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Abstract—Hardware interlocks that enforce semantic in-
variants and allow fine-grained privilege separation can be
built with reasonable costs given modern semiconductor tech-
nology. In the common error-free case, these mechanisms
operate largely in parallel with the intended computation,
monitoring the semantic intent of the computation on an
operation-by-operation basis without sacrificing cycles to per-
form security checks. We specifically explore five mecha-
nisms: (1) pointers with manifest bounds (fat pointers), (2)
hardware types (atomic groups), (3) processor-supported au-
thority, (4) authority-changing procedure calls (gates), and
(5) programmable metadata validation and propagation (tags
and dynamic tag management). These mechanisms allow the
processor to continuously introspect on its operation, efficiently
triggering software handlers on events that require logging,
merit sophisticated inspection, or prompt adaptation. We
present results from our prototype FPGA implementation of
a processor that incorporates these mechanisms, quantifying
the logic, memory, and latency requirements. We show that
the dominant cost is the wider memory necessary to hold our
metadata (the atomic groups and programmable tags), that the
added logic resources make up less than 20% of the area of the
processor, that the concurrent checks do not degrade processor
cycle time, and that the tag cache is comparable to a small L1
data cache.

Keywords-Processor; security; least privilege; separation of
privilege; complete mediation; hardware interlocks

I. INTRODUCTION

Three of the most basic security principles identified in
Saltzer and Schroeder’s seminal paper [1] are least-privilege
operation, separation of privileges, and complete mediation.
Current computing hardware [2] and software systems are
extremely vulnerable in part because they violate these
basic principles: 1) Processors provide a small number of
privilege levels (e.g., four in the x86), of which OS kernels
typically exploit only two, resulting in a privileged kernel
mode that has complete authority over the system (excessive
and unseparated privileges); 2) Memory systems provide
isolation only by separating large address spaces (excessive
privilege), and it is expensive (thousands of cycles) to switch
between address spaces (discouraging privilege separation);
3) Software (including the operating system) is organized
into large address spaces of code and data, presenting a large

Table I
OVERVIEW OF SAFETY INTERLOCK MECHANISMS

Problem Mechanism Sec.
Memory Safety Fat Pointers III-A
Unintended reinterpretation of data Hardware Types III-B
contents (Atomic Groups)
Excessive privilege Authority III-C
Expensive privilege change Gate III-D
Lack of fine-grained data and data flow Programmable Tags III-E
containment; expensive data tracking Tag Management

Unit (TMU)

surface area for attack where any weakness can be exploited
to access or subvert the whole (lack of privilege separation);
4) Both hardware and system software treat the memory
as “raw seething bits” whose meaning is not understood
or respected, and hence they cannot enforce the intended
semantic invariants of the computation or recognize when
they have been violated (incomplete mediation).

Moore’s Law scaling has made hardware inexpensive
while ubiquitous use of networked computers for personal,
sensitive, and critical tasks has raised the stakes for computer
security. Both effects have changed the cost structure. It is
now paramount that we reduce the vulnerabilities in our
computer systems, and it is inexpensive to invest hardware
as part of a holistic solution to do so.

In the CRASH/SAFE project [3], we have undertaken a
clean-slate co-design of a secure network host, including
novel hardware, operating system, programming language,
and verification strategy based on modern cost structure
and capabilities. This paper describes our in-progress design
of hardware mechanisms that can enforce semantic invari-
ants in the abstraction stack (e.g. stack integrity, memory
safety, type safety including data and instruction distinction)
and allow fine-grained, lightweight privilege separation and
common-case mediation. We take a security-first approach,
trying to understand what abstractions we want the se-
cure computation to enforce and possible hardware that
could enforce it. This is in stark contrast to hardware-first
approaches that select the security policy based on what



hardware can provide with almost no overhead. Nonetheless,
we hypothesize that, once the security goals are understood,
clever hardware implementations can have very modest cost.
The SAFE effort builds on design elements started in the
TIARA project [4].

