <r2>|-Inspect Tag| L 61
17.3.3 |retag <ri> <r2>|-RetagData] L o 62
17.3.4 |settag <ri> <r2> ‘ — Retag Data blind to current tags| 62
17.3.5 |retagpc <ri> ‘ — Retag Program Counter|., 62

17.3.6 |tagof <ri>

<r2> ‘ — Extract First-Class Tagl

17.3.7 |tagofpc <r1> |- Extract First-Class Tag for PCl

17.3.8 |rflct <ri>

<r2> | - Extract Pointer for Tagl

17.3.9 |cpmt <ri>

<r2> | — Read Pointer from Tag in Memoryl

17.3.10| totag <ri1>

<ra> ‘ — First-Class Tag to Tagl

17.3.11[int <ri> <r2> |- Inspect Tago vv i

117.4 Group Management|

17.4.1 |regrp <ri>

<r2> <r3> ‘ — Regroup Datal

17.4.2 |ingrp <ri>

<ra2> ‘ — Inspect Groupl

18 Stream OP Codes|
|18.1 Blocking (Yielding)|

18.1.1 | stwy <ri>

<r2> ‘ — Stream Write, Yieldingl

18.1.2 |stwyfree <ri> <r2> [offset] |- Stream Write, Yielding with Free Handling|

18.1.3 | stwly <ri>

<r2> |— Stream Write, Linear, Yieldingl

18.1.4 |stwlyfree <ri1> <r2> [offset] |- Stream Write, Linear, Yielding with Free Handlingl ..

18.1.5 |stry <ri>

<r2> |- Stream Read, Yieldingl

18.1.6 |stryeos <r1> <r2> [offset] |— Stream Read, Yielding with EoS Handling|

|18.2 Non-Blocking (Branching)|

18.2.1 |stwb <ri>

<r2> [offset] |- Stream Write, Branching|

18.2.2 |stwlb <ri>

<r2> [offset] |- Stream Write, Linear, Branchingl

18.2.3 |strb <ri>

<r2> [offset] |- Stream Read, Branching|

119 Transaction OP Codes|

19.0.4 |transbegin

[id] |- Begin Transaction|

19.0.5 |transend [id] ‘f End Transactionl

20 Miscellaneous OP Codes|

20.0.6 |nop |- No Operationl ..

20.0.7 |halt ‘ — Halt Processorl

121 Field Sizes and Encodings|

21.1 Definition for Tools

|22 Instruction Groups|

123 Implementation Status|

65
65
65

66
67

68

69
70
70

70
71
72
72
72
73
73
73
74

74
74

77

1 Notes:

This is current proposal of record for the SAFE architecture.

1.1 Threads

The architecture supports threads directly in hardware with a thread pointer and associated thread frame. Each
thread has access to a dedicated register file implemented in the thread frame.

1.2 Gates

Gates provide the mechanism for changing authority while executing a procedure or closure. Gates are called from
within a single thread without changing the register frame between caller and callee. Gates have an associated
environment pointer so they can be used for closures.

2 Atoms

All data in the SAFE machine is stored in “Atoms”. An atom consists of a data field, a tag field and an atomic
group field. The tag field is used for security processing within the TMU. The use of the tag field is not discussed
in this document.

The individual components of an atom, A, are referred to via subscript, A, A;qy and A,4. Conceptually the
three parts constitute the one register.

2.1 Atomic Groups

The atomic group field in the atom describes the most basic type system for the machine. Each instruction in the
ISA defines which atomic groups the instruction is valid for and the resulting atomic group for any result of the
instruction.

The processor understands these atomic groups:

e Frame Pointer

e Constant Frame Pointer

Linear Frame Pointer [(1) now think this could be a LabelModel — see rules; (2) we probably need to find a
different term since this doesn’t conform to the PL folks notion of “linear” —~AMD)]
Instruction Pointer

Gate Pointer

Stream Read Pointer

Stream Write Pointer

Thread Pointer

Forwarding Pointer

Double (Double Float)

Integer

Instruction

Authority (was previously known as Principal)

Principal (temporarily known as Principal Name to distinguish from Authority)
Uninitialized

Error (NAV)E|

Tag (for first-class tag case)

1Believe these are the same thing. We started using Errors for cases like out-of-bounds pointer and non-present memory locations
before there was a formal Breeze NAV proposal on the table. I believe they are all the same spirit, so there is only one Atomic Group
type here. In the Breeze NAV, there is a proposal that the payload be a pointer to something that explains the error. That will require
additional clarification.

e Empty
e EOS
e FREE

[It might be possible to combine Uninitialized, Empty, EOS, Free by unifying as Out-of-Band and differentiating
in the Value field. Error (NAV) will use value field for a pointer, so it would not be part of this unification. ~AMD)]
2.1.1 Linear Pointers

[Consider moving to LabelModel. See linear LabelModel in rules document. ~AMD)]

A subset of the atomic groups are linear pointers, linear pointers are needed in certain cases to maintain the
security or correctness properties of the machine. In order to maintain a guarantee that only one copy exists, linear
pointers may not be copied. Linear pointers may be moved between registers or between registers and memory
using the move instructions. The move instruction maintains linearity by atomically transferring the pointer and
destroying the old copy. Using linear pointers with the generic offp and or cprm, cpmr (load/store) operations is an
error.

Linear Frame Pointer — The linear frame pointer is provided to enable user code to share memory in a controlled
way.

Thread Pointer — A thread pointer represents the capability to access the state of a thread. The TP needs to be
linear to prevent inconsistencies in the thread state.

Input Stream Pointer — The stream pointer must be linear to allow it to be auto incremented by the stream
instructions. If there were another pointer, it would not see the increment and end up pointing to a location
now used in the stream.

Output Stream Pointer — The stream pointer must be linear to allow it to be auto incremented by the stream
instructions. Same property as above. There will be separate input and output stream pointers to the same
stream.

2.2 Validation

Before execution the current instruction CI and its operands are validated. The check examines the following fields:
o CI,, — must always be Instruction,,
e CI — determines the allowable atomic groups for operands

e OP",, — operands must be consistent with CI

3 Fat Pointers

All data lives in frames. All frames are referenced by fat pointers. The fat pointers include the base and bounds of
the frame as well as the current pointed-to location.

3.1 Bounds Checks

Frame bounds checking automatically ensures

e No code can be executed outside the current code frame
e No memory can be accessed outside the fat pointer frame
e No illegal fat pointers can be created

Any violation triggers a thread switch to the Frame Bounds Error handler thread.

4 Processor State

The processor state that is held in hardware is the following:

e Thread Pointer capturing thread state
e Time State
e Transaction State

4.1 Thread Pointer

The thread state shows up as a single thread pointer TP register in the processor state. TP holds a pointer to the
state of the currently running thread.

4.2 Timer State

Timer state consists of three registers that are processor state but not thread state.
QT — Quanta; the scheduling precision or time slice.

CLK — A countdown timer that may be thought of as the low part of a counter whose range is 0 to the value of

QT.

SLOT - A countdown timer that may be thought as the high part of the counter, which is decremented when CLK
reaches 0.

TTT — Timing Trap Thread; thread to load when the timer counts down to zero or when a yield occurs.

We assume QT is loaded in some manner from the certified boot image and never changes.

4.3 Transaction State

Transaction state consists of:

TID - Start ID of Transaction in Process — non-zero when a transaction has started but not ended or aborted

Implementation-dependent state as required to support the transaction — abstractly a snapshot of the thread state;
in practice a copy of dirty state that may need to be rolled back on transaction abort

instruction counter — we may add counter to limit length?

Transactions do not persist across thread switches, so transaction state is processor state not thread state.

5 Timer Behavior

On each cycle:

CLK=CLK-1;
if (CLK==0)
{
CLK=QT;
if (SLOT==0)
Perform Timer Interrupt
// Thread-Switch to TTT (and TTT<-NaV)
else
SLOT=SLOT-1;

else

{3

6 Thread Frame

The frame of memory pointed to by the TP register holds the state associated with the currently running thread.
The register frame is divided into two sections. The first section holds the private state that is inaccessible to the
thread. The second part is the register file for use by the thread.

The private state is protected from access through register and memory operations. The currently running thread
may not access the private portion of the state because instruction operands have an offset added by the hardware
so that there is no way an instruction can address the private portion of the current state as a register. Since the
TP is linear, no one can access it through memory operations while it is installed as the current thread.

6.1 Private State

The private state contains the registers necessary to implement the thread.

’ Name \ Offset from TPy \ Description \ Update on Faults
ITTY 0x20 TMU Miss No
ITT! 0x21 Stream Empty/Full? No
ITT? 0x22 Arithmetic Error No
ITT® 0x23 Frame Bounds Error No
ITT? 0x24 Atomic Group Error No
ITT® 0x25 Frame Alignment Error No
ITTS 0x26 Gate Stack Bounds Error No
ITT’ 0x27 Transaction Error No
ITT® 0x28 Mangled Thread Error No

’ ITT? \ 0x29 \ Return Mismatch Error \ No

PC 0x30 Program Counter No

A 0x31 Authority No
TS 0x32 Thread Status Yes
GS 0x33 Gate Stack pointer No
CI 0x34 Current Instruction Yes
OP! 0x35 OPerand n Yes
opP? 0x36 OPerand n Yes
opP? 0x37 OPerand n Yes
MR 0x38 Result of Memory Load Yes
TR Ox39 Result-ofFAH-check No
NC 0x39 Non-Cacheable TMU Entry No
fPC 0x3A faulting Program Counter Yes
fA 0x3B faulting Authority Yes
LR 0x3C Live Register mask No
WR 0x3D Writeable Register mask No
I1C 0x3E Instruction Count No
IL 0x3F Instruction Limit No

The detailed description of each state register is described below.

6.1.1 Program Counter

PC,,y — Program counter tag
PC - Program counter

The program counter is a fat pointer into the currently executing instruction frame.

6.1.2 Authority
A — Authority

A — represents the authority that the processor is currently executing under.
There is no separate tag on A. The tag on A is PCy,,.
There are two predefined principal ID constants.

Authority ID Constants

toPauthority — The highest authority in the lattice [Hope never used — would defeat separated privileges.
—AMD)]
bottomgythority — The lowest authority in the lattice

6.1.3 Thread Status

TS;qy — Thread Status tag
TS — Thread Status

The thread status register holds the status flags for the thread. TS==0 is non-error state...

Status Flags

Bit 0-3 — Thread State
e 0x00 — Running
e 0x01 — Runnable
e 0x02 — Uninitialized
e 0x03 — Initialized
e 0x04 — Yield due to timer expiration
e 0x05 — Voluntary yield
e 0x06 — Faulted due to error state
e 0x07 — Halted
Bit 4-7 — Error Code [review: probably one per functional unit —AMD]
e 0x00 — No Error
e 0x01 — TMU Miss
e 0x02 — Stream Blocking
e 0x03 — Arithmetic Error
e 0x04 — Frame Bounds Error
e 0x05 — Atomic Group Error
e 0x06 — Frame Pointer Alignment Error
e 0x07 — Gate Stack Bounds Error
e (0x08 — Transaction Error
o 0x09 — Mangled Thread Frame
e 0x0a — Return Mismatch Error
Bit 8-11 — ALU Status 77?7

10

6.1.4 Gate Stack

GS;.y — Exit gate stack pointer tag
GS - Exit gate stack pointer

GS is a fat-pointer to the exit gate (continuation) within the gate stack frame for the current procedure being
executed.

GS;qy may be used for some form of integrity tracking or a similar auditing function. It is included for possible
future use, or may be removed if found to be unnecessary.

6.1.5 Interrupt Thread Table

The interrupt thread table ITT allows the thread pointers to be registered for each interrupt source. This is per-
thread state. Each thread has its own set of trap handlers. This allows threads to be interrupted while in the trap
handler state without interfering with other threads. Linearity means we’ve pulled the thread handler out of the
ITT, but since this is a per-thread table, that doesn’t prevent other threads from finding their trap handlers. It
also means many threads can be in their respective trap handlers without interferring with each other—they each
have their own context state.

6.1.6 Current Instruction

Cl;,y — Current instruction tag
CI — Current instruction

CI - represents the currently decoded instruction being executed. The Cl,, is the tag portion of the instruction
word fetched from memory. This register is used in the case of a TMU miss to provide the TMU handler with the
instruction causing the TMU miss. Certain cases will cause CI to be undefined.

e Prior to first instruction fetch for the thread

e Instruction fetch generates a frame-bounds error

6.1.7 Operand N

The operand registers hold the operands to the currently decoded instruction. These registers are used in the case
of a TMU miss to provide the TMU handler with the inputs causing the TMU miss.

OP";,, — Operand n tag
OP" - Operand n

Different instructions will cause various OP™ to be undefined, depending upon which operands are used for that
instruction.

6.1.8 Memory or Stream Result

MR;qy — Memory or Stream Result tag
MR - Memory or Stream Result

MRy — is an input to the TMU handler routine to check the tag on the atom in memory or coming from a
stream read.

MR - Could be left unimplemented

The TMU will have to check MR, for both reads and writes to memory to enforce the “no write down rule”.
[6/12 — maybe this is going away with the bracket-style register revisions. —~AMD]

11

6.1.9 TMU Result

[With the TMU now producing multiple results, matches less and less with the current design. This is being removed

6/19/12. ~AMD]

TR:qy — TMU Result tag
TR — TMU Result

6.1.10 Non-Cachable TMU Entry

This state is used in cases where we are returning a value through the TMU, but it cannot be used again. When
set, it means we should use the TMU entry. NC is currently two bits to indicate if the monitor has already fired or
if the NAV result should be returned.

NC.monitor — monitor has already fired
NC.nav — NAV result is ready to be used

[It’s possible there’s no need to distinguish between the two cases, so we could just use one bit. ~AMD]
In both cases, we put a result in the TMU to allow an operation that caused a trap to complete. If the bit is set,
then the TMU result should be used and the bit should be reset. If the bit is not set, then the trap should occur.

e if (TMU.monitor)
— if (NC.monitor)

+x NC.monitor=false
* continue operation

— else
* take TMU monitor trap
e elseif (TMU.nav_result)
— if (NC.nav)
x NC.nav=false
% continue operation returning NAV from TMU

— else
x take NAV trap

6.1.11 faulting Program Counter

fPC,,, — faulting Program counter tag
fPC - faulting Program counter

The faulting program counter is a fat pointer that captures the PC of the most recent fault. This may not be
the current PC in the case of transactions.

6.1.12 faulting Authority
fA — faulting Authority

fA — represents the authority that the processor was running under when it generated the last fault. This may
not be the current A in the case of transactions.

12

6.1.13 Live Register mask
LR - Live Register Mask

LR - a bit vector representing which of the public general-purpose registers is currently live. The bit vector
allows single cycle clearing of a set of registers on a brtn or clearregs. Any read of a dead (non-live) register

returns an Error (NAV). Any write of a register makes it live.
For each register read:

e if (LR[<7i>]==0)

— OPi=Public Error
e else

— OPi=RF[<ri>]
For each register written:

o LR[<ri>]=1

6.1.14 Writeable Register mask
WR — Writeable Register Mask

WR - a bit vector representing which of the public general-purpose registers can currently be written. The bit
vector allows a set of registers to be made read-only or restored to writeable in a single cycle on a bcall and brtn.
Any attempt to write to a read-only (not writeable) register is an error.

How should this error be handled? It could be ignored? (easy) or it could cause a NAV return from some
enclosing bcall (more complicated).

6.1.15 Instruction Count
Count of logical instructions completed in thread, incremented on instruction commit.
What do about rollover?

6.1.16 Instruction Limit

Limit on logical instructions that can be performed before the next return from a timed call. Each commit checks
current count against limit.

6.2 Public State

The public thread state represents the general purpose register resources of the processor. These registers can be
freely modified by the code the thread is running.
Public state is not modified on an instruction that raises a trap.

’ Name \ Offset from TP, \ Description Update on Faults
GP’ (EP) 0x00 Environment Pointer No
GP! (FTP) 0x01 Faulting Thread Pointer No
GP? 0x02 GP Registers No
GP3! 0x1F GP Registers No

13

6.2.1 Environment Pointer

EP,,, — Environment Pointer tag
EP - Environment Pointer

EP provides the environment frame for gate calls. Following a gate call, the EP register is updated with the
environment frame pointer stored in the gate. Similarly, following a gate return the EP is restored to the value from
before the gate call.

EP is an alias for register number zero and can be used as a general-purpose register between gate calls.

6.2.2 Faulting Thread Pointer

FTP,,, — Faulting Thread Pointer tag
FTP - Faulting Thread Pointer

FTP is used to communicate the thread pointer for the interrupted thread to trap handlers.

FTP is an alias for register number one and can be used as a general-purpose register for threads that are not
fault handlers. It can be used as a general-purpose register for fault handlers, but they must be careful to preserve
the faulting thread pointer somewhere.

6.2.3 General-Purpose Registers

The general-purpose registers constitute the remainder of the frame. Each frame has an implementation-specific
number of registers. We are currently envisioning an implementation with 32 GPRs in a frame.

<r'>iq9 — Register n tag
<r'"> — Register n

All instructions refer to registers by number. The register number is the positive offset from the base of the
public state within the thread frame. Frame addresses are calculated by adding the size of the private state plus the
register number to the TP.

6.3 Mangled Thread Frame

As part of our metadata checking, we can validate that the private portion of a thread frame has the correct types
when the thread is loaded (runt, resumet, fault). What happens when this check fails?

To first order, this should be an atomic failure of the invoking command. So, if runt calls a thread with a mangled
frame, we should fault to the thread calling runt at the runt instruction, calling the mangled thread fault handler.
Two potential cases here:

e The thread is mangled, but we can still write into its thread status slot. In this case, we set the thread mangled
error in the thread.

e The thread is mangled, preventing the processor from writing into the thread status register. In this case, we
place ERROR in FTP.

There are two cases for runt: (1) the thread calling runt is prepared for the thread to fail and has code to handle,
(2) the thread calling runt is not prepared for the runt to fail. In the first case, the mangled thread handler for the
thread calling runt can write state as described above and return to the thread so it can perform its cleanup. In the
other case, termination of the runt called thread will also terminate the thread calling runt. The correct thing to
do in this case is for the fault handler to update the thread status and perform a yield2 back to the caller of the
thread that called the runtE| Current libSafe plan is that only BTS can call runt. BTS must be prepared for the
thread it runs to fail with a mangled thread frame.

2or is it alwas TTT ? current instruction encoded as TTT.

14

Similarly, a fault handler invocation that fails because the fault handler thread is mangled should first try to
invoke the handler for mangled threads that is in the faulting thread’s ITT. If that succeeds it behaves as above,
setting thread status and performing a yield2. If the attempt to invoke the mangled thread handler fails, then the
processor should set FTP to ERROR in the timer thread and perform a yield.

A resumet that encouters a mangled thread should similarly first try to set the thread status on the FTP and
perform a yield2 back to that thread’s caller (probably the BTS via TTT). Failing that it should set FTP to
ERROR in the thread’s caller and perform a yield2 back to the thread’s caller.

[TODO: add more formal statement of behavior. ~AMD]

7 Streams

Streams provide a mechanism for serializing access to atoms and can be used for communication between concurrent
threads. Streams provide an atomic blocking interface to a shared FIFO data structure. Streams may only have one
reader and one writer which reference the stream via stream pointers. The one reader one writer convention must
be enforced via the linear pointer discipline.

Streams are buffered so that that reads and writes are decoupled. A stream buffer is allocated as a regular frame
of memory. The machine uses atomic groups to ensure that these pointers maintain the following stream invariants.
The stream uses Empty,, to denote non-present values in the stream buffer.

7.1 Stream Invariants

Empty Space in the stream buffer is always Empty,,

Writes only succeed if the write location is Empty,,

Reads only succeed if the read location contains a valid atom
Reads reset the atom to Empty,,

Read and write pointers are post incremented

Invalid reads or writes cause an interrupt

ConcreteWare is able to expand buffers if they are full via the stream interrupt handler.

8 TMU

The TMU provides the mechanism to enforce various security properties on executing threads by performing calcu-
lations on the tag portion of the atoms. It also provides a mechanism for information flow tracking on values.
[A more up to date description of TMU operation is provided in the libSafe Rule Architecture document. ~AMD]

8.1 Rule Checking

The TMU operates as a look up function of many inputs (machine state and inputs for current instruction), returning
an allow / disallow flag and the result tags for the different pieces of the machine state.

The TMU may miss when the data for an operation is not in the cache. A TMU miss causes the TMU Miss
Handler thread to be activated, which then tries to insert the rule that is needed for the instruction to work.

Allowed operations proceed with the result tag. Disallowed operations cause a gate to the TMU error handler
routine.

Inputs to the TMU vary between instructions depending upon number of operands. The set of TMU inputs in
the current implementation is as follows (in order):

TP;,,; — Current Thread Pointer tag

Cl;,y; — Current instruction tag

CI,, — Operation Group for current instruction’s operation
PC,,y — Program counter tag

15

A — Authority register

OP!';,, — Operand 1 tag (always source 1)
OP?;,, — Operand 2 tag (always source 2)
OP3;,, — Operand 3 tag (always destination)
MRqy — Memory Result tag

8.2 TMU Rule Interface

The TMU uses a numbered slot interface to load rules into the TMU cache. A complete TMU rule is much wider
than the native machine word so it requires a set of load operations to transfer a complete rule into the TMU. The

tmul instruction is used to transfer one field into a rule slot.
TMU Rule Input Fields

0x00 — TP,

0x01 — Cl,,,

0x02 — CI opgroup
0x03 — PC,,y

0x04 — A

0x05 — OP',,,
0x06 — OP2,,,
0x07 — OP3,,,
0x08 ~ MRy,

Any rule field may be a don’t-care, which means that particular field does not affect the decision if the operation
is allowed or disallowed. Don’t cares are currently implemented as a symbol that stays constant throughout. The
associated result fields are:

TMU Rule Result Fields

Allow / Disallow (Boolean)
0x09 — OP3,,,
0x0a — OP2,,,
0x0b - OP!,,,

0x0c — MW,
0x0d — TPy,
0x0e — PCyq4
ox0f — A

8.3 TMU Miss Handling

A TMU miss occurs when there is no rule loaded in the TMU for the current set of inputs to the TMU. TMU misses
are handled by a separate thread. When a miss occurs the TMU thread is swapped in and the TP for the thread
causing the miss is passed to the TMU handler. The TMU handler routine can inspect the private state of the
thread causing the miss to compute the necessary rule for the TMU cache.

8.4 TMU Error Handling

A TMU error occurs when the TMU thread detects a security violation during the processing of a TMU miss. The
TMU thread gates to the TMU error handler routine. The error handler can deal with setting status, terminating
the thread, and/or returning a NAV.

8.5 TMU Bootstraping

There are a static set of rules for the TMU in order to support concreteware operation. These rules are loaded into
a static TMU so they never need to be serviced by a TMU miss. They might be burned into flash on the processor

16

die or loaded during POR from off chip with a suitable signature check. For development, they are loaded into a
designated SRAM before processor boot.

9 Gate Stack

The gate stack holds the return gates associated with gate calls within a thread. A gate call causes the return gate
to be pushed on the gate stack. Gate exit causes the return gate to be popped off the gate stack. The gate stack
is not directly accessible to running code; it is manipulated implicitly by gate calls and returns and thread switch
instructions only.

9.1 Gate Stack Fault
A version is sketched in fully distributed.

10 Memory Map

e 0x0000 - 0x003F — Power on thread frame
e POR — Boot loader code (originally around 0x0100, but may be moved back in future so that static authorities
can live at fixed addresses that precede the code.)

10.1 Power On Reset

Upon initial start the machine loads the Boot Loader thread with an initial thread frame starting at 0x00 and begins
execution at the power on reset location POR as specified as the PC in the Power on thread frameE]
The initial thread frame provides a register frame for the bootstrap code.

Initial Machine State

’ Name \ Description \ Tag \ Atomic Group \ Value ‘
TP Thread Pointer BootLoader_Private Thread Pointer 0x0000
QT Quanta - - -

CLK Low Counter - - -
SLOT High Counter - - -
TTT | Timing Trap Thread - - -

Initial Thread Frame

3Was originally specified as 0x100, but there is no reason to force it to be there. Discipline is to define a suitable symbol for the POR
code and have that loaded into the thread frame. hardware.asm defines POR.

17

’ Name \ Offset from TP, \ Description \ Tag \ Atomic Group \ Value ‘

GP? (EP) 0x00 Environment Pointer BootLoader_Private Frame Pointer MOAF
GP! (FTP) 0x01 Faulting Thread Pointer - - -
GP? 0x02 GP Registers Public, Untrusted Integer 0
GP3 0x02 GP Registers - - -
GP3! 0x1F GP Registers - - -
ITTO 0x20 TMU Miss - - -
ITT! 0x21 Stream Empty/Full? - - -
ITT? 0x22 Arithmetic Error - - -
ITTS 0x23 Frame Bounds Error - - -
ITT? 0x24 Atomic Group Error - - -
ITT® 0x25 Frame Alignment Error - - -
ITTS 0x26 Gate Stack Bounds Error - - -
ITT" 0x27 Transaction Error - - -
ITT® 0x28 Mangled Thread Error - - -

PC 0x30 Program Counter BootLoader_Private | Instruction Pointer | POR
A 0x31 Authority BootLoader Authority -
TS 0x32 Thread Status - - -
GS 0x33 Gate Stack pointer - - -
CI 0x34 Current Instruction - - -
OP! 0x35 OPerand n - - -
opP? 0x36 OPerand n - - -
opP? 0x37 OPerand n - - -
MR 0x38 Result of Memory Load - - -
TR 0x39 Result of TMU check - - -
fPC 0x3A faulting Program Counter - - -
fA 0x3B faulting Authority - - -

11 Interrupts

Interrupts are implemented with the same TP mechanism used for thread switching. When an interrupt occurs the
current thread is suspended, without commiting the offending instruction, and the appropriate interrupt thread is
loaded into TP.

The thread causing the interrupt is placed in the FTP register of the handler thread.

11.1 Interrupt Priorities

Interrupts have a static priority ordering fixed in the hardware. Interrupts with a higher priority execute before
lower priority ones.
The interrupt priority is listed in the folowing table:

e Timer — highest priority [rationale: timer must take control precisely; we can always come back and handle
exceptional conditions on the next scheduling event.]

18

Atomic Group Error — priority 2 [if this goes wrong, not clear anything else is meaningful]
TMU Miss — priority 3 [if operation not allowed, errors irrelevant]
Frame Pointer Bounds / Alignment Error — priority 4
Gate Stack Underflow Error — priority 5 (each of these is mutually exclusive)
Stream Empty/Full? — priority 5
Arithmetic Error — priority 5
Transaction Error — priority 5

e Mangled Thread Error — priority 5

TS is encoded to report the highest priority interrupt event that occurs during the cycle.

11.2 Interrupt Semantics

At the end of each operation, the processor effectively performs the following:

Processor State

if (T'S.ErrorCode==NoError) // no interrupts raised

e // TP remains unchanged
e State changes occur (PC, register file writeback, writes, stream writes and reads, gate stack manipulation)

else

o fPC, fA CI, TS, OP", MR are updated based on interrupting operation
— N.B. these values updated based on interrupting operation are saved in the case of a transaction
abort; this communicates what went wrong in the transaction to the error handler (e.g. tells the
TMU miss handler what rule is needed).
No (other) state changes specified by the instruction occur
if (TID # 0) abort_transaction
tfTP « TP // faulting TP temporary for defining semantics
if (T'S.ErrorCode==Timer Interrupt)
— TS.ThreadState=Yield due to timer expiration
— TP «+ TTT
— TTT «+ NaV

e else // rest of interrupts

— TS.ThreadState=Faulted due to error state
_ TP « 1TTO0xF&(TS>>4))

— ITTOXF&(TS>>4) . Nuv // to maintain linearity of TP
TP.FTP « tfTP // write TP of faulting thread into FTP of the handler thread

12 Transactions

Maybe rename atomic block

Transactions allow a set of operations to occur atomically. Either all operations in the transaction complete
without interleaving or none of them complete. An aborted transaction restarts at the beginning of the transaction
when resumed. Initially, this is used to maintain atomicity in the face of interrupts and traps (timer, TMU, GC,
etc.). Long term, this could also support atomicity with respect to concurrent operation.

Transactions will be limited in size. They will support a maximum number of total instructions (TXN_MAXINSTR),
maximum number of reads (TXN_MAXREAD), and a maximum number of writes (TXN_.MAXWRITE) TXN_.MAXWRITE
is needed to bound the size of the write buffer. For true concurrent, shared-memory operations, we must keep track
of the reader set to detect any writes that might invalidate the transaction; TXN_MAXREAD specifies how large
of a reader set we will support. We expect these to be small (e.g. TXN_MAXWRITE 4-16, TXN_MAXREAD
32-1024), but need more experience with Concreteware before selecting specific values. TXN_MAXINSTR sets the
maximum number of complete rules (all fields) that the TMU transaction buffer can handle.

When a transaction starts with a transbegin, the thread state is all written out to memory. Execution continues
with no state going to memory or the TMU. Stream operations are allowed during a transactionﬁ Writes and
TMU changes during a transaction are buffered. Thread Frame state is modified only on the processor code. If

4Stream operations were originally disallowed. We now [3/12] propose to allow.

19

the transaction completes, it writes all state to memory and TMU without interruption (Thread Frame, flush write
buffer). If the transaction is aborted before completion, the memory state properly represents the state of the thread,
except for the private state that represents the trap condition; the trap-condition private state is written to memory
and the rest of the in-processor state is discarded.

Current plan is that gate calls (any calls) are not allowed in a transaction. Looping is not allowed in transaction.
This will likely show up as not allowing backward control flow transfers (lower PC in frame) while executing the
transaction.

12.1 Transaction Abort

abort_transaction:

TID « 0;
// fPC, fA, CI, TS, OP", MR are updated in any interrupt case, including this one
flush write buffer and transaction read tags

13 Forwarding Pointers

If the atomic group of a dereferenced register pointer used for a read is a Forwarding Pointer, the register payload
should be replaced with the forwarding pointer payload and the instruction reissued. If the PC target is a Forwarding
Pointer, the PC value should be updated and the instruction reissued at fetch.

13.1 PC Behavior

e if (mem[PC], ==Forwarding Pointer)

— PC=mem[PC] // n.b. PC,, remains unchanged
— treat current instruction (that did not read) as a NOOP
— // do not incremental PC; so re-issue fetch with the updated PC on the next cycle

e clse

— continue with normal instruction semantics

13.2 Memory Dereference Behavior
e if (MR, ,==Forwarding Pointer)

— turn instruction into a register assignment: pointerlegister(instr)ﬂe MR // n.b. atomic group remains
unchanged in register

— // ok to write to a read-only register in this case, since semantically not changing

— // do not incremental PC; so re-issue fetch with the updated PC on the next cycle

e clse

— continue with normal instruction semantics

Effected instructions: mvmr, cpmr, *call (incl. *jmp), grtn (?), str?, cp{ar,ht,io,mt}, mvrm, cprm, stw?
REVIEW: does this need to check GS, or invariants to guarantee that’s ok?

14 Arithmetic OP Codes

Here is a minimum selection of arithmetic op-codes. The full set will be added later.