Many issues remain open, but our work to date shows that
many hardware interlock mechanisms are eminently viable
using today’s semiconductor technology. Specifically, in this
paper, we offer the following contributions:

• We identify a set of five hardware safety interlocks that
can cooperate to allow fine-grained, least-privilege and
separated privilege operation with complete mediation
and lightweight change of privilege (Sec. III and Tab. I).

• We characterize the requirements for the five interlocks
from an FPGA implementation (Sec. V and Tab. II).

• We show how they allow introspection (Sec. IV).
Before detailing the hardware safety mechanisms, we begin
in the next section by further reviewing conventional hard-
ware and OS trends.

II. PUTTING THE PROBLEM IN HISTORICAL CONTEXT

The designers of today’s systems violated Saltzer and
Schroeder’s security principles as a tradeoff to achieve ac-
ceptable performance in an era of scarce hardware resources.
When the first general-purpose computers and operating
systems were built, it was a challenge to build a capable
processor economically; this made it difficult to allocate
hardware to security. In its day, Multics [5] was considered
extravagant for the inclusion of virtual memory hardware to
support process isolation, and even Multics compromised by
only providing enforcement rules on coarse-grained entities
(e.g., files), outlawing many finer-grained interactions that
would be consistent with conceptual policy intent but could
not properly be enforced by the hardware of the day [6].

Similarly, the commercial versions of the MIT Lisp Ma-
chine [7] were considered extravagant for their inclusion of
safety features such as data type tags, bounds checking, and
garbage collection support. The i432 attempted to provide
a richer security model than its contemporaries including
Multics, but the limited silicon budget of its day forced it
to sacrifice on-chip memory (register files and caches) to
accommodate the security features [8]. The resulting poor
performance reinforced the conventional wisdom that rich
hardware support for program semantics is not worthwhile.

The first microprocessors and microprocessor OS’es sim-
ply did without process isolation. Modern processors [2]
and OSes provide only a single mechanism to applications
for privilege and separation management: the user/kernel
distinction managed by the virtual memory hardware, which
provides page level read/write/execute access controls on a
per-process basis. While this is valuable, it operates at an
awkward level of granularity, controlling access to individual
pages of virtual memory rather than to the semantically
more meaningful unit of the individual object. The one

notable instance of new hardware support for security and
isolation in commodity processors is hardware support for
virtualization (e.g. Intel VT-X [9], AMD-V). This, however,
moves toward even more coarse-grained isolation, separating
entire OS and runtime images.

One consequence of the large amount of state that must
be exchanged to safely hand off the processor from one
virtual memory context to another (e.g., special processor
state, register file, TLB content) is that context switches
are relatively expensive (thousands of cycles); this has
motivated system programmers to move code into the kernel
to limit the number of domain crossings. All this code enjoys
unlimited privilege, even though any given component will
typically need only a very specific set of privileges.

Lack of hardware support for fine-grained security leads
to several problems. Violation of intended semantics allows
attackers to subvert the system (e.g. write beyond the end
of an object, overwrite the words on stack that should not
be visible or addressable, treat a data word as an indirection
address or branch target, branch to and execute words that
are not instructions, perform a class method on data that
is not a class instance). Worse, once an error is exploited,
the attackers can often accumulate privileges to take control
of the entire system (e.g. access to read or modify all
memory, access to all privileged operations: rewrite page
tables, change permissions, access devices, install software).

We submit that conventional systems are insecure in
part because of security–performance tradeoffs they made
based on now-obsolete technology assumptions. Decades of
Moore’s Law hardware scaling have delivered at least three
orders of magnitude greater hardware capacity today than
when the architecture of these systems was selected. Intel
first integrated support for virtual memory process isolation
with the 80286 (1982), on a die containing 1.34×105 tran-
sistors. By 2012 Intel ships six-core Core i7 processor dies
with over 2×109 transistors. With a competent processor
now small compared to a silicon die, we are living in an era
of abundant hardware resources. It makes sense to commit
a modest portion of these resources to reducing security–
performance tradeoffs and eliminating some classes of se-
curity vulnerabilities by baking in basic security principles.