Sunfortunately, pointers don’t currently always come from the same register. It is <r1> for read and gate operations; GS for grtn;
<r2> for writes (mvrm, cprm and stream writes)

20

14.1 Operand Conventions

This document makes a distinction between register numbers, offsets and addresses.
Offsets relative to the current PCy,,. are unsigned and used for branching or load constant instructions.
Register numbers are unsigned integer offsets within the public portion of the thread frame used for accessing
instruction operands.
Addresses are simply fat pointers which encode both the frame and location within the frame.

14.1.1 [add <ri> <r2> <r3> |- Add

Add the Integer,, atom in <r1> to <r2>, result in <r3>

Operands

<ri> — Source 1
<r2> — Source 2
<r3> — Destination

Allowed Operand Groups

<rl> ., = Integeryqy, <r2>,, = Integery,

Processor State

PC«+~PC+1
<r3>444 < TMU
<r3> — <ri> 4 <r2>
<r3> 44 — <P1>44

At some point, we should be clear about arithmetic instructions that overflow versus the ones that perform
modulo arithmetic. Here’s some instructions to consider:

e addm s rl r2 r3: r3=(r1+r2)&(2%-1) [same signed /unsigned]
e addb s rl r2 r3: t=r2+4r3; if overflow s bits, branch to code pointer rl else r3=t
e addc s rl r2 r3: t=rl+r2 r3=t&(2°-1) r2=(r1+r2)>>s [exploit 2 writeback ports]

In all cases s is an immediate field specifying the width of the instruction. Perhaps this is too general. I believe it
subsumes signed /unsigned.

14.1.2 ’addf <ri> <r2> <r3>|— Double-Precision Floating-Point Add

Add the Doubley, atom in <ri1> to <r2>, result in <r3>

Operands

<ri1> — Source 1
<r2> — Source 2
<r3> — Destination

Allowed Operand Groups

<ri>,, = Double,y, <r2>,, = Double,,

21

Processor State

PC +~PC+1

<r3>.44 < TMU

<r3> < <r1> +4ouble <TR>
<r3>4g < <T1>44

Will need fixed to/from floating-point instructions

14.1.3 [sub <r1> <r2> <r3>|— Subtract

Subtract the atom in <r2> from <r1>, result in <r3>

Operands

<r1> — Source 1
<r2> — Source 2
<r3> — Destination

Allowed Operand Groups

<r1>,, = Integer,y, <r2>,, = Integer,,

Processor State

PC«+ PC+1
<r3>444 < TMU
<r3> < <rl> - <rz2>
<r3> 44— <T1>44

14.1.4 [mul <r1> <r2> <r3>|— Multiply

Multiply the atom in <r2> with <ri1>, result in <r3>

Operands

<ri1> — Source 1
<r2> — Source 2
<r3> — Destination

Allowed Operand Groups

<r1>,, = Integer,y, <r2>,, = Integer,,

Processor State

PC«+~ PC+1
<r3>444 < TMU
<r3> <ri> * <ra>
<r3> 494 <T1>44

TMU rules are expected to enforce <r1>’s label is joined with <r2>’s label and the PC’s label to create the
label for <r3>.

22

14.1.5 ’and <rl> <r2> <r3>|— Bitwise And

Bitwise and the atom in <r1> with <r2>, result in <r3>

Operands

<ri> — Source 1
<r2> — Source 2
<r3> — Destination

Allowed Operand Groups

<rl> ., = Integeryy, <r2>,, = Integerq,

Processor State

PC«+~ PC+1
<r3>444 < TMU
<r3> + <ri1> & <r2>
<r3>,4 < Integer,,

TMU rules are expected to enforce <r1>’s label is joined with <r2>’s label and the PC’s label to create the
label for <r3>.

14.1.6 ’or <rl> <r2> <r3> ‘ — Bitwise Or

Bitwise or the atom in <r1> with <r2>, result in <r3>

Operands

<ri> — Source 1
<r2> — Source 2
<r3> — Destination

Allowed Operand Groups

<rl> ., = Integeryq, <r2>,, = Integery,

Processor State

PC+~PC+1
<r3>444 < TMU
<r3> <ri> | <r2>
<r3> .4 < Integer,,

TMU rules are expected to enforce <ri>’s label is joined with <r2>’s label and the PC’s label to create the
label for <r3>.

23

14.1.7 lxor <rl> <r2> <r3>|— Bitwise Xor

Bitwise xor the atom in <r1> with <r2>, result in <r3>

Operands

<ri1> — Source 1
<r2> — Source 2
<r3> — Destination

Allowed Operand Groups

<ri>,q, = Integer,y, <r2>,, = Integery,

Processor State

PC+~PC+1

<r3> 444 < TMU
<r3> — <ri> § <rz>
<r3> .4 < Integer,,

TMU rules are expected to enforce <ri>’s label is joined with <r2>’s label and the PC’s label to create the
label for <r3>.

14.1.8 [not <r1> <r3> |- Bitwise Inversion (Logical Complement)

Bitwise invert the atom in <r1> and put result in <r3>

Operands

<ri1> — Source 1
<r3> — Destination

Allowed Operand Groups

<ri>,, = Integer,,

Processor State

PC«+~ PC+1
<r3>444 < TMU
<r3>4— <ri>
<r3>,4 < Integer,,

14.1.9 [shl <r1> <r2> <r3> |- Shift Left

Bitwise left shift the atom in <r1> by <r2> bits, result in <r3>

Operands

<r1> — Source 1
<r2> — Source 2
<r3> — Destination

24

Allowed Operand Groups

<r1>,, = Integer,y, <r2>,, = Integer,,

Processor State

PC +~ PC+1
<r3>444 < TMU

<r3> — <ri1> << <re>
<r3>,, < Integer,,

TMU rules are expected to enforce <r1>’s label is joined with <r2>’s label and the PC’s label to create the
label for <r3>.

14.1.10 [shr <ri> <r2> <r3> |- Shift Right

Bitwise right shift the atom in <r1> by <r2> bits, result in <r3>

Operands

<r1> — Source 1
<r2> — Source 2
<r3> — Destination

Allowed Operand Groups

<r1>,, = Integer,y, <r2>,, = Integer,,

Processor State

PC +~ PC +1
<r3>444 < TMU

<r3> — <ril> >> <re>
<r3>,, < Integer,,

TMU rules are expected to enforce <ri>’s label is joined with <r2>’s label and the PC’s label to create the
label for <r3>.

14.1.11 ’test <ri> <r2> <r3>|— Test Equality

Test the atom in <r1> with atom in <r2>, result in <r3>

Operands

<r1> — Source 1
<r2> — Source 2
<r3> — Destination

Allowed Operand Groups

<r1>a9 = <T2>44

Processor State

25

PC«+~PC+1

<r3> 444 < TMU
<r3>4—1: <r1> == <rz>
<r3>« 0: <ri> # <r2>
<r3> .44 Integer,,

TMU rules are expected to enforce <ri>’s label is joined with <r2>’s label and the PC’s label to create the
label for <r3>.

14.1.12 |testgrp <ri1> <r2> [grpid] |— Test Particular Group

Test the atom in <r1> with group [grptd], result in <r2>

Operands

<ri1> — Source 1
<r2> — Destination
[grpid] —group id to match

Allowed Operand Groups

<ri> — any

Processor State

PC+PC+1

<r2> iy < TMU

<r2> .44 Integer,,

<r2> < 1: <ri> == [grpid]
<r2> + 0: <ri> # [grpid]

15 Control Flow OP Codes

Control flow op-codes are divided into frame local and inter-frame versions. Frame local control flow uses offsets
from the base of the PC to specify control flows within a frame. Intra-frame control flow uses addresses specified as
fat pointers for the destinations.
Frame boundaries for PC relative offsets are bounds checked against the frame encoded by the PC fat pointer.
Inter-frame instructions specify a fat pointer address for control transfers. This allows control flow change to any
frame the code holds a pointer to.

15.1 Frame Local Control Flow

Frame local instructions represent simple control flow transfers without any change to the PC,4. Conditional
branch instructions join the taint from the condition to the control flow taint. There is no scoping of the taint as it
accumulates.

15.1.1 | jmp [offset] | — Unconditional Jump

Unconditional jump to PCyyse + [offset]

Operands

26

[offset] — Unsigned offset from current code frame base

Processor State
PC <+ PCyyse + [offset]

TMU rules are expected to have no effect on the PC’s label.

15.1.2 |beq <r1> [offset] |— Branch Equal

Branch to PCpyse + [offset] if <ri> =0

Operands

<ri> — Atom to test
[offset] — Branch destination as unsigned offset from current code frame base

Allowed Operand Groups

<ri>,, = Integer,q

Processor State

PCyy +— TMU
PC <+ PC+ 1: <r1> #0
PC + PCyyse + [offset] : <ri> =0

TMU rules are expected to enforce <r1>’s label is joined with the PC’s label to create the new label for PC.

15.1.3 |bne <ri> [offset] ‘f Branch Not Equal

Branch to PCyse + [offset] if <ri> #0

Operands

<ri> — Atom to test
[offset] — Branch destination as unsigned offset from current code frame base

Allowed Operand Groups

<ri>,, = Integer,,

Processor State

PC, +— TMU
PC+~PC+1: <r1>=0
PC <« PCyuse + [offset] : <ri> #0

TMU rules are expected to enforce <r1>’s label is joined with the PC’s label to create the new label for PC.

27

15.1.4 |bneg <ri1> [offset] | — Branch Negative

Branch to PCpuse + [offset] if <ri> <0

Operands

<r1> — Atom to test
[offset] — Branch destination as unsigned offset from current code frame base

Allowed Operand Groups

<ri>,, = Integer,,

Processor State

PC,yy +— TMU
PC+ PC+ 1: <r1> >0
PC + PCyyse + [offset] : <ri> <0

TMU rules are expected to enforce <r1>’s label is joined with the PC’s label to create the new label for PC.

15.1.5 |bpos <ri1> [offset] ‘— Branch Positive

Branch to PCyuse + [offset] if <ri> >0

Operands

<ri> — Atom to test
[offset] — Branch destination as unsigned offset from current code frame base

Allowed Operand Groups

<r1>,, = Integerqq

Processor State

PC,;,, < TMU
PC <+ PC+ 1: <r1> <0
PC < PCyyse + [offset] : <ri> >0

TMU rules are expected to enforce <r1>’s label is joined with the PC’s label to create the new label for PC.

15.2 Inter-frame Control Flow

Inter-frame instructions provide control flow between frames. These instructions use fat pointers to refer to the call
site.

28

15.2.1 — Frame Jump

Unconditional jump to frame address

Operands

<r1> — Instruction pointer to jump to

Allowed Operand Groups

<r1>,, = InstructionPointer,,

Processor State

PC,;,, < TMU
PC « <ri>

Error Conditions

<ri> ., # Instruction Pointer

15.2.2 |gcall <ri>|— Procedure call with authority change

Invoke gate at address in <r1> and push return gate on gate stack.

Operands

<r1> — Address of gate

Allowed Operand Groups

<ri>,, = Gate Pointer,,

Processor State

GS«+~ GS+4
GS-PCtag — PCtag
GS.PC + PC+1
GS. Ay — Aygyg
GS.A + A
GS.EP;yy < EPyy
GS.EP + EP
GS.R,, + Error,, // unused, distinguish from bcall record
PCyy +— TMU

PC + <ri>.PC

Aiag ¢ <r1>.Ayyy

A +— <ri>. A

EPtag — <T‘1>.EPtag
EP « <ri>.EP
MRqq < <r1>.PCyyy
MR, < <r1>.PC,y
MR + <r1>.PC

29

Error Conditions

<ri>,, # Gate Pointer
<ri>.A ,,# Authority
<r1>.PC,4 # Instruction Pointer

TMU rules are expected to enforce caller’s PC label is joined with the PC label in the gate.

15.2.3 ’gfcall <rl> <r2> <r3> [mask] | — Cacheable procedure call with authority change

Invoke gate at address in <r1> on <r2> and <r3> and put result in <r3>.
[bgfcall may make more sense than this...so maybe only do that? —AMD]

Operands

<r1> — Address of gate

<r2> — Argument

<r3> — Argument and Destination Register

[mask] — top two bits specify how to mask the input (00 — use all; 01 — mask out value for <r3>; 10 — mask
out <r3> entirely; 11 — mask out <r3> and value on <r2>)

Allowed Operand Groups

<ri>,, = Gate Pointer,,

Processor State: gfcache miss

GS+ GS +4
GS.PC,,, < PCy,
GS.PC + PC+1
GS. Ay — Avgg
GS.A « A
GS-EPtag — EPta,g
GS.EP + EP
GS.R,, < Error,, // unused, distinguish from bcall record
PC,,, < TMU

PC « <ri>.PC

Atag — <7"1>.Atag
A+ <ri>. A

EPtag — <'r1>.Eng
EP « <ri>.EP
MRtag — <'r'1>.PCtag
MR, + <ri>.PC,,
MR «+ <r1>.PC

Processor State: gfcache hit

PC,,, < TMU|Revist as work out beall. Issue: in non-restoring gcall world, the PCy,, might change.
Maybe the gfcall should be a bgfcall... ~AMD]

PC+~PC+1

<r3> «+ cached result of gcall <r1> on <r2> and <r3>

<r3>,4 + atomic group from cached result of gcall <r1> on <r2> and <r3>

30

<r3>444 < TMU

Error Conditions

<ri>., # Gate Pointer

<ri>.A ,47# Authority

<r1>.PC,, # Instruction Pointer

mask specified in [mask] [9:8] does not match mask read from gfcache

TMU rules are expected to enforce caller’s PC label is joined with the PC label in the gate.

15.2.4 |gjmp <ri1>|— Gate jump without gate return

Invoke gate at address in <r1> without push return gate on gate stack.

Operands

<r1> — Address of gate

Allowed Operand Groups

<ri>,, = GatePointerg,

Processor State

PCyyy <+ TMU

PC « <r1>.PC

Atag — <T1>-Atag

A « <ri>. A

EPtag — <T'1>.EPtag
EP + <ri>.EP
MRtag — <r1>.PCta9
MR, + <r1>.PC,
MR + <r1>.PC

Error Conditions

<ri>,, # Gate Pointer
<ri>.A,, # Authority
<r1>.PC,4 # Instruction Pointer

TMU rules are expected to enforce caller’s PC label is joined with the PC label in the gate.

15.2.5 — Return from Gate Call

Return from a gate call

Operands

None

Allowed Operand Groups

31

None

Processor State

PC.,, + TMU
MR,, « GS.PC,,
MRy, + GS.PC,,,
MR + GS.PC

PC <~ GS.PC

A+~ GS.A

EPtag — GS.EPtag
EP + GS.EP
GS+~GS-4

Error Conditions

GS.A,, # Authority
GS.PC,, # Instruction Pointer
GS.R,, = Integer,, // will be Integer,, for bcall record

15.2.6 — Procedure Call, no authority change

Call procedure in <r1>. Builds a return gate with the current authority and environment and pushes on gate stack.

Operands

<r1> — Pointer to procedure

Allowed Operand Groups

<ri>,, = Instruction Pointer,

Processor State

GS+ GS +14

GS.PCyyy <+ PCyy,

GS.PC + PC+1

GS-Atag — Atag

GS.A « A

GS.EPtag — EPt(Lg

GS.EP + EP

GS.R,; + Error,, // unused, distinguish from bcall record
PC,,, < TMU

EP+ Uninitialized // not coming form gate closure — EP is for the lexically enclosing environment, not the
callers environment. So, not appropriate to chain through EP.
PC + <ri>

Error Conditions

<ri>., # Instruction Pointer

32

15.2.7 |gacall <ri> <r2>|— Procedure call with authority change and augmentation

Invoke gate at address in <r1> with its authority extended by first-class authority in <r2> and push return gate on
gate stack.

Operands

<r1> — Address of gate
<r2> — Additional Authority to use with gate

Allowed Operand Groups

<ri>., = Gate Pointer,y, <r2>,, = Authority,,

Processor State

GS«+~ GS+4

GS-PCtag — PCtag

GS.PC + PC+1

GS.Atag — Atag

GS.A « A

GS.EP;,, < EPy,,

GS.EP + EP

GS.R,; + Error,, // unused, distinguish from bcall record

PC,,, + TMU

PC + <ri>.PC

A « <ri1>.A with <r2> // from TMU output

EP,yy < <ri>.EPy,

EP < <ri>.EP

MR, , + <ri>.A,

MR,y < <r1>.A

// Perhaps a subtlety — in this case the TMU’s M.MR gets the A payload not the A.tag; whereas normally
TMU.MR gets MR.tag

// what actually happens is the full record (PC,EP,A) is coming in from memory, but is wider than a single
atom (3 atoms), but only the A piece is going to the TMU through the TMU MR port

// Also note that <r2> payload needs to be seen by the TMU. 4/20/12 working model is to feed that into the
<r3>44 input to the TMU.

Error Conditions

<ri>., # Gate Pointer

<r2> ., # Authority

<ri1>.A.q # Authority
<r1>.PC,, # Instruction Pointer

TMU rules are expected to enforce caller’s PC label is joined with the PC label in the gate.

15.2.8 |gajmp <ri1>|— Jump with authority change and augmentation without gate return

Invoke gate at address in <r1> with its authority extended by the authority in <r2> without push return gate on
gate stack.

Operands

33

<r1> — Address of gate
<r2> — Additional authority to use with jump

Allowed Operand Groups

<ri>,, = GatePointerqy, <r2>,, = Authoritys,

Processor State

PC,,, + TMU

PC + <ri>.PC

A + <r1>.A with <r2> // from TMU output

EPtag — <’l"1>.EPtag

EP + <ri>.EP

MR, + <ri>.Agy

MR;qq < <ri>. A

// Perhaps a subtlety — in this case the TMU’s M.MR gets the A payload not the A.tag; whereas normally
TMU.MR gets MR.tag

// what actually happens is the full record (PC,EP,A) is coming in from memory, but is wider than a single
atom (3 atoms), but only the A piece is going to the TMU through the TMU MR port

// Also note that <r2> payload needs to be seen by the TMU. 4/20/12 working model is to feed that into the
<r3>44 input to the TMU.

Error Conditions

<ri>,, # Gate Pointer

<r2> ., # Authority

<ri>.A,, # Authority
<r1>.PC,, # Instruction Pointer

TMU rules are expected to enforce caller’s PC label is joined with the PC label in the gate.

15.2.9 ’acall <rl> <rz2> \ — Procedure Call with caller specified authority

Call procedure in <r1> and change authority to <r2>. Builds a return record with the current authority and
environment and pushes on gate stack.

Operands

<r1> — Pointer to procedure
<r2> — Authority to use with gate

Allowed Operand Groups

<ri>,, = Instruction Pointer,q, <r2>,, = Authority,,

Processor State

GS « GS + 4
GS.PCy,, « PCyy,
GS.PC + PC+1
GS.Ayuy < Ay

34

GS.A + A

GS-EPtag — EPta,g

GS.EP + EP

GS.R,, < Error,, // unused, distinguish from bcall record

PCyy +— TMU

A — <r2>

EP+ Uninitialized // not coming form gate closure; see full comment on call
PC + <ri>

Error Conditions

<ri>,q # Instruction Pointer
<r2> ., # Authority

15.2.10 ’lcall <ri> <r2> ‘ — Procedure Call with caller specified reduction in authority

Call procedure in <r1> and lower current authority by <r2>. Builds a return record with the current authority and
environment and pushes on gate stack. Only difference from acall is rules applied by TMU.

Operands

<r1> — Pointer to procedure
<r2> — Authority to use with gate

Allowed Operand Groups

<ri>,, = Instruction Pointer,q, <r2>,, = Authority,,

Processor State

GS«+~ GS +4

GS.PC,,, < PCy,

GS.PC + PC+1

GS. Ay — Avgg

GS.A « A

GS-EPtag — EPt(Lg

GS.EP «+ EP

GS.R,; < Error,, // unused, distinguish from bcall record
PC,,, < TMU

A — <r2>

EP+ Uninitialized // not coming form gate closure; see full comment on call
PC + <ri>

Error Conditions

<ri>.q # Instruction Pointer
<r2> ., # Authority

35

15.2.11 ’rcall <rl> <rz2> ‘ — Procedure Call with caller specified additional authority

Call procedure in <r1> and raise current authority by <r2>. Builds a return record with the current authority and
environment and pushes on gate stack. Only difference from acall is rules applied by TMU.

Operands

<r1> — Pointer to procedure
<r2> — Authority to use with gate

Allowed Operand Groups

<ri>,, = Instruction Pointer,g, <r2>,, = Authority,,

Processor State

GS+~ GS+4

GS.PCyyy < PCyyq

GS.PC + PC+1

GS-Atag — Atag

GS.A +— A

GS.EPtag — EPtag

GS.EP + EP

GS.R,, < Error,, // unused, distinguish from bcall record
PC,yy +— TMU

A — <r2>

EP+« Uninitialized // not coming form gate closure; see full comment on call
PC « <ri>

Error Conditions

<r1>,q, # Instruction Pointer
<r2>,, # Authority

15.2.12 ’bcall <ri> <r3> [result-reg] | — Bracket Call

Invokes the bracket at <r1> with the registers specified by <r3> as writeable, expecting the result to go in register
[result-reg] which will have a tag <r3>44.

Operands

<r1> — Address of procedure to call

<r2> — unused

<r3> — bit vector specifying which registers will be writeable during the call; except for the designated return
register, these will be cleared upon brtn; tagged with tag equal to tag for result

[result-reg] — specify register that should get result and be tagged by <r3>44

Allowed Operand Groups

<r1>,, = Instruction Pointer,,, <r3>,, = Integer,,

Processor State

36

GS+~ GS+4

GS-PCtag — PCtag

GS.PC + PC+1

GS.Atag — At(Lg

GS.A « A

GS.EP;, < EPyy

GS.EP + EP

GS.R,y < Integer,,

GS.Rigg — <r3>4q4

GS.R + (WR<<32)|[result-reg] // mizing tag, mask, and register in one atom to make compact
PC,,, < TMU

PC « <ri>

EP+ Uninitialized // not coming form gate closure; see call
WR=WR & <r3>

Error Conditions

<ri> ., # Instruction Pointer,,
<r3>.4 # Integer,,
<r3>[[result-reg]] # 1 // result register should be writeable

15.2.13 ’bgcall <ri> <r3> [result-reg] | — Bracket call with authority change

Invokes the bracket gate at <ri1> with the registers specified by <r3> as writeable, expecting the result to go in
register [result-reg] which will have a tag <r3>4,.

Operands

<ri> — Gate to call

<r2> — unused

<r3> — bit vector specifying which registers will be writeable during the call; except for the designated return
register, these will be cleared upon brtn; tagged with tag equal to tag for result

[result-reg] — specify register that should get result and be tagged by <r3>;,,

Allowed Operand Groups

<ri>,, = Gate Pointer,q, <r3>,, = Integer,,

Processor State

GS«+ GS +14
GS.PCyyy + PCyyy
GS.PC + PC+1
GS-Atag — Atag
GS.A «+ A
GS.EP,, < EPyy,
GS.EP + EP
GS.R,, < Integer,,
GS.Rigg — <r3>4q4
GS.R + (WR<<32)|[result-reg] // mizing tag, mask, and register in one atom to make compact
PC,,, < TMU

37

PC « <r1>.PC

Atag — <7"1>.Atag

A — <ri>. A

EPt(zg — <'r1>.Eng
EP < <ri>.EP
MRtag — <‘T'1>.Pctag
MR, + <r1>.PC,,
MR + <r1>.PC
WR=WR & <r3>

Error Conditions

<ri>., # Gate Pointer,,

<r3> .4 # Integer,,

<r3>[[result-reg]] # 1 // result register should be writeable
<ri>.A ,,# Authority,,

<r1>.PC,, # Instruction Pointer,g

15.2.14 ’bgfcall <ri> <r2> <r3> [mask] |— Cacheable bracket procedure call with authority change

Invoke gate at address in <r1> on <r2> and <r3> and put result in <r3>.

Operands

<r1> — Gate Pointer

<r2> — Argument

<r3> — Argument and Destination Register tagged as destination register should be tagged

[mask] — Mask of arguments and writable registers; top two bits specify argument mask (00 — use all; 01 —
mask out value for <r3>; 10 — mask out <r3> entirely; 11 — mask out <r3> and value on <r2>); last 8 bits
specify writable register mask—only covers registers 16-23; rest of registers marked read-only

Allowed Operand Groups

<ri>,, = Gate Pointer,,

Processor State: gfcache miss

GS+ GS +4
GS.PC,,, < PCyy,
GS.PC + PC+1
GS-Atag — Atag
GS.A «+ A
G‘S.EPtag — EPtag
GS.EP «~ EP
GS.R,; « Integer,,
GS-Rtag — <T3>tag
GS.R + (WR<<32) | register_number(<r3>) // mizing tag, mask, and register in one atom to make
compact

PC,,, < TMU

PC + <ri>.PC
Atag — <7"1>.Atag

38

A« <ri>. A

EPtag — <r1>-EPtag

EP « <ri>.EP

MRta_q — <'r*1>.PCtag

MR, < <r1>.PC,y

MR «+ <r1>.PC

WR=WR & (([wmask] & 0x03ff) <<16) // immediate 10b

Processor State: gfcache hit

PC +~ PC+1

<r3> <+ cached result of bgcall <r1> on <r2> and <r3>

<r3>,4 < atomic group from cached result of bgcall <r1> on <r2> and <r3>

<r3>y4q <r3>.44 // by formulation should stay the same

LR <+ LR & (([wmask] &0z0f f) << 16) // still mark writeable set dead — which are bottom 8b
LR[register_number(<r3>)]« 1

Error Conditions

<ri>.q # Gate Pointer,,

16 < register number(<r3>) < 24

<r3>[register_number(<r3>)-16] # 1 // result register should be writeable
<ri>.A ,,# Authority,,

<r1>.PC,, # Instruction Pointer,,

mask specified in [mask] [9:8] does not match mask read from gfcache

15.2.15 ’bgacall <ri> <r2> <r3> [result-reg] | — Bracket call with authority change and augmen-

tation

Invokes the bracket gate at <ri1> with its authority extended by the first-class authority <r2> with the registers

specified by <r3> as writeable, expecting the result to go in register [result-reg] which will have a tag <r3>.4,.
[Note: this combines result tag and write mask into a single atom (as it gets combined on the GS Stack), whereas

beall/bgcall do not. Necessary here to compact the arguments. Should we treat beall/bgcall likewise? —AMD]

Operands

<ri> — Gate to call

<r2> — Additional Authority to use with gate

<r3> — bit vector specifying which registers will be writeable during the call; except for the designated return
register, these will be cleared upon brtn; tagged with tag equal to tag for result

[result-reg] — specify register that should get result and be tagged by <r2>,,

Allowed Operand Groups

<ri>,, = Gate Pointer,y, <r2>,, = Authority,y, <r3>.,, = Integery,

Processor State

GS + GS +4
GS.PCy,y « PCyyy
GS.PC + PC+1

39

GS. Aty — Aigy

GS.A « A

GS-EPtag — EPtag

GS.EP + EP

GS.R,y < Integer,,

GS.Rtag — <T3>tag

GS.R + (WR<<32)|[result-reg] // mizing tag, mask, and register in one atom to make compact
PC,,, <+ TMU

PC + <ri>.PC

A <+ <r1>.A with <r2> // from TMU output
EPtag — <’I"1>.EPtag

EP + <ri>.EP

MRtag — <r1>.PCtag

MR, + <r1>.PC,yy

MR <+ <r1>.PC

WR=WR & <r3>

/] see subtlety notes at end of gacall

Error Conditions

<r1>.q # Gate Pointer,,

<r2>.4 # Authority,,

<r3>.q4 # Integer,,

<r3>[[result-reg]] # 1 // result register should be writeable
<ri>.A .47 Authority,,

<r1> PC,, # Instruction Pointer,,

15.2.16 — Return from Bracket Call

Return from a bracket call

Operands

<r1> — Source — return result register

Allowed Operand Groups

<ri>qg = Any,,

Processor State

MR,, <+ GS.Rg

MRy < GS.Ryay // make available to TMU so can check that PCy.y and <ri>y, each flow to this
MR «+ GS.R

PC,,, < GS.PC,,,

PC + GS.PC

A + GS.A

EPtag — GS.EPtag

EP < GS.EP

<r1>409 < GS.Rygg

LR + LR & WR // all writeable become dead
LR[register_number(<ri>)]« 1

40

WR + GS.R>>32
GS«+~ GS-4

Error Conditions

GS.R,, # Integer,,
GS.R & 0x01f # register_number(<ri>)

15.2.17 ’tcall <rl> <r2> ‘ — Procedure Call with timeout, no authority change

Call procedure in <r1> setting logical timeout to <r2>. Builds a return gate with the current authority and
environment and pushes on gate stack.

Two things this does not protect against: (1) resource exhaustion, (2) stream deadlock. So, this cannot be a
wholistic solution on its own to prevent a thread from never returning from a call.

Question remains: is this worthwhile to have, nonethless as part of our portfolio of protections? or should we just
say all invocations of potentially suspicious code must be thread spawns and not bother with tcall/trtn/trequire?

Operands

<r1> — Pointer to procedure
<r2> — Number of instructions allowed to run

Allowed Operand Groups

<ri>,, = Instruction Pointer,,, <r2>,, = Integer,,

Processor State

GS+ GS +14

GS.PCyyy <+ PCyy,

GS.PC + PC+1

GS-Atag — Atag

GS.A + A

GS-EPtag — EPtag

GS.EP + EP

GS.R,; + 77,4 // distinguish from normal and bcall

GS.R + IL // save old limit

GS-Rtag — PCtag

PC,yy +— TMU

EP+ Uninitialized // not coming form gate closure — EP is for the lexically enclosing environment, not the
callers environment. So, not appropriate to chain through EP.
IL+ IC+<r2>

PC + <ri>

Error Conditions

<r1> ., # Instruction Pointer
<r2> .4 # Int
IC+<r2> > IL // should return appropriate NAV to enclosing brtn record

41

15.2.18 — Return from Timeout Gate Call

Return from a timeout gate call

Operands

None

Allowed Operand Groups

None

Processor State

PC.,, + TMU
MR,, + GS.PC,,
MRtag — GS.PCtag
MR + GS.PC

PC <~ GS.PC

A+~ GS.A

EPtag — GS.EPtag
EP + GS.EP

IL <+~ GS.R
GS+~GS-4

Error Conditions

GS.A,y # Authority
GS.PC,, # Instruction Pointer
GS.R,, = Integer,, or Error,, // will be Integer,, for beall record and Error,, for geall record

15.2.19 ’trequire <ri> ‘ — Require Time to Continue

Timeout now if <ri1> logical cycles are not available before timeout.
Privilege: None

Operands

<r1> — Integer specifiying the time required

Allowed Operand Groups

<ri>,, = Integer,q

Processor State

PC <+ PC+1

TMU Rule Match Fields
PCtag, CItaga CI, A, <r1>tag

Error Conditions

<ri>,q, # Int
IC+<r1> > IL // should return appropriate NAV to enclosing brtn record

42

15.2.20 |gate <ri1> <r2> <r3>|— Create Gate

Create a gate to procedure pointed to by <ri1> with environment <r2> and store in pre-allocated gate structure
<r3>

Operands

<r1> — Pointer to procedure
<r2> — Environment for gate
<r3> — Linear Pointer to previously allocated gate structure

Allowed Operand Groups

<r1>,, = Instruction Pointer,,, <r2>,, = Frame Pointer,y, <r3>,, = Linear Pointer,q
maybe open type of <r2> up to all non-linear types? — at some point that was the original intent.