III. HARDWARE SAFETY INTERLOCK MECHANISMS

The SAFE processor is a single-address-space architec-
ture [10] with mechanisms for fine-grained protection and
automatic memory management. Virtual memory is replaced
with a collection of hardware interlock mechanisms that
better support fine-grained, object-level privilege separation
and semantic enforcement. Fig. 1 shows the microarchi-
tecture for the SAFE processor. Along with the functional
units found in a conventional processor—the integer ALU
(IALU), floating point unit (FPU), branching unit (BU),
etc.—the SAFE processor includes specialized functional
units for fine-grained metadata validation. These units are
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Figure 1. SAFE Microarchitecture

shown in solid gray in Fig. 1 and operate in parallel with the
datapath functional units so that they do not slow down the
computation in the normal case. In the rest of this section,
we briefly discuss five key hardware mechanisms currently
implemented in our prototype.

A. Fat Pointers

Problem: Virtual memory provides coarse-grained ad-
dress space separation, but address spaces are large, en-
couraging applications and OS kernels to live within a
single address space—no one would consider creating a
new address space for one object. Consequently, within
an address space, there is little or no isolation between
objects. Violation of the spatial bounds of objects (e.g. buffer
overflow) is an abundant source of bugs and vulnerabilities.

Approach: The SAFE processor incorporates fat pointers,
pointers that include a base and bound (e.g., [11]), to
guarantee memory safety. Modern systems have explored
the use of fat pointers in software using multiple words to
represent the pointer, its base, and its bound. These schemes
depend on the compiler or libraries to maintain the software
pointers and incur runtime overheads of a factor of 2–3×.
In contrast, we adopt Brown’s approximate encoding scheme
[12], which allows us to pack an entire fat pointer into a 64-
bit machine word. Other efforts dealing with legacy code for
unsafe languages have provided hardware support by putting
the bound information in a shadow space [13].

Our scheme divides the 64-bit word into 46b for the actual
address, A, and splits the remaining 18 bits among three
fields: a 6b block size B, a 6b length mantissa L, and a 6b
block offset F. We allocate L× 2B words for every object,
aligned to a 2B boundary. This allows us to compute the
base and approximate bound by shifts and simple arithmetic.

Memory lost to alignment fragmentation is less than 2−(L−1)

(about 3% for L=6).
Implementation: The entire fat pointer is treated as an

indivisible atom by the hardware; that is, the fat pointer
is stored in memory as a single word, read and written
as a word, and kept together through computations on the
processor. Only the hardware Fat Pointer Unit, shown in
Fig. 1, deals with the individual fields to perform updates
and checks. The fat pointer unit operates in parallel with
the ALU and memory operations. In the common, non-
erroneous case, the validation does not delay normal opera-
tion. In our first implementation, the fat pointer unit was in
the critical path of the processor. However, we have recently
developed a recoding that uses the compact encoding in
memory and keeps a decoded version in the register file
to reduce the fat pointer decoding, update, and validation
operations below 4.2 ns on the 40 nm Virtex-6 FPGA when
working with the full 46b address. This is 10% slower than
our other critical paths (Tab. II), so remains a target for
optimization. On 32b addresses, it is below 3.9 ns. The Fat
Pointer unit requires 1156 LUTs (less than the area of a
floating-point adder) and adds 20 BRAMs to the 32 BRAMs
required for the baseline register file.

B. Atomic Groups: Hardware Typed Memory Words

Problem: Since memory can only be addressed through
fat pointers, SAFE can control the data a particular piece
of code can see by controlling the fat pointers to which
it has access. That is, the fat pointers serve as an object
capability (c.f., [14]). However, to make this sound, we
must assure that it is not possible for arbitrary code to create
(forge) a valid fat pointer. Rather, the only way to get a valid
pointer should be for some appropriately privileged entity to



provide it. This is different from pointers on a conventional
architecture, which can be freely created from integers.