Processor State

MR¢qy ¢ mem([<r3>],, // so TMU can check [...but it cannot check all 3 atoms... ~AMD)]
MR,, < mem[<r3>],
MR <+ mem[<r3>]
<r3>.PCiqq — <r1>4q
<r3>.PC + <ri>
<r3>.Ateg — Aggg
<r3>.A — A

<r3> °EPtag — <T2>tag
<r3>.EP «+ <r2>

<r3>,, < GatePointer,,
<r3>444 < TMU

Error Conditions

<r3> not point to base of frame [these three possible additions ~AMD)]
<r3> size incorrect for gate frame 77
Contents of memory at <r3> not Uninitialized

15.2.21 |gatele <ri> <r2> <r3> ‘ — Create Gate with Linear Environment

Create a gate to procedure pointed to by <r1> with environment <r2> and store in pre-allocated gate structure
<r3>. Move <r2> into the gate.

Operands

<r1> — Pointer to procedure
<r2> — Environment for gate
<r3> — Linear Pointer to previously allocated gate structure

Allowed Operand Groups

<ri>,q, = Instruction Pointer,y, <r2>,, = Frame Pointer,,, <r3>,, = Linear Pointerg,
<ri>,, = Instruction Pointer,q, <r2>,, = Stream Write Pointer,y, <r3>,, = Linear Pointer,
<ri>,, = Instruction Pointer,,, <r2>,, = Stream Read Pointer,,, <r3>,, = Linear Pointer,

43

<ri1>,, = Instruction Pointer,,, <r2>,, = Linear Pointer,y, <r3>,, = Linear Pointer,, [if keep linear atomic
group —~AMD]
maybe open <r2> to any type?

Processor State

MR4y ¢ mem([<r3>],, // so TMU can check [...but it cannot check all 3 atoms... ~AMD)]
MR,y < mem[<r3>]
MR <+ mem[<r3>]
<r3>.PCyyy — <ri1>i4q
<r3>.PC + <ri>
<r3>.Aipg — Argg
<r3>.A <+~ A

<r3>.EPug ¢ <r2>i44
<r3>.EP « <r2>

<r3>,, < GatePointer,,
<r3>444 < TMU

<r2>449 < TMU.2

<r2> + 0

Error Conditions

<r3> not point to base of frame [these three possible additions ~AMD]
<r3> size incorrect for gate frame 77
Contents of memory at <r3> not Uninitialized

15.3 Timer

15.3.1 |give-time <ri>|— Add time to SLOT

Add the time specified in <r1> to SLOT.
Privilege: Only BTSP is allowed to execute this instruction.

Operands

<r1> — Integer specifiying the time to allocate.

Allowed Operand Groups
<r1>,, = Integer,q
Processor State
PC +~ PC+1

SLOT «+ SLOT + <ri>

TMU Rule Match Fields
PCiuy, Cligg, CI, A, <ri>,

44

15.3.2 ’recover—time <ri> ‘ — Move time remaining from SLOT to <ri>

Set SLOT to 1 and put its old value in <ri>.

Note: we set it to 1 rather than 0 to guarantee there is always a full QT left after this operation.
Privilege: Only BTSP is allowed to execute this instruction.
Operands

<r1> — register to hold result.

Processor State

PC«+ PC+1
if (SLOT>0) <r1> < SLOT-1 else <r1> « 0
if (SLOT>0) SLOT « 1 else SLOT «+ 0

TMU Rule Match Fields
PCiuy, Cligg, CI, A, <ri>.,

15.3.3 ’read—time <ri> ‘ — Read time remaining in SLOT to <ri1>

Set <r1> to SLOT.
Privilege: Only schedulers are allowed to perform this operation.

Operands

<ri> — register to hold result.

Processor State

PC « PC +1
<ri1> + SLOT

TMU Rule Match Fields
PCtaga CItag, CI, A, <T1>tag

15.4 Inter-thread Control Flow

15.4.1 — Run Thread

Begin running a new thread by storing TP into TTT and replacing TP with <r1>.
Privilege: Only BTSP is allowed to execute this instruction.
Operands

<r1> — Thread pointer to begin running

Allowed Operand Groups

<r1>,, = Thread Pointer,,

Processor State

PC «+~PC+1
TTT + TP
TP « <ri>

Assigning TP causes all processor state to be replaced with the new thread state.

45

15.4.2 |resumet <ri1> [event] |— Return to Thread from Trap Handler

Begin running a new thread by storing TP into r1.ITT|[[event]] and replacing TP with <r1>.
Privilege: Limited to fault handlers

Operands

<r1> — Thread pointer to begin running
[event] — slot in ITT where the current TP should be returned

Allowed Operand Groups

<r1>,, = Thread Pointerg,
<r2>,, = Integer,q

Processor State

PC +~ PC+1
<r1>ITT[[event]] «+ TP
<r1>.TS .ErrorCode < No Error
TP + <ri>

Assigning TP causes all processor state to be replaced with the new thread state.

15.4.3 — Yield remaining time

Invokes a timer interrupt without further operations.
Privilege: none

Operands

none

Processor State

PC+~PC+1

SLOT « SLOT+1

TP «+ TTT

TTT < Empty

TS.ThreadState < Voluntary Yield

perform timer interrupt synchronously after this instruction and before the following instruction

Note: this doesn’t add time; it just merges the remaining time into the normal scheduling time slot that occurs after
a timer interrupt.

TMU Rule Match Fields
PCyyy, Cliyy, CI, A

46

15.4.4 |yield2 <r1> [event] | — Return to TTT Bypassing Stacked Thread

Begin running a new thread by storing TP into r1.ITT|[[event]] and replacing TP with TTT.
Privilege: Limited to fault handlers

Operands

<r1> — Thread pointer into which to store TP
[event] — slot in ITT where the current TP should be returned

Allowed Operand Groups

<r1>,, = Thread Pointerg,
<r2>,, = Integer,,

Processor State

PC«+~ PC+1
<r1> ITT|[event]]| + TP
TTT.EP «+ <ri>
<ri> < Empty
TP «+ TTT
TTT < Empty
15.4.5 — Thread self termination

Change thread state to halted and invoke time interrupt without further operations.
Privilege: none

Operands

none

Processor State

PC +~ PC +1

SLOT + SLOT+1

TP «+ TTT

TS.ThreadState <— Halted

perform timer interrupt synchronously after this instruction and before the following instruction

Note: this doesn’t add time; it just merges the remaining time into the normal scheduling time slot that occurs after
a timer interrupt.

TMU Rule Match Fields
PCtag7 CItag’ CIa A

Assigning TP causes all processor state to be replaced with the new thread state.

16 Memory OP Codes

Memory op-codes use fat pointers to refer to atoms in any frame the code has a capability for.

47

16.1 Memory Access

16.1.1 — Clear Register

Clear <r1>, marking it as dead. The old value of <ri> can no longer be read.

Operands

<r1> — Destination — register to clear

Allowed Operand Groups

<r1>ag = Anye,

Processor State

PC«+~ PC+1

<r1>.,4 <+ Public

<r1> 0

<ri1>,q < Error,,
LR[register_number(<r1>)] + false

16.1.2 ’clearregs <ri> ‘ — Clear Group of Registers

Clear registers specified by <r1>, marking them as dead. The old value of this register set can no longer be read.

Operands

<ri> — Source 1 — registers to clear

Allowed Operand Groups

<ri>,, = Integer,

Processor State

PC «+~ PC+1
LR «~ LR & <r1>

16.1.3 ’livemask <ri> ‘ — Read the Live Register mask

Put the Live Register mask into <ri1>

Operands

<r1> — Destination

Allowed Operand Groups

<r1>ag = Anyg,

Processor State

PC <+ PC+1
<r1>404 < TMU
<ri1>,, < Integer,,
<r1> +— LR

48

16.1.4 ’writemask <r1> | — Read the Writeable Register mask

Put the Writeable Register mask into <r1>

Operands

<r1> — Destination

Allowed Operand Groups

<r1> .y = Anyg,

Processor State

PC+~PC+1
<r1>iqy < TMU
<ri1>,, < Integer,,
<r1> <~ WR

16.1.5 ’mvrr <ri> <r2>|— Move Register To Register

Move an atom from <ri1> into <r2>, erasing <ri>

Operands

<r1> — Frame Pointer register
<r2> — Destination register

Allowed Operand Groups
all

Processor State

PC «+~ PC +1
<r2>44g < TMU
<re> < <ri>
<Tr2>4q < <T1>44
<r1>4qq < TMU.2
<r1> <0

<ri>,, < Errorg,

16.1.6 ’mvmr <ri1> <r2>|— Move Memory To Register

Load an atom from <r1> into <r2>, erasing memory location at <ri>

Operands

<r1> — Pointer register
<r2> — Destination register

Allowed Operand Groups

49

<r1>,, = Frame Pointer,
<ri>,, = Constant Frame Pointer,,
<ri1>,, = Instruction Pointer

ag ag
<r1>,, = Thread Pointer

g ag
<ri1>,, = Linear Pointer,

g g

Processor State

PC +~PC +1

MR + mem|[<ri>]
MR;gy mem[<'r*1>]mg
MR,y < mem[<r1>]
<r2>449 < TMU

<r2> + mem[<ri>]
<r2>.4 < mem[<ri>]
mem([<r1>], .« TMU.2
mem|[<ri>] < 0
mem/(<r1>], < Errorg,

16.1.7 ’mvrm <r1> <r2>|— Move Register To Memory

Store an atom from <r1> into <r2>, erasing <ri>.

Operands

<ri> — Source register
<r2> — Pointer register

Allowed Operand Groups

<r2>,4 = Frame Pointer,,
<r2>,4 = Instruction Pointer,q
<r2>,4 = Thread Pointerg,
<r2>,, = Linear Pointer,,

Processor State

PC+ PC+1

MR < mem[<r2>]
MR;qy < mem(<r2>],
MR, < mem[<'r'2>]ag
mem[<'r‘2>]mg +— TMU
mem[<r2>] « <ri>
mem(<r2>], < <ri>g,
<r1>444 < TMU.2
<ri> «+ 0

<r1>,q < Error,,

50

16.1.8 |cprr <ri> <r2>|— Copy Register To Register

Copy an atom from <r1> into <r2>.

Operands

<ri1> — Source register
<r2> — Destination register

Allowed Operand Groups

<r1>,4 all but Thread Pointer, Linear Pointer, or Stream Pointer

Processor State

PC +~ PC+1
<r2>449 < TMU
<r2> < <ri>
<Tr2> 49 < <T1>44

16.1.9 |cpmr <ri1> <r2>|— Copy Memory To Register

Load an atom from memory at address <ri1> into <r2>.

Operands

<r1> — Pointer register
<r2> — Destination register

Allowed Operand Groups

<ri>,, = Frame Pointer,,

<r1>,, = Constant Frame Pointer,,
<r1>,, = Instruction Pointer,
<r1>,, = Thread Pointerg,

<r1>,, = Linear Pointer,,

Error Conditions

Value read from memory must not be a linear pointer

Processor State

PC +~ PC+1

MR + mem|[<ri>]
MRy ¢ mem(<r1>],
MR,y < mem[<r1>]
<r2>449 < TMU

<r2> < memj[<ri>]

<r2>.y < meml[<ri>]

o1

16.1.10 |cprm <ri1> <r2>|— Copy Register To Memory

Store an atom from <r1> into memory address <r2>.

Operands

<ri1> — Source register
<r2> — Pointer register

Allowed Operand Groups

<r1>,, = all but Thread Pointer, Linear Pointer, or Stream Pointer,,
<r2>,, = Frame Pointer,,

<r2>,4 = Instruction Pointer,q

<r2>,4 = Thread Pointerg,

<r2>,, = Linear Pointer,,

Processor State

PC«+ PC+1

MR + mem|[<r2>]
MR;qy < mem(<r2>],
MR,, + mem[<r2>],
mem[<r2>], .« TMU
mem[<r2>] « <ri>
mem(<r2>], < <ri>g,

16.2 Pointers

Memory frames are created by subdivision of parent frames into child frames. At boot time the entirety of memory
is contained in one master frame which is subsequently divided into sub-regions.

16.2.1 |lcfp <ri1> [offset] | — Load Constant Frame Pointer

Creates a Constant Frame Pointer pointing to the address PCyyse + [offset] and puts the pointer into <ri>

Operands

<r1> — Destination register
[offset] — Unsigned offset in current instruction frame

Allowed Operand Groups

None

Processor State

PC«+~PC+1

<r1>4h4 < TMU

<r1> < (A=PC.Base+ [offset] ,Base=PC.Base,Len=PC.Len,update Finger accordingly)
<r1>,, < Constant Frame Pointer,,

52

16.2.2 |framptr <ri> <r2> <r3>|— Create pointer to frame

Creates a pointer to a sub-region within a parent frame pointed to by <r2>. The size of the sub-region is specified
as an L, B pair in <r1>. The newly created pointer is put in <r3>. Register <r2> remains unchanged.
Privilege: Only allocators are allowed to execute this instruction.

Operands

<r1> — Size of sub-region as an L, B pair
<r2> — Pointer to parent frame
<r3> — New pointer to sub-region frame

Allowed Operand Groups

<r1>., = Integerqqy, <r2>,, = Frame Pointerg,

Processor State

PC«+~PC+1

<r3>444 < TMU

<r3> + (A=r2.A, r1.L, r1.B, F=0)
<r3> 44— <T2>44

Error Conditions

The pointer in <r2> does not have the correct alignment for the size specified in <r1>
The pointer in <r2> does not have adequate space for the requested allocation

16.2.3 |offp <ri> <r2> <r3>|— Offset Pointer

Add the Integer,, atom in <r1> to pointer atom <r2>, result in <r3>

Operands

<r1> — Offset
<r2> — Pointer
<r3> — Destination

Allowed Operand Groups

<r1>,q, = Integerqqy, <r2>,, = FramePointer,,
<r1>,, = Integerqqy, <r2>,, = InstructionPointer,,

(it is intentional that this does not operate on ConstantFramePointer)

Processor State

PC«+~PC+1
<r3>444 < TMU
<r3> — <ri> 4+ <r2>
<r3> 49 < <T2>44

53

16.2.4 |offlp <ri> <r2> |— Offset Linear Pointer

Add the Integer,, atom in <r1> to pointer atom <r2>, overwriting <r2> with result

Operands

<ri1> — Offset
<r2> — Pointer

Allowed Operand Groups

<ri>., = Integer,qy, <r2>,, = FramePointer,
<ri>., = Integeryy, <r2>,, = InstructionPointer,,
<ri>., = Integeryy, <r2>,, = LinearFramePointer,,
<r1>,, = Integerqqy, <r2>,, = ThreadPointerg,

(it is intentional that this does not operate on ConstantFramePointer)

Processor State

PC«+~ PC+1
<r2>449 < TMU
<r2> < <ril> + <r2>
<Tr2>4q < <T2>44

16.2.5 ’offtp <r1> <r2> |— Offset Thread Pointer

Add the Integer, , atom in <r1> to pointer atom <r2>, overwriting <r2> with result. Similar to offlp, but (i) limited
to Miss Handler, (ii) not look at <r2> tag, (iii) perserves <r2> tag, (iv) only works on Thread Pointers.
Privilege: Limited to TMUMissHandle

Operands

<r1> — Offset
<r2> — Pointer

Allowed Operand Groups

<r1>,q, = Integerqqy, <r2>,, = ThreadPointerg,

Processor State

PC«+~ PC+1

<r2> 44 < <r2>.,, // identity
<r2> < <rl> + <rz>

<T2>4q < <T2>44

o4

16.2.6 |basep <ri> <r2>|— Pointer Base

Put the base pointer for the pointer in <r1> into <r2>

Operands

<r1> — Pointer
<r2> — Destination

Allowed Operand Groups

<r1>,, = FramePointer,,

<r1>,, = InstructionPointer,,

<ri>,, = ConstantFramePointer,, // use on ConstantFramePointer might be privileged even if use on Frame-
Pointer is not

<ri>,, = Integerqq, <r2>,, = ThreadPointer,, // privileged

<ri>,, = Integer,q, <r2>,, = GatePointer,, //privildged

Processor State

PC «+~ PC + 1

<r2>444 < TMU

<r2> < base(<r1>) // how depends on fat-pointer encoding
<Tr2> 49 < <T1>44

16.2.7 ’ sizep <ri> <r2> ‘ — Pointer Size

Put the size (as an L, B pair) for the pointer in <r1> into <r2>

Privilege: Limited to appropriate piece of GC

[Maybe not limit? If one can increment a pointer until get a NAV (and the NAV is classified the same as the pointer,
then it should be possible to get at this information. So, if that’s safe, it should be safe to ask the size of the frame
a pointer points to. ~AMD]

Operands

<r1> — Pointer
<r2> — Destination as an L, B pair [I suspect the primary use is to turn around and use in an allocation, but
might merit some discussion. ~AMD)]

Allowed Operand Groups

<r1>,, = FramePointer,,

<r1>,, = InstructionPointer,,

<ri>,, = ConstantFramePointer,,,

<ri>,, = Integer,q, <r2>,, = ThreadPointer,, // privileged
<ri>,, = Integerqq, <r2>,, = GatePointer,, // privileged

Processor State

PC +~ PC +1

<r2>444 < TMU

<r2> < size(<ri>) // how depends on fat-pointer encoding
<r2>,, < Integer,,

%)

16.2.8 |fphash <ri1> <r2>|— Hash Frame Pointer

Create a hash in <r2> of the frame pointer in <r1>.
Privilege: Likely limited
Operands

<r1> — Frame Pointer to Hash
<r2> — Integer representing the hash of <ri>

Allowed Operand Groups

<ri>,, = Frame Pointer,,

Processor State

PC +~PC +1
<r2>404 < TMU
<r2> < hash(<ri>)
<r2>.q < Integer,,

17 Security OP Codes

17.1 Authority Management

17.1.1 — Set Authority

Set Principal to <ri>
Privilege: very privileged.
Operands

<r1> — authority to load <ri1>,,=Authority

Processor State

PC«+~PC+1
Atag — <'r‘1>tag
A «— <ri>

17.1.2 — Augment current authority
Extend current authority by first-class authority in <r1>.
Operands

<r1> — Additional Authority to add to current authority

Allowed Operand Groups

<ri> .y = Authoritye,

Processor State

PC «+~ PC+1
A < TMU // which should be A with <r1>

56

17.1.3 — Refine current authority
Remove first-class authority in <r1> from current authority.

Operands

<r1> — Authority to remove from current authority

Allowed Operand Groups

<ri> ., = Authoritye,

Processor State

PC«+ PC+1
A < TMU // which should be A without <ri>

17.1.4 ’ina <ril> <r2> ‘ — Inspect Authority

Convert Authority in <r1> to frame-pointer in <r2>.
Privilege: Limited to AuthModel
Operands

<r1> — Authority to inspect
<r2> — Frame pointer associated with authority

Allowed Operand Groups

<ri>,q = Authorityeg

Processor State

PC«+~ PC+1
<r2>444 < TMU
<r2> < <ri>

<r2>,44 + FramePtrg,

17.1.5 |inp <ri1> <r2>|— Inspect Principal

Convert Principal in <r1> to frame-pointer in <r2>.
Privilege: Limited to AuthModel
Operands

<r1> — Principal to inspect
<r2> — Frame pointer associated with principal

Allowed Operand Groups

<ri>,, = Principal,q

Processor State

PC«+~ PC+1
<r2>449 < TMU
<re> — <ri>

<r2>,44 + FramePtrgy,

o7

17.1.6 |cpar <ri1> <r2>|— Read Authority from Memory

Put the authority from the memory location pointed to by <r1> into <r2>. Similar to cpmr, but rules coded not
to care about <ri1>,4; can only be used to read authorities.
Privilege: Limited to TMUMissHandle

Operands

<r1> — Pointer to memory location holding an authority
<r2> — Register to hold the authority

Allowed Operand Groups

<ri>,, = Thread Pointer,q, <MR>,, = Authority,,

Processor State

PC «+~ PC+1

MR + mem|[<ri>]

MR, < mem[<r1>], // this gets ignored
MR,y < mem[<r?>]

<r2>449 < TMU

<r2>.,4 < Authority,,,

<r2> + MR

17.1.7 |cpio <ri1> <r2>|— Read Opcode from Instruction in Memory

Put the opcode for the instruction in the memory location pointed to by <r1> into <r2>.
Privilege: Limited to TMUMissHandle

Operands

<r1> — Pointer to memory location whose tag is to be extracted
<r2> — Integer for extracted OpCode

Allowed Operand Groups

<r1>,, = Thread Pointerqgy, <mem[<r1>]>,, = Instruction,g

Processor State

PC +—~ PC + 1

MR + mem|[<ri>]

MR,y < mem([<r1>],, // don’t really care about this

MR,y <~ mem[<r1>], // need to check an Insruction

<r2>449 < TMU

<r2>,, < Integer,,

<r2> + (MR >> OP_CODE_LOCATION) && OP_CODE_MASK

58

17.2 TMU Management
17.2.1 [tmul <r1> <r2> <r3> |- TMU Load

Load atom in <r3> into field <r2> for rule <ri>.
Privilege: only the appropriate piece of the TMU handler can perform this operation

Operands

<r1> — TMU slot for rule to load
<r3> — Field within rule to load
<r3> — Value to load into field

Allowed Operand Groups

<ri1>,, = Integer,y, <r2>,, = Integeryy, <r3>,, = Tag,, or <r3>,, = FramePointer,, or <r3>,, =
Authority,g or <r3>,, = Integery,

Processor State

PC +~ PC+ 1
TMU[<r1>][<r2>] + <r3>

TMU Load operations work within transactions, with the rule changes being committed to the TMU only on a
successfully executed transend.

17.2.2 — TMU Unload

Unload rule in TMU slot <r1> and clear associated hit counter.
Privilege: only the appropriate piece of the TMU handler can perform this operation

Operands

<r1> — TMU slot to unload

Allowed Operand Groups

<ri>,, = Integer,

Processor State

PC+PC+1
TMU[<r1>][*|=Don’t Care
TMUHitCount[<r1>]+ 0

TMU unload operations work within transactions, with the rule changes being committed to the TMU only on
a successfully executed transend.

59

17.2.3 ’tmurc <rl> <r2> ‘ — TMU Read Hit Counter

Read hit count for TMU Rule loaded into slot <r1> into register <r2>.
Privilege: only the appropriate piece of the TMU handler can perform this operation

Operands

<r1> — TMU slot’s hit count to query
<r2> — register to hold hit count

Allowed Operand Groups

<ri>,, = Integer,,

Processor State

PC«+PC+1
<r2> <+ TMUHitCount[<r1>]

17.2.4 |cphr <ri> <rz2> ‘ — Read Hash from Memory

Put the hash from the memory location pointed to by <r1> into <r2>. Similar to cpmr, but rules coded not to care
about <ri>,4; can only be used to read integers.
Privilege: Limited to TMUMissHandle

Operands

<r1> — Pointer to memory location holding hash
<r2> — Register to hold hash once read

Allowed Operand Groups

<r1>,, = Thread Pointer,,, <MR>,, = Integer,,

Processor State

PC +~ PC +1

MR + mem|[<ri>]

MRy + mem[<'r~1>]mg // this gets ignored
MR, mem[<'r1>]ag

<r2>tag +~— TMU

<r2>,, < Integer,,

<r2> +— MR

17.2.5 |gfurite <ri> <r2> <r3> |- gfcache write

Load atom in <r1> into slot <r2> of rule <r3>.
Privilege: Limited to GFA

Operands

<r1> — Part of rule to load (this is the data to be loaded)
<r2> — Slot (field) in rule to load (0 — result value; 1 — allowed mask)

60

<r3> — Llocation to load

Allowed Operand Groups

<r1>,, = Integerqgy, <r2>,, = Integer,,, <r3>,, = Integer,,

Processor State

PC«+~PC+1
gfcache[<r3>|[<r2>] + <ri>

17.3 Tag Management

17.3.1 [newt <r1> <r2>|— New Tag

Create a tag from data in <r1> and applies it to <r2> leaving result in <r2>. This instruction overrides the TMU
result.
Privilege: [if this is does create a tag from an allocated memory, then this is likely limited to the tag allocator

AMD]

Operands

<ri> — Source to convert to tag
<r2> — Destination with tag applied

Processor State

PC«+~PC+1
<T2>4qg < <T1>

17.3.2 ’intag <ri> <r2>|— Inspect Tag

Convert tag on <ri> to integer in <r2>. [(Maybe frame pointer — think gets replaced by int which produces a
pointer) —AMD)]
Privilege: certainly limited. Parts of extern path?

Operands

<r1> — Tag to inspect, data ignored
<r2> — Result data is tag value

Processor State

PC +~PC+ 1

<r2>449 < TMU

<r2> 4= <r1>444

<r2>,, < Integer,, [Maybe Frame Pointer ~AMD]

[May need an analogous inp. —AMD)]

61

17.3.3 |retag <ri> <r2>|— Retag Data

Apply tag on <ri> to data in <r2> and put combined result into <r2>. TMU rules specify which authorities can
perform this retagging for specific tags.

Operands

<r1> — Tag to apply, data ignored
<r2> — Result data with tag applied

Processor State

PC +~PC+1
<T2>tag — <r1>tag

17.3.4 |settag <ri1> <r2>|— Retag Data blind to current tags

Apply tag on <ri> to data in <r2> and put combined result into <r2>. This is the same operation as retag, except
it allows different TMU rules. In particular, this one only looks at the authority executing the instruction.
Privilege: Limited to TMUMissHandle

Operands

<r1> — Tag to apply, data ignored
<r2> — Result data with tag applied

Processor State

PC «+~ PC+1
<T2>4ag < <T1>444

17.3.5 |retagpc <ri> |— Retag Program Counter

Apply tag on <ri> to PC. TMU rules specify which authorities can perform this retagging for specific tags.

Operands

<r1> — Tag to apply, data ignored

Processor State

PC «+~ PC+1
PCipy + <r1>yq

17.3.6 |tagof <ri> <r2>|— Extract First-Class Tag

Put a first-class tag representation of the tag on <r1> into <r2>.

Operands

<r1> — Atom whose tag is to be extracted
<r2> — First-class tag representation of extracted tag

62

Processor State

PC+~PC+1

<r2>40g < <P1>404

<r2>,y < Tag,,

<r2> (A=<r1>445.A, L=<r1>,,,.L, B=<r1>,,,.B, F=0)

17.3.7 — Extract First-Class Tag for PC

Put a first-class tag representation of the tag on PC into <ri>.

Operands

<ri> — First-class tag representation of extracted tag

Processor State

PC «~ PC+1

<r1>iaq — PCuyyq

<r1> g Tagag

<ri> + (A=PC;.A, L=PCy,,.L, B=PC,,,.B, F=0)

17.3.8]rflct <ri> <r2> ‘ — Extract Pointer for Tag

Put the pointer for the tag on <ri1> into <r2>.
Privilege: Limited to TMUMissHandle — possibly now only used for getting TP,

Operands

<r1> — Atom whose tag is to be extracted
<r2> — Pointer for the extracted tag

Processor State

PC+ PC+1

<r2>449 < TMU

<r2>,4 + FramePointer,,

<r2> < (A=<r1>;44.A, L=<r1>,,,.L, B=<r1>,,,.B, F=0)

17.3.9 ’cpmt <r1> <r2>|— Read Pointer from Tag in Memory

Put the pointer for the tag on the memory location pointed to by <r1> into <r2>.
Privilege: Limited to TMUMissHandle

Operands

<r1> — Pointer to memory location whose tag is to be extracted
<r2> — Pointer for the extracted tag

Allowed Operand Groups

<r1>,, = Thread Pointer,,

63

Processor State

PC<+PC+1

MR + mem|[<ri>] // don’t really care about this
MR;,y < mem[<ri>],,

MR,y < mem[<r1>], // don’t really care about this
<r2>444 < TMU

<r2>,4 < FramePointer,,

<r2> « (A=MRy,,.A, L=MRy,,.L, B=MR,,,.B, F=0)

17.3.10 ’totag <r1> <r2>|— First-Class Tag to Tag

Make <r2> be an integer zero tagged by the first-class tag in <ri1>.

Operands

<r1> — Tag to apply to 0.
<r2> — Resulting 0 tagged with <ri>

Allowed Operand Groups

<r1>.e = Tagy,

Processor State

PC+~PC+1

<r2>.44 < <ri> // Tag comes from payload
<r2>.q < Integer,,

<r2> + 0

17.3.11 ’int <ril> <r2> ‘ — Inspect Tag

Convert first-class tag in <r1> to frame-pointer in <r2>.
Privilege: Limited to TagSet

Operands

<r1> — First-class Tag to inspect
<r2> — Frame pointer associated with tag

Allowed Operand Groups

<r1>,.4 = Tagy,

Processor State

PC «+~ PC+1
<r2>444 < TMU
<r2> < <ri>

<r2>,44 + FramePtrg,

64

17.4 Group Management

17.4.1 ’regrp <rl> <r2> <r3> ‘ — Regroup Data

Apply group in <r1> to the atom in <r3> and put combined result into <r3>; check that initial group on <r3> is
same as group on <r2>.

[Note: suggested revision 1/14/12 — see discussion with rule idiom in Rule Architecture document ~AMD]
Privilege: Only used in specific places in ConcreteWare. See idiom for limiting privilege in Rule Architecture
document.

Operands

<r1> — Group to apply, data ignored
<r2> — Group to expect in <r3> before change, data ignored
<r3> — Atom that will have its atomic group change to the one in <ri>

Processor State

PC+~PC+1
<T3>tag < TMU
<r3> 49 < <T1>44

Error Conditions

<r2> 49 # <r3>44

17.4.2 ’ingrp <ri1> <r2>|— Inspect Group

Convert group on <r1> to integer in <r2>
Privilege: unprivileged

Operands

<r1> — Group to inspect, data ignored
<r2> — Result data is group value

Processor State

PC «+~ PC+1
<r2>444 < TMU
<r2> < <rl>4

Rules would typically tag <r2> with the tag of <ri>.

18 Stream OP Codes
18.1 Blocking (Yielding)

18.1.1 ’ stwy <ri> <r2> ‘ — Stream Write, Yielding

Write atom in <r1> to stream id in <r2>, yield if stream is full.

Operands

65

<r1> — Atom to write to stream
<r2> — Output Stream

Allowed Operand Groups

<ri>,, = all but LinearFramePointers, <r2>,, = Output Stream Pointer,,

Processor State

PC,,, + TMU

PC +~ PC+1

MR,y < mem(<r2>],, // for stream in memory case
MR, < mem[<r2>], // need to check empty

MR <+ mem[<r2>]

if (MR, = Empty,,)

stream([<r2>], < <T1>4,

stream[<r2>] « <ri>

stream[<r2>], < <ri>g,

<r2> « if (<r2># <r2>.bound) <r2> + 1 else <r2>.base
<T2>tag +~— TMU.2

else

e TS .ErrorCode=Stream Blocking

18.1.2 |stwyfree <r1> <r2> [offset] | — Stream Write, Yielding with Free Handling

Write atom in <r1> to stream id in <r2>, yield if stream is full, branch to [offset] if stream has been freed.