Pointers are only one special kind of data whose cre-
ation and use it is useful to control. Some attacks on
conventional processors exploit the fact that the processor
cannot distinguish data and code and trick the processor into
reinterpreting data as code, thereby injecting code sequences.

Approach: To prevent forging, reinterpretation, and mis-
interpretation of words, SAFE types every word in memory.
Since the type is an indivisible part of every word, we call
the typed words atoms (Fig. 1) and the type an atomic
group. This allows the processor to know the intended use
of each atom in memory and enforce appropriate, type-
safe usage. For example, only fat pointers can be used to
reference memory, only instructions can be dispatched to the
processor, generic boolean operations can only be performed
on integers, and uninitialized data can be distinguished from
valid data. This extends the idea of a typed architecture (e.g.,
[7]) or a typed assembly language (e.g., [15]).

SAFE currently uses 5 bits to distinguish the following
atomic groups: Frame Pointer, Instruction Pointer, Gate
Pointer (Section III-D), Stream Read Pointer, Stream Write
Pointer, Thread Pointer, Forwarding Pointer, IEEE Dou-
ble Float, Integer, Instruction, Authority, Principal, Empty,
Uninitialized, and Error. Pointer distinctions allow SAFE
to enforce different limitations on pointer use (e.g. only an
instruction pointer can become the program counter).

Implementation: The atomic group unit (AGU) checks
each instruction to validate that the atomic group (type) of
the operands is consistent with the instruction, flags an error
when type mismatches occur, and selects the atomic group
for the result of the instruction. The AGU operates in parallel
with the functional units that operate on the data and with
memory access. In our FPGA implementation, it only takes
135 LUTs and completes in 3.6 ns. This delay is roughly the
same as the IALU, so when executed in parallel, we see no
impact on performance.

C. Who is Running this Code?: Authority

Problem: To support separation of privilege and least
privilege, we must support differently privileged entities. As
an example, the set of unforgeable atomic groups raises the
issue of who has privilege to assign a particular atomic group
to some atom. A primitive memory allocator needs to create
pointers, but does not need special privileges over threads.
The traditional supervisor mode solution concentrates privi-
lege in a single, monolithic authority, violating least privilege
and creating a single point of vulnerability.

Approach: In our clean-slate approach, we introduce a
rich notion of authority to the processor hardware and use
it to mediate all operations. We use specially tagged (i.e.,
distinguished atomic group) pointers to serve as authority,
leaving the encoding and interpretation of authority to
software. Since we use pointers, they are as plentiful as

main memory allows, facilitating fine-grained subdivision of
responsibility. At any point in time, the processor is running
on behalf of a specific authority, which it tracks in a special
processor register. Among other things, this allows the SAFE
processor to restrict the ability to perform particular instruc-
tions (or even particular instructions on particular atomic
groups) to specific authorities in a fine-grained manner.
For example, only the allocator is allowed to execute the
privileged framptr instruction, which creates a new fat
pointer for a frame of memory locations.

Implementation: The main requirement is a register in
the thread state to represent the authority with appropriate
restrictions on how this authority can be modified. We will
see that this interacts closely with gate (Section III-D) and
metadata validation (Section III-E).

Open Issues: Exactly what authorities represent at higher
levels is an active area of discussion. The facilities we
provide are designed to support a wide range of idioms. For
example, an authority might pick out a point in a hierarchy
of principals, some of which act-for [16] or delegate to
[17] others. Or an authority might represent a set of first-
class capabilities to perform actions such as declassifying or
endorsing certain types of information. Moreover, by using
different forms of gate calls (Section III-D), authority in a
running program can be managed either lexically (calling a
procedure raises the current authority to include that of the
procedure’s creator) or dynamically (on procedure call, the
authority of the caller is implicitly passed to the callee).