Operands

<r1> — Atom to write to stream
<r2> — Output Stream
[offset] — Branch location (within codeblock) if read an End-of-Stream token

Allowed Operand Groups

<ri>,, = all but LinearFramePointers, <r2>,, = Output Stream Pointer,,

Processor State

PC,,, + TMU

PC«+ PC+1

MR,y < mem(<r2>],, // for stream in memory case
MR, < mem[<r2>], // need to check empty

MR <+ mem[<r2>]

if (MR, = Empty,,)

stream([<r2>], < <T1>4,

stream[<r2>] « <ri>

stream[<r2>], < <ri>g,

<r2> if (<r2># <r2>.bound) <r2> + 1 else <r2>.base
<'r'2>tag +~— TMU.2

66

else if (MR,; = FREE,,)

o PCy, +— TMU
o PC «— PCyysc + [offset]

else

e TS .ErrorCode=Stream Blocking

18.1.3 |stwly <ri> <r2> |— Stream Write, Linear, Yielding

Move atom in <r1> to stream id in <r2>, yield if stream is full.

Operands

<r1> — Atom to write to stream
<r2> — Output Stream

Allowed Operand Groups

<r2>,, = Output Stream Pointer,q

Processor State

PC,,y + TMU

PC +~ PC +1

MRoq mem[<r2>]mg // for stream in memory case
MR, < mem[<r2>], // need to check empty

MR mem[<r2>]

if (MR,y = Empty,,)

stream[<r2>], =« <r1>q,

stream[<r2>] « <ri>

stream[<r2>] < <ri>,

<r2> « if (<r2># <r2>.bound) <r2> + 1 else <r2>.base
<r2> 40 + TMU.2

<r1>i04 < TMU.3

<ri> <0

else
e TS .ErrorCode=Stream Blocking

Error Conditions

TID # 0 at start of instruction

18.1.4 ’stwlyfree <ri> <r2> [offset] | — Stream Write, Linear, Yielding with Free Handling

Move atom in <r1> to stream id in <r2>, yield if stream is full, branch to [offset] if stream has been freed.

Operands

<r1> — Atom to write to stream
<r2> — Output Stream
[offset] — Branch location (within codeblock) if read an End-of-Stream token

67

Allowed Operand Groups

<r2>,, = Output Stream Pointer,,

Processor State

PC,,y + TMU

PC <+ PC+1

MR:qy < mem(<r2>],,// for stream in memory case
MR,, < mem[<r2>], // need to check empty

MR < mem[<r2>]

if (MR, = Empty,,)

stream[<r2>], < <r1>,

stream|[<r2>] < <ri>

stream([<r2>], <« <ri>,,

<r2> + if (<r2># <r2>.bound) <r2> + 1 else <r2>.base
<r2> 44y < TMU.2

<r1>44, — TMU.3

<ri> <+ 0

else if (MR, = FREE,,)

e PC,,, + TMU
e PC + PCyusc + [offset]

else

e TS.ErrorCode=Stream Blocking

Error Conditions

TID # 0 at start of instruction

18.1.5 ’stry <rl> <r2>|— Stream Read, Yielding

Read from stream id in <r1> put atom in <r2>, yield if stream is empty.

Operands

<r1> — Input Stream
<r2> — Atom read from stream

Allowed Operand Groups

<ri>,, = Stream Pointer,

Processor State

PC,,, + TMU

PC«+~ PC+1

MR, ¢ stream[<r1>],
MR, < stream[<r1>]
MR + stream[<r1>]

if (MR, # Empty,,)

68

<r2>4y < TMU

<r2> + stream[<ri>]

<r2>,4 < stream[<r1>]

<ri> <« if (<ri># <ri>.bound) <ri> + 1 else <ri>.base
<r1>444 + TMU.2

else
o TS .ErrorCode=Stream Blocking

Error Conditions

TID # 0 at start of instruction

18.1.6 ’stryeos <ri> <r2> [offset] | — Stream Read, Yielding with EoS Handling

Read from stream id in <r1> put atom in <r2>, yield if stream is empty, branch to [offset] if End-of-Stream.

Operands

<r1> — Input Stream
<r2> — Atom read from stream
[offset] — Branch location (within codeblock) if read an End-of-Stream token

Allowed Operand Groups

<ri>,, = Stream Pointer,,

Processor State

PC,,, < TMU

PC +~PC +1

MR,y < stream[<r1>],

MR, ¢ stream[<r1>]

MR < stream[<r1>]

if (MRgy # Empty,,) && (MR, # EOSyy))

<r2>44y < TMU
<r2> stream[<ri>]
<r2>.y ¢ stream[<ri>]
<r1> « if (<r1># <ri>.bound) <ri> + 1 else <ri>.base
<ri>iey < TMU.2
elseif (MR,4 = EOS,)
e PCyy +— TMU
o PC + PCyusc + [offset]
else

e TS .ErrorCode=Stream Blocking

Error Conditions

TID # 0 at start of instruction

69

18.2 Non-Blocking (Branching)

18.2.1 |stwb <ri> <r2> [offset] ‘f Stream Write, Branching

Write atom in <r1> to stream id in <r2>, branch to [offset] if stream is full.

Operands

<ri> — Atom to write to stream
<r2> — Output Stream pointer
[offset] — Branch destination as unsigned offset from current

Allowed Operand Groups

<r1>,, = all but LinearFramePointers, <r2>,, = Output Stream Pointer,,

Processor State

PC,,, + TMU
PC«+PC+1

MR;qy < mem(<r2>], // for stream in memory case
MR,, < mem[<r2>], // need to check empty

MR + mem|[<r2>]

if (MR, = Empty,,)

stream[<r2>]mg = <T1>444

stream[<r2>] « <ri>

stream[<r2>], < <ri>,,

<r2> « if (<r2># <r2>.bound) <r2> + 1 else <r2>.base
<T2>i4g + TMU.2

else

PC;y + TMU
o PC + PCyusc + [offset]

Error Conditions

TID # 0 at start of instruction

18.2.2 ’stwlb <ri> <r2> [offset] | — Stream Write, Linear, Branching

Move atom in <r1> to stream id in <r2>, branch to [offset] if stream is full.

Operands

<ri> — Atom to write to stream
<r2> — Output Stream pointer
[offset] — Branch destination as unsigned offset from current

Allowed Operand Groups

<r2>,, = Output Stream Pointer,,

70

Processor State

PC,,, « TMU

PC «+~ PC+1

MRy ¢ mem[<r2>],,// for stream in memory case
MR,, < mem[<r2>], // need to check empty

MR + mem|[<r2>]

if (MR,y = Empty,,)

else

stream[<r2>]tag — <T1>444

stream|[<r2>] < <ri>

stream[<r2>] =~ <ri>,,

<r2> « if (<r2># <r2>.bound) <r2> + 1 else <r2>.base
<r2> 40y <+ TMU.2

<r1>iqq +— TMU.3

<ri> <+ 0

PCy,, + TMU

o PC «— PCyysc + [offset]

Error Conditions

TID # 0 at start of instruction

18.2.3 ’strb <ri> <r2> [offset] | — Stream Read, Branching

Read from stream id in <r1> put atom in <r2>, branch to [offset] if stream is empty.

Operands

<ri> — Input Stream pointer
<r2> — Atom read from stream
[offset] — Branch destination as unsigned offset from current

Allowed Operand Groups

<r1>,, = Input Stream Pointer,,

Processor State

PC,,, < TMU

PC+ PC+1

MR,y < stream[<r1>],
MR, ¢ stream[<r1>]
MR <« stream|[<r1>]

if (MR, # Empty,,)

<r2>444 < TMU

<r2> < stream[<ri>]

<r2>.y ¢ stream[<ri>]

<r1> « if (<r1># <ri>.bound) <ri> + 1 else <r1>.base
<ri>iey < TMU.2

71

else
o PC «— PCyysc + [offset]

Error Conditions

TID # 0 at start of instruction

19 Transaction OP Codes

19.04 ’transbegin [id] ‘— Begin Transaction

Begin a transaction. Operations between the begin and the end should appear to occur atomically.
Privilege: unprivileged — any authority can use
Operands

[id] — ID for transaction begun to match transbegin/transend pairs

Allowed Operand Groups
N/A

Processor State

TID « [id]
PC,y, + TMU
PC + PC + 1

Error Conditions

TID # 0 at start of instruction

transaction attempts to execute more than TXN_MAXINSTR instrucitons
transaction attempts to perform more than TXN_MAXWRITE writes
transaction attempts to perform gates calls (or other unallowed operations)
transaction attempts to perform a backward control transfer

19.0.5 |transend [id] |— End Transaction

End a transaction. Commit state changes from transaction.
Privilege: unprivileged — any authority can use

Operands

[id] — ID of transaction to end to match transbegin/transend pairs

Allowed Operand Groups
N/A

Processor State

72

PCyy +— TMU

PC«+~ PC+1

// potentially nothing

// in practice, release write buffer to flush changes to memory and write back Thread Frame changes
TID « 0

Error Conditions

TID =# [<d] at start of instruction

20 Miscellaneous OP Codes
20.0.6 — No Operation

Do nothing.

Operands

None

Processor State

PC +~ PC +1

20.0.7 — Halt Processor

Causes the processor to halt.

Operands

None

Processor State

73

21 Field Sizes and Encodings
21.1 Definition for Tools

Canonical definitions used as single source for assembler, safe-sim, and bluespec implementation are in isa/tools/
safe-isa/Setup.hs and isa/tools/safe-isa/OneSource.hs|

To get a dump of symbols defined for the assembler:

safe-asm --print-hardware-symbols

21.2 Definitions

’ Field \ Bits \ Explanation
Atom 128 | Metadata + Payload Word
Payload Word 64 | holds one double, int64, Fat Pointer
Metadata 64 | AG + Programmable Pointer
AG 5 | holds up to 32 (currently 17 defined)
Fat Pointer 64 | (B,L,F,A) or (B,M,LA)
Fat Pointer: A 46
Fat Pointer: F (I) 6
Fat Pointer: B 6
Fat Pointer: L (M) 6
Programmable Pointer 59 | deliberately fudged so AG+Programmable Pointer is 64b
A in Programmable Pointer 46
F (M) in Programmable Pointer 0 | assume always at base, gives us back 5b for AG plus one extra
Instruction 32 | Allow more compact packing in some encodings
Opcode 7 | support up to 128 (might bump to 8)
Register 5 | support up to 32
Immediate 10-25 | depends on opcode
Generic Atom:
111111)111111]111111111111111100
222222221111111111j000000000099999999998888888888 7777777 7776666666666555555555544444444443333333333222222222211111111110000000000
765432(109876/5432109876543210987654321098765432109876543210987654{3210987654321098765432109876543210987654321098765432109876543210)
AG Programmable Pointer Payload Word
AG B L] A Payload Word
Any Pointer (B L F A):
111111)111111j111111]111111111100)
222222221111111111j0000000000999999999988888888887777777T7766666666665505555555444414444443333333333222222222211111111110000000000
765432109876(54321009876543210987654321098765432109876543210987654321098765432109876/5432109876543210987654321098765432109876543210
AG Programmable Pointer * Pointer, Authority, Principal, Tag
AGIf B [L | A B J[LTJF] A
Any Pointer (B M I A):
111111)111111j111111(1111111111000!
222222221111111111j000000000099999999998888888888777777777766666666665555555555444414444443333333333222222222211111111110000000000,
765432109876/5432109876543210987654321098765432109876543210987654{321098765432109876[543210987654321098765432109876543210987654321
AG Programmable Pointer * Pointer, Authority, Principal, Tag
AGI B [T] A B[MIJ[T] A
Int:
111111111111111111111111111100)
22222222111111111100000000009999999999888888888877777777776666666666555555555544444444443333333333222222222211111111110000000000
76543210987654321098765432109876543210987654321098765432109876543210987654321098765432109876543210987654321098765432109876543210)
AG Programmable Pointer Int

Double Float:

74

isa/tools/safe-isa/Setup.hs
isa/tools/safe-isa/Setup.hs
isa/tools/safe-isa/OneSource.hs

111111111111111111111111111100

22222222111111111100000000009999999999888888888877777777776666666666555555555544444444443333333333222222222211111111110000000000

7654321098765432109876543210987654321098765432109876543210987654{3210987654321098765432109876543210987654321098765432109876543210)
AG Programmable Pointer Double Float

Generic Instruction:
11111j1111111111111111111111100,

22222222111111111100000000009999999999888888888877777777776666666666555555555544444444443333333333222222222211111111110000000000
7654321098765432109876543210987654321098765432109876543210987654132109876543210987654321098765432(10987654321098765432109876543210
AG Programmable Pointer Unused Instruction

(0]

Notes:

Encoding for opcode should be chosen so can represent instruction groups that will have same TMU rules
by subset of bits. F.g., all the 3-address arithmetic ops should have the same distinguishable prefix. See
Section 221

e In future, may want to consider 128b payload; demands packing more things into word (e.g. two doubles).
e When reify Programmable Pointer as Frame F is inserted as 0.
e Could reduce Programmable Pointer bits by:

— Enforce all tag objects/frames are of same size and point to entire object. Consequently, remove L, B, F
from Programmable pointer — add in when reify Programmable Pointer as Frame Pointer.
— Limit Programmable Pointer address space to even fewer bits

e With Programmable Pointer A limited to 27b, could reduce Metadata to 32b.
e Since Atoms are our smallest addressable unit, we cannot pack multiple instructions into an atom without

introducing PC complexities (need to keep track of PC being in the middle of an atom).
A code block likely has:

— All instructions tagged in same way (same AG, Programmable Pointer)
— All instruction preceding any atoms in the code block

Should be able to have a compressed code block version where pack instructions into 32b sequences that share
a tag. Useful for out-of-memory case. Adds complexity and need to verify that expansion does not introduce
vulnerabilities. Will need something like this for code signature and intern in any case.

Instruction Sub Fields:

Instr 332222222222/11111{11111/0000000000
Class [10987654321008765432109876543210
N opcode 0

S opcode| 0 |srcl 0

SS opcode| 0 |srcl |src2 [0

SD opcode| dst |srcl 0

SSD opcode| dst |srcl | src2 0
SSDO |opcode| dst | srcl | src2 imm

O opcode imm

SO opcode[0 [srcl] imm

DO opcode| dst imm

SSO opcode| 0 |srcl |src2 [imm
SDO |opcode| dst | srcl imm

Notes:

Should we try to pick a single location for dst to avoid the need to multiplex the destination into the register
file write address based on instruction? This potentially also shows up in pipeline bypassing once we pipeline
the design.

Should we try to pick a single location for the pointer used to reference memory? This is showing up as
complexity (and multiplexing) in the logic. Similarly, it means the register that gets the forwarding pointer is
also dependent on the instruction.

Current plan is to make changes like this in the near future.

76

22 Instruction Groups

To simplify the TMU (and our reasoning), we can identify groups of instructions that have similar use and interper-
tation of their operands.

7

Group Name

Instructions

arith2s1d add sub and or shl shr test mul
none nop
jmp jmp
yield yield
grtn grtn
ptr2sld offp
arithlsld invert
cprr cprr
ptrlsld offip
gatecalls gcall gjmp
branch cond beq bneq bneg bpos
stwy stwy
stwb stwb
stry stry
strb strb
grtn grtn
mvrr mvrr
mvmr mvmr
cpmr cpmr
mvrm mvrm
cprm cprm
call call
lefp lefp
give-time give-time
recover-time recover-time
read-time read-time
runt runt
gate gate
fjmp fjmp
retag retag
seta seta
intag intag
halt halt
framptr framptr
makep makep
tmul tmul
tmuu tmuu
tmurc tmurc
newt newt
ingrp ingrp
regrp regrp
transactions transbegin transend
offtp offtp
cphr cphr
cpar cpar
cpio cpio
cpmt cpmt

78

Group Name

Instructions

inp inp
resumet resumet
totag totag
rflct rflct
gfcall gfcall
fphash fphash
rflctp rflctp
retagpc retagpc
settag settag
maket maket
tagof tagof

23 Implementation Status

23.1 Instructions

This chart describes which instructions have been implemented in the various safe system tools.