D. Changing Authority: Gates

Problem: To support fine-grained privilege separation, we
must make the change of privileges secure and inexpensive.
Since we tie privileges to authorities, that means we need
to change authorities in a lightweight manner. Privilege
separation in traditional systems is tied to virtual memory
address contexts, which are relatively expensive to switch
(e.g., [18], [19]). Even on the i432, it took close to 1000
cycles to perform a privilege-changing call [8].

Approach: To support lightweight privilege change, we
provide a special form of procedure call that changes the
authority. We call this authority changing procedure call a
gate since it performs the same logical function as a Multics
gate [5]. Our gate is also similar to an i432 ENTER [8].
However, unlike the Multics gate or i432 ENTER, we exploit
today’s greater hardware capacity to make gate operations
as inexpensive as an ordinary procedure call.

We represent a gate as a 3-atom object containing an
instruction pointer, an authority, and an environment pointer.
It is essentially a closure (combination of code and data)
that has been extended with privilege (the authority). The
environment pointer can be seen as capturing the lexically
defined environment or the object-local data. When invoked,
the processor’s program counter (PC), authority, and en-
vironment pointers are changed to the values specified in



the gate, with the old values pushed onto a call stack.
The hardware deals atomically with the gate: once created,
it cannot be mutated, the constituent components cannot
be dereferenced or extracted, and invocation is an atomic
change of PC, authority, and environment.

A gate can be viewed as providing controlled access to a
service or object. The data associated with the object or ser-
vice can be made private to the service. The gate call changes
the authority and recovers the pointers (object capabilities)
that provide access to this private data. However, this access
is only provided in order to run the code specified by the
instruction pointer. This associated code can then be used
to limit the operations allowed. For example, the allocator
can provide a gate to perform allocation without exposing
its internal state or giving away its privileged operations. In
the extreme, if we use a separate authority for each object,
gates can be seen as providing enforced data hiding and
encapsulation object semantics—the only way to access the
data is through the exported gates.

To ensure gate and authority integrity, the processor uses
a special call stack that we call a gate stack. Unlike the
call stack in conventional architectures, the gate stack is
not accessible to the code. This gate stack is only used for
saving and restoring PC, authority, and environment around
procedure and gate calls—the compiler or programmer is
responsible for local data allocations. The processor main-
tains a pointer to the gate stack per thread and this pointer
is only manipulated by call and return instructions. We treat
the gate stack specially in order to (1) assure that pointer
capabilities and authorities do not flow to and cannot be
modified by called routines, (2) prevent information from
the caller chain from flowing to the callee, and (3) guarantee
the called program can only return to defined join points
with designated environments and authorities. Note that this
generalizes and replaces the notion of a system call, which
traditionally requires separate user and kernel stacks and a
context switch.

Implementation: To perform a call we must load the 3
atoms in the gate object into the processor state, save the
corresponding 3 atoms from the processor state onto the
gate stack, and update the gate stack pointer. We force gate
stack frames to be aligned on a 4-atom boundary, design
our L1 data cache to be dual ported and multiples of 4
atoms wide, and provide a wide bus between the processor
an the L1 data cache. As a result, we can perform the entire
state exchange in a single cycle. This makes gate calls and
returns no more expensive than ordinary procedure calls and
returns, removing the traditional performance disincentive to
privilege separation.

Here we exploit that fact that L1 data caches are on
chip and already organized into wide cache lines, making
the wider interface between the processor and this piece of
the memory hierarchy inexpensive. Embedded memories on
FPGAs are dual ported, so there is no additional cost to this.

In a full custom design, we might prefer to use a separate
memory bank for the gate stack or accept a second cycle to
perform the write separately from the read in order to avoid
making the L1 data cache dual ported.

Open Issues: There are many variants on gate calls.
Should there be a way to pass limited authority into a
gate? Is tail-call optimization essential, and can it be se-
cure? When is it appropriate to restore the tag on the PC
associated with the call (relevant to implicit flows in the
next section)? What is the appropriate hygiene for registers
across authority-changing calls? Should there be a variant
that allows timeouts on gates, allowing the caller to regain
control if the callee either mistakenly or maliciously fails to
return control, and how should this functionality be divided
across hardware and software? Is there value in “functional”
gate calls, whose results can be cached in hardware? To
explore such questions, we currently support a wide variety
of gate calls. We expect experience and benchmarking to
help identify the essential set.

While we can exchange the key processor state in a single
cycle, if the code and environment for the gate are not in a
cache, they will incur additional cycles to fault the data into
the L1 caches. More benchmarks are needed to clarify how
much this impacts effective procedure call time and drive
memory system optimization to minimize the impact.

E. Metadata Validation, Propagation, and Monitoring

Problem: To limit the flow of information for secrecy
and integrity, many recent security architectures (both soft-
ware and hardware) have adopted dynamic information-
flow tracking [20]–[24]. Most commonly, a few tag bits
are associated with every word to specify if it is tainted
or not (and taint level in case of multiple bits). These taint
bits are consulted at various spatial or temporal events to
prevent unintended data sharing or usage. Most of these
systems offer a limited number of tag bits and a few policies
defining taint propagation and restrictions. While this work
illustrates the power of metadata tracking, combination, and
checking, it remains unclear what tags, policies, or collection
of policies a processor should support. Furthermore, in order
to offer strong security assurances, it is necessary to track
not only explicit flows of information as data is copied
and manipulated but also implicit flows through conditional
control transfers [25]; dynamic approaches to implicit flow
tracking remain an active area of research both in our SAFE
effort and in the larger community.

Native types at the hardware level (Sec. III-B) makes
the processor aware of the most basic semantic invariants
of any computation. However, programming languages and
programmers will create rich, fine-grained data types that
have their own semantic invariants that must be enforced
(e.g., an integer type for a bank account number should
not be interchangeable with a integer type used for a date).
Implementations that dynamically validate and enforce these



policies in software become expensive, forcing a tradeoff
between good defensive programming and performance.

Approach: In addition to the atomic group (Sec. III-B),
we equip every atom with a programmable tag (Fig. 1).
Every instruction is validated against a set of software-
programmable rules to determine if the operation is allowed
and what the resulting tags should be. To support extensi-
bility, each tag is a pointer to a data structure that can be
defined and interpreted by the programmable rules. As such,
it can be used to combine a collection of properties that may
be used orthogonally (e.g. data types and usage restrictions,
taint, secrecy labels, integrity labels, provenance). In our
present design, we allow rich rules that take as input nine
values or tags: the current operation (e.g. add, load, gate),
the current authority, the tags on the thread pointer, the PC,
the three operands, and the result from memory. In response,
the rules can specify whether or not the operation is allowed
and, if allowed, seven result values or tags: the new authority,
the tag on the thread pointer, the PC, the written operands
(up to 3), and the value to be written to memory.

Implementation: To allow this rich and extensible media-
tion while minimizing the impact on execution time, we add
a separate functional unit, the Tag Management Unit (TMU)
(Fig. 1) that runs in parallel with operations on the data.
The TMU is a cache on the software rules. It matches the 9
input fields (a total of 375b for the full 46b address case) and
produces the 8 output results (323b). This caching technique
is similar to the one used in [24]. The TMU operates in
parallel with the datapath functional units so the validation
occurs without increasing processor cycle time or adding
cycles in the common successful case.

To deal with bootstrapping of primitive software services,
we decompose the TMU into two pieces: (1) a static rule
cache for primitive services including the services necessary
to update the dynamic rule cache and (2) a dynamic rule
cache for extensible rules. In Sec. V we show that a 1024-
entry dynamic TMU is only slightly larger than a small L1
data cache.