Key

Yes, implemented

implemented but not tested

Not implemented

79

OpCode

safe-asm /safe-isa

Breeze Compiler Uses

TestCase

acall <ri> <rz>

=|| Coq

=|| SafeSim

=|| Bluespec

=|| ConcreteWare Uses

none

add <ri> <r2> <r3>

initial.asm

addf <ri> <r2> <r3>

=

=

=

?

and <ri1> <r2> <r3>

arith.asm

basep <ri> <rz2>

?

bcall <ri> <r2> <r3> [result-reg]

?

beq <ri> [offset]

summation.asm

bgacall <ri1> <r2> <r3> [result-reg]

2

bgcall <ri1> <r2> <r3> [result-reg]

=

bgfcall <ri> <r2> <r3> [wmask]

=

bne <ri> [offset]

bneg <ri1> [offset]

brtn <ri>

?
?
?
?
?

call <ri>

call.asm

clear <ri>

?

clearregs <ri>

ZEa|=| 2| =2 =2 v=E =2 =

?

cpar <ri> <r2>

cphr <ri> <rz2>

cpio <ri> <rz>

=Z=z|I=z=z==2=

cpmr <ril> <r2>

CPXX.asm

cpmt <ri> <rz2>

=

cprm <ril> <rz2>

CPXX.asm

cprr <ril> <rz2>

cpxx.asm

endt

?

fjmp <ri>

jump.asm

fphash <ri> <r2>

none

framptr <ri> <r2> <r3>

framptr.asm

gacall <ri1> <r2>

=Z|=zI===

summation_gacall.asm

gate <ri> <r2> <r3>

gate.asm

gatele <ri> <rz2> <r3>

=

none

gcall <ri>

gate.asm

gfcall <ri> <rz2> <r3>

?

gfwrite <ri> <r2> <r3>

=

none

give-time <ri>

?

gjmp_<ri>

?

grtn

=Z|=z===

gate.asm

halt

?

80

Z
¥

g g |-

g EAF

: B2

~

: 21 8158 2

%) Slale |

Pl 12| g|3 8 9

1819 2 25 g
OpCode F|O|lwm|@m|m|0O =
ina <ri> <rz> N | N N none
ingrp <ri> <r2> N N ?
inp <ri> <r2> N | N N none
int <ri> <re> N N N none
intag <ri1> <r2> N | N N tags.asm
jmp [offset] N ?
lcall <ri> <r2> N N |N|N N none
lcfp <ri> [offset] CpXX.asm
livemask <ri1> N |N|N|N N ?
lowera <ri> N N | N N none
mul <ri1> <r2> <r3> N | N N arith.asm
mvmr <ri> <r2> mvxx.asm
mvrm <ri> <rz> mvxx.asm
mvrr <ri> <r2> mvxx.asm
newt <ri> <rz2> N N ?
nop N ?
not <ri> <r3> N | N|N|N N ?
offlp <ri> <r2> N N ?
offp <ri> <r2> <r3> N summation.asm
offtp <ri> <r2> N ?
or <ri> <r2> <r3> ? arith.asm
raisea <ri> N |N|N N none
rcall <ril> <r2> N N |N|N N none
read-time <ri> N | N N ?
recover-time <ri> N | N N ?
regrp <ril> <r2> N ?
resumet <ri> [entry] N | N ?
retag <ri> <r2> N tags.asm
retagpc <ri> N | N N none
rflct <ri> <r2> N | N none
runt <ri> N ?

81

z
2F

2 g\

2 -

: AE

~

IR AR :

@ SElaloel|®

flolglEl5el ¢

$1819 2 2|5 g
OpCode § |0 |w|M@|A@|O =
seta <ri> N | N N ?
settag <ri> <re> N ? none
shl <ri> <r2> <r3> ? arith.asm
shr <ri> <r2> <r3> ? arith.asm
sizep <ri> <r2> N |N|N|N N ?
strb <ri> <r2> [offset] ? stream.asm
stry <ri> <r2> ?
stryeos <ri1> <r2> [offset] N | N|N|N ? N
stwb <ri1> <r2> [offset] ? stream.asm
stwlb <ri> <r2> [offset] N |N|N N none
stwly <ri> <r2> N |N|N N ?
stwlyfree <ri> <r2> [offset] N | N|N|N ? ?
stwy <ri> <r2> ?
stwyfree <ri> <r2> [offset] N | N|N|N ? ?
sub <ri> <rz2> <r3> ? arith.asm
tagof <ri> <r2> N | N ? none
tagofpc <ri> N |N|N|N ? none
tcall <ri> <r2> N |N|N|N N none
test <ri> <r2> <r3> N ? ?
testgrp <ri> <r2> [grpid] N | N ? testgrp.asm
tmul <ri> <r2> <r3> N | N ?
tmurc <ri> <r2> N | N ?
tmuu <ri> N | N ?
totag <ri> <r2> N | N ? none
transbegin [id] N | N trans_test.asm
transend [%d] N | N trans_test.asm
trequire <ri> N N |N|N N none
trtn N N |N|N N none
writemask <ri> N | N|N|N N ?
Xor <rl> <r2> <r3> N |N|N|N N ?
yield N ?
yield2 <ri> [entry] N |N|N|N N ?

23.2 Atomic Groups

This chart describes which atomic groups have been implemented in the various safe system tools.

82

’ Atomic Group \ safe-asm /safe-isa \ Coq \ SafeSim \ Bluespec | TestCase
Frame Pointer ?
Constant Frame Pointer N N N N ?
Linear Frame Pointer N ?
Instruction Pointer ?
Gate Pointer ?
Stream Read Pointer N ?
Stream Write Pointer N ?
Thread Pointer ?
Forwarding Pointer N N ?
Double (Double Float) N ?
Integer ?
Instruction ?
Authority ?
Principal N ?
Uninitialized N ?
Error N ?
Tag N ?
Empty ?
EOS N N N N ?
FREE N N N N ?

83

	Notes:
	Threads
	Gates

	Atoms
	Atomic Groups
	Linear Pointers

	Validation

	Fat Pointers
	Bounds Checks

	Processor State
	Thread Pointer
	Timer State
	Transaction State

	Timer Behavior
	Thread Frame
	Private State
	Program Counter
	Authority
	Thread Status
	Gate Stack
	Interrupt Thread Table
	Current Instruction
	Operand N
	Memory or Stream Result
	TMU Result
	Non-Cachable TMU Entry
	faulting Program Counter
	faulting Authority
	Live Register mask
	Writeable Register mask
	Instruction Count
	Instruction Limit

	Public State
	Environment Pointer
	Faulting Thread Pointer
	General-Purpose Registers

	Mangled Thread Frame

	Streams
	Stream Invariants

	TMU
	Rule Checking
	TMU Rule Interface
	TMU Miss Handling
	TMU Error Handling
	TMU Bootstraping

	Gate Stack
	Gate Stack Fault

	Memory Map
	Power On Reset

	Interrupts
	Interrupt Priorities
	Interrupt Semantics

	Transactions
	Transaction Abort

	Forwarding Pointers
	PC Behavior
	Memory Dereference Behavior

	Arithmetic OP Codes
	Operand Conventions
	add <r1> <r2> <r3>heightwidthwidthheight – Add
	addf <r1> <r2> <r3>heightwidthwidthheight – Double-Precision Floating-Point Add
	sub <r1> <r2> <r3>heightwidthwidthheight – Subtract
	mul <r1> <r2> <r3>heightwidthwidthheight – Multiply
	and <r1> <r2> <r3>heightwidthwidthheight – Bitwise And
	or <r1> <r2> <r3>heightwidthwidthheight – Bitwise Or
	xor <r1> <r2> <r3>heightwidthwidthheight – Bitwise Xor
	not <r1> <r3>heightwidthwidthheight – Bitwise Inversion (Logical Complement)
	shl <r1> <r2> <r3>heightwidthwidthheight – Shift Left
	shr <r1> <r2> <r3>heightwidthwidthheight – Shift Right
	test <r1> <r2> <r3>heightwidthwidthheight – Test Equality
	testgrp <r1> <r2> [grpid] heightwidthwidthheight – Test Particular Group

	Control Flow OP Codes
	Frame Local Control Flow
	jmp [offset]heightwidthwidthheight – Unconditional Jump
	beq <r1> [offset]heightwidthwidthheight – Branch Equal
	bne <r1> [offset]heightwidthwidthheight – Branch Not Equal
	bneg <r1> [offset]heightwidthwidthheight – Branch Negative
	bpos <r1> [offset]heightwidthwidthheight – Branch Positive

	Inter-frame Control Flow
	fjmp <r1>heightwidthwidthheight – Frame Jump
	gcall <r1>heightwidthwidthheight – Procedure call with authority change
	gfcall <r1> <r2> <r3> [mask]heightwidthwidthheight – Cacheable procedure call with authority change
	gjmp <r1>heightwidthwidthheight – Gate jump without gate return
	grtnheightwidthwidthheight – Return from Gate Call
	call <r1>heightwidthwidthheight – Procedure Call, no authority change
	gacall <r1> <r2>heightwidthwidthheight – Procedure call with authority change and augmentation
	gajmp <r1>heightwidthwidthheight – Jump with authority change and augmentation without gate return
	acall <r1> <r2>heightwidthwidthheight – Procedure Call with caller specified authority
	lcall <r1> <r2>heightwidthwidthheight – Procedure Call with caller specified reduction in authority
	rcall <r1> <r2>heightwidthwidthheight – Procedure Call with caller specified additional authority
	bcall <r1> <r3> [result-reg]heightwidthwidthheight – Bracket Call
	bgcall <r1> <r3> [result-reg]heightwidthwidthheight – Bracket call with authority change
	bgfcall <r1> <r2> <r3> [mask]heightwidthwidthheight – Cacheable bracket procedure call with authority change
	bgacall <r1> <r2> <r3> [result-reg]heightwidthwidthheight – Bracket call with authority change and augmentation
	brtn <r1>heightwidthwidthheight – Return from Bracket Call
	tcall <r1> <r2>heightwidthwidthheight – Procedure Call with timeout, no authority change
	trtn heightwidthwidthheight – Return from Timeout Gate Call
	trequire <r1>heightwidthwidthheight – Require Time to Continue
	gate <r1> <r2> <r3>heightwidthwidthheight – Create Gate
	gatele <r1> <r2> <r3>heightwidthwidthheight – Create Gate with Linear Environment

	Timer
	give-time <r1>heightwidthwidthheight – Add time to SLOT
	recover-time <r1>heightwidthwidthheight – Move time remaining from SLOT to <r1>
	read-time <r1>heightwidthwidthheight – Read time remaining in SLOT to <r1>

	Inter-thread Control Flow
	runt <r1>heightwidthwidthheight – Run Thread
	resumet <r1> [event]heightwidthwidthheight – Return to Thread from Trap Handler
	yield heightwidthwidthheight – Yield remaining time
	yield2 <r1> [event]heightwidthwidthheight – Return to TTT Bypassing Stacked Thread
	endt heightwidthwidthheight – Thread self termination

	Memory OP Codes
	Memory Access
	clear <r1> heightwidthwidthheight – Clear Register
	clearregs <r1> heightwidthwidthheight – Clear Group of Registers
	livemask <r1> heightwidthwidthheight – Read the Live Register mask
	writemask <r1> heightwidthwidthheight – Read the Writeable Register mask
	mvrr <r1> <r2>heightwidthwidthheight – Move Register To Register
	mvmr <r1> <r2>heightwidthwidthheight – Move Memory To Register
	mvrm <r1> <r2>heightwidthwidthheight – Move Register To Memory
	cprr <r1> <r2>heightwidthwidthheight – Copy Register To Register
	cpmr <r1> <r2>heightwidthwidthheight – Copy Memory To Register
	cprm <r1> <r2>heightwidthwidthheight – Copy Register To Memory

	Pointers
	lcfp <r1> [offset]heightwidthwidthheight – Load Constant Frame Pointer
	framptr <r1> <r2> <r3>heightwidthwidthheight – Create pointer to frame
	offp <r1> <r2> <r3>heightwidthwidthheight – Offset Pointer
	offlp <r1> <r2> heightwidthwidthheight – Offset Linear Pointer
	offtp <r1> <r2> heightwidthwidthheight – Offset Thread Pointer
	basep <r1> <r2>heightwidthwidthheight – Pointer Base
	sizep <r1> <r2>heightwidthwidthheight – Pointer Size
	fphash <r1> <r2>heightwidthwidthheight – Hash Frame Pointer

	Security OP Codes
	Authority Management
	seta <r1>heightwidthwidthheight – Set Authority
	raisea <r1>heightwidthwidthheight – Augment current authority
	lowera <r1>heightwidthwidthheight – Refine current authority
	ina <r1> <r2>heightwidthwidthheight – Inspect Authority
	inp <r1> <r2>heightwidthwidthheight – Inspect Principal
	cpar <r1> <r2>heightwidthwidthheight – Read Authority from Memory
	cpio <r1> <r2>heightwidthwidthheight – Read Opcode from Instruction in Memory

	TMU Management
	tmul <r1> <r2> <r3> heightwidthwidthheight – TMU Load
	tmuu <r1>heightwidthwidthheight – TMU Unload
	tmurc <r1> <r2>heightwidthwidthheight – TMU Read Hit Counter
	cphr <r1> <r2>heightwidthwidthheight – Read Hash from Memory
	gfwrite <r1> <r2> <r3>heightwidthwidthheight – gfcache write

	Tag Management
	newt <r1> <r2>heightwidthwidthheight – New Tag
	intag <r1> <r2>heightwidthwidthheight – Inspect Tag
	retag <r1> <r2>heightwidthwidthheight – Retag Data
	settag <r1> <r2>heightwidthwidthheight – Retag Data blind to current tags
	retagpc <r1> heightwidthwidthheight – Retag Program Counter
	tagof <r1> <r2>heightwidthwidthheight – Extract First-Class Tag
	tagofpc <r1>heightwidthwidthheight – Extract First-Class Tag for PC
	rflct <r1> <r2>heightwidthwidthheight – Extract Pointer for Tag
	cpmt <r1> <r2>heightwidthwidthheight – Read Pointer from Tag in Memory
	totag <r1> <r2>heightwidthwidthheight – First-Class Tag to Tag
	int <r1> <r2>heightwidthwidthheight – Inspect Tag

	Group Management
	regrp <r1> <r2> <r3>heightwidthwidthheight – Regroup Data
	ingrp <r1> <r2>heightwidthwidthheight – Inspect Group

	Stream OP Codes
	Blocking (Yielding)
	stwy <r1> <r2>heightwidthwidthheight – Stream Write, Yielding
	stwyfree <r1> <r2> [offset]heightwidthwidthheight – Stream Write, Yielding with Free Handling
	stwly <r1> <r2> heightwidthwidthheight – Stream Write, Linear, Yielding
	stwlyfree <r1> <r2> [offset]heightwidthwidthheight – Stream Write, Linear, Yielding with Free Handling
	stry <r1> <r2>heightwidthwidthheight – Stream Read, Yielding
	stryeos <r1> <r2> [offset]heightwidthwidthheight – Stream Read, Yielding with EoS Handling

	Non-Blocking (Branching)
	stwb <r1> <r2> [offset]heightwidthwidthheight – Stream Write, Branching
	stwlb <r1> <r2> [offset]heightwidthwidthheight – Stream Write, Linear, Branching
	strb <r1> <r2> [offset]heightwidthwidthheight – Stream Read, Branching

	Transaction OP Codes
	transbegin [id] heightwidthwidthheight – Begin Transaction
	transend [id] heightwidthwidthheight – End Transaction

	Miscellaneous OP Codes
	nopheightwidthwidthheight – No Operation
	haltheightwidthwidthheight – Halt Processor

	Field Sizes and Encodings
	Definition for Tools
	Definitions

	Instruction Groups
	Implementation Status
	Instructions
	Atomic Groups