Open Issues: A central component of the SAFE research
is what the tag rules should be and how to make them
practically usable in a programming language. The richness
of our current design specifically supports experimentation
and extension.

The use of full pointers provides extensibility and com-
pactness in the number of tags used, but it hides the structure
of the tags (i.e. ability to decompose tag rules by their or-
thogonal fields). This loss of structure increases the effective
size of the rule working set. As we get further experience
with applications and label models, a key question will be
whether or not this lack of structure makes the working set
unworkably large.

Using a pointer the same size as main memory address
pointers on every word is convenient and provides great
flexibility for experimentation but incurs 100% overhead

for tag storage and movement. Obvious directions to reduce
this overhead include using a restricted range of the address
space for the tag pointer (e.g. using 28b of pointer address
rather than 46b) and associating the tag pointer with a larger
payload than a single 64b word (e.g. a 128b or 256b packed
word or a flexible granularity scheme such as [13], [20]).

IV. INTROSPECTION SUPPORT

The hardware mechanisms employed in the SAFE archi-
tecture facilitate efficient, targeted low-level monitoring and
ease invocation of a deeper introspection when necessary.

Problem: In conventional systems, it can be expensive and
inefficient to introduce inspection into every potential point
where a monitored event may occur (e.g., every write that
might mutate a field in a data structure). Virtual memory
tricks (e.g., marking a page read-only) are often the most
efficient, but are generally mismatched with the granularity
of the object, leading to spurious traps.

Approach: Our flexible, fine-grained metadata tags with
rich hardware matching allows us to precisely target specific
scenarios and invoke software handlers only when those
conditions occur. When the common case is not the event of
interest, the TMU can validate the operation without adding
cycles to slow down normal case operation, invoking the
software handler only when the uncommon target conditions
occur. Rich, fine-grained tagging with careful selection of
tags allows us to be very specific about the case that merits
monitoring.

Impact: We may introduce specific tags precisely to
differentiate them for monitoring. Code-specific breakpoints
can be generated with tags on the instructions. Data values
can be tagged to generate traps when used in specific ways
or places. Memory locations can be tagged to generate traps
on their use or modification. The ability to use tags for
provenance and taint tracking means tags can carry digested
information about the history and trajectory of an atom that
can be used in identifying and triggering specific conditions.

These traps can provide efficient triggers for reference
monitor inspection [26]. Once checked, immutable data
can be tagged with properties derived from the inspection,
perhaps providing an endorsement that avoids the need for
future inspection (e.g. [27]). These focused traps can also be
used to log events, such as the use of particular privileges
in specific contexts. Changing the tags or rules employed
can be used to adapt the level and focus of the monitoring
without changing the application code (c.f. [28]).

Open Questions: Exploiting these facilities for rich moni-
toring on top of security and integrity information flow raises
a number of its own challenges, including: How should we
make these facilities accessible to the application and system
programmer? What are the best patterns for using tags, rules,
and the TMU to efficiently monitor data? How can these
monitors be used without leaking information (e.g., [29])?



V. FPGA PROTOTYPE IMPLEMENTATION

We are developing the prototype SAFE processor as
shown in Figure 1 using the Bluespec SystemVerilog [30]
hardware description language and targeting a Xilinx ML605
Virtex 6 (40nm) FPGA development board [31] for hardware
testing. Currently we have an unpipelined, functional design
that executes five 5 ns cycles per operation. Mandatory
address pipelining on Virtex embedded memories forces the
multi-cycle operation. The number of FPGA resources con-
sumed by individual functional units in the current prototype
are shown in Tab. II. The current implementation is aimed at
functional correctness, and optimization has been limited to
key functional units such as the fat pointer unit (Sec. III-A).

Nevertheless, the five security modules shown in Sec. III
are not large. The modules take 4825 LUTs and 66 BRAMs
total, which is about 18% of LUTs and 44% of BRAMs
used for the processor. Some cost for integrating these
functional units shows up in the “Top” module logic area.
The security modules run in parallel with the IALU, FPU,
and I-Cache access, which have delays of 3.7 ns, 4.0 ns, and
3.6 ns respectively. All security units run under 3.9 ns except
for the 46b fat-pointer decode that runs in 4.2 ns.

Currently we have implemented only the L1 instruction
and data caches, each with a block size of 4 atoms and 1024
entries. This gives us 32KB (4K atoms) of instruction and
data capacity (not accounting for the metadata) each that
can be cached at any instant. These caches are backed by
the main memory which lives in an off-chip DRAM. Both
of these caches employ a low conflict rate multiple hash
function architecture. We use a similar architecture for the
TMU cache. Currently we use 28 bits for all addresses as
an implementation simplification since we do not expect to
address over 228+3=2 GB with the FPGA prototype. Due to
the 28b addresses, the dynamic rules are stored in a 1024-
entry TMU cache as complete 527 bits (inputs + outputs)
vectors as opposed to 698 bits for the full address range
case for each rule. This results in the current TMU being
comparable in size to the small L1 data/instruction cache.

Our current multicycle hardware prototype will facilitate
the transition to a pipelined version of the processor with
slight re-organization of hardware units. We expect to be
able to run our FPGA-based processor at a clock speed of
250 MHz with 5 pipeline stages.

VI. CONCLUSIONS

The modern hardware cost landscape is qualitatively dif-
ferent from the one under which conventional processor,
microprocessor, and operating systems were designed. This
makes it viable to consider hardware safety interlocks that
were unthinkable a few decades ago. These interlocks can
operate in parallel with datapath functional operations so that
they do not slow down normal operation. Furthermore, they
ease the traditional tradeoff between security and perfor-
mance, enabling fine-grained, object-level separation of priv-

Table II
IMPLEMENTATION STATISTICS FOR FPGA PROTOTYPE OF PROCESSOR

Security? LoC LUTs BRAMs Delay
Module # % (ns)
Top (control, multiplexing) ◦ 1591 12200 45.7 0 -

AGU • 138 135 0.4 0 3.6
ALU 80 852 3.1 0 3.7

Floating Point Adder 550 1300 4.8 0 4.0
(5 pipeline stages)

Branch Unit 58 46 0.1 0 2.3
Fat Pointer Unit • 79 1156 4.2 0

update and check 3.6
decode (32b) 3.9
decode (46b) 4.2

Gate Stack • 102 852 3.1 0 2.6
Load Store Unit 53 2 0.0 0 0.4

PC Unit • 135 1647 6.1 0 3.7
Streaming Unit 52 48 0.1 0 2.0
Interposed Unit • 57 5 0.0 0 1.9

Timer 85 472 1.7 0 3.1
Write Buffer (32-entry) 286 4799 17.9 0 2.9

TMU (28b tags) • 728 1030 3.8
Static (1024 rules) 21 3.6

Dynamic (1024 rules) 25 3.6
Register File (32 GPR) 215 1108 4.1 52 3.0

I-$ (4K atoms) - 643 2.3 26 3.6
D-$ (4K atoms) - 643 2.3 26 3.6

Overall SAFE Processor 4252 26958 150 5.0
Usage (xc6vlx240t device) - 18% 36% -

ileges and complete, instruction-by-instruction, mediation.
We have shown: (1) how bounds can be encoded in a 64b
pointer word and checked in parallel with operation; (2) how
words can be typed and checked in parallel with operation;
(3) how the processor can always know on whose behalf it
is running; (4) how privilege changes can occur at the level
of a procedure call without slowing down the procedure call;
and (5) how rich information flow and semantic constraints
can be propagated and validated in parallel with operation.
All these operations together can be implemented with 25%
additional logic (less than 20% of final processor logic
resources) and with an additional cache comparable to a
small L1 data cache.
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