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ABSTRACT
When are FPGAs more energy efficient than processors?
This question is complicated by technology factors and the
wide range of application characteristics that can be ex-
ploited to minimize energy. Using a wire-dominated en-
ergy model to estimate the absolute energy required for pro-
grammable computations, we determine when spatially or-
ganized programmable computations (FPGAs) require less
energy than temporally organized programmable computa-
tions (processors). The point of crossover will depend on
the metal layers available, the locality, the SIMD wordwidth
regularity, and the compactness of the instructions. When
the Rent Exponent, p, is less than 0.7, the spatial design is
always more energy efficient. When p = 0.8, the technology
offers 8-metal layers for routing, and data can be organized
into 16b words and processed in tight loops of no more than
128 instructions, the temporal design uses less energy when
the number of LUTs is greater than 64K. We further show
that heterogeneous multicontext architectures can use even
less energy than the p = 0.8, 16b word temporal case.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Type and Design Styles—
VLSI ; C.0 [General]: Modeling of Computer Architecture;
C.2.1 [Computer Communication Newtorks]: Network
Architecture and Design

Keywords
Energy; Energy Modeling; Low Power; FPGA; Rent’s Rule;
Locality; Instructions; Multicontext; SIMD

1. INTRODUCTION
As we enter the era of mobile devices and dark silicon

[4], minimizing energy becomes the dominant concern when
engineering computations. Battery life and power-density
envelopes limit the performance we can extract, not critical

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FPGA’14, February 26–28, 2014, Monterey, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2671-1/14/02 ...$15.00.
http://dx.doi.org/10.1145/2554688.2554781.

path delay or area. Under these constraints, architectures
that reduce the energy per operation are the most beneficial.

In prior work [2], we established that spatial (FPGA-like)
computations can use asymptotically lower energy than se-
quential (processor-like) computations. However, this analy-
sis did not estimate when these asymptotic effects would be-
gin to dominate. The goal of this paper is to estimate when
the asymptotic effects are large enough to have a practical
impact and to refine the comparison to account for common
optimizations that allow processors to save energy. Conse-
quently, this paper builds absolute energy models including
constant terms and scale factors. To make the model re-
sults general, we introduce parameters for key technology
factors (e.g., relative size of memory bits compared to wire
pitch, metal layers available for routing). To balance model
complexity with accuracy, we use a wire-dominated energy
model suitable for modern VLSI processes (Sec. 3.2).

To better characterize absolute energy in processors, we
observe that processors reduce the overhead of instruction
energy by sharing instructions using single-instruction, mul-
tiple data (SIMD) control of multibit words and looping
(Sec. 4). The energy reduction is sufficient to allow the
processor to use less energy for a computation than spatial
(FPGA-like) designs (Sec. 5) when the design has little in-
terconnect locality such that its Rent Exponent, p (Sec. 2.1),
is greater than 0.75. When the Rent Exponent is less than
0.75, even with these optimizations, the FPGA uses less en-
ergy than the processor, but the optimizations reduce the
absolute advantage. For the cases where the Rent Exponent
is large, we identify architectural points between the FPGA
and processor extremes that achieve lower energy than ei-
ther (Sec. 6). Our analysis provides parameterized models
that allow relative area and energy comparisons across a
wide range of design and technology parameters.

Our contributions include:
1. parameterized, wire-dominated energy models for a

programmable structure that can be tuned to represent
single and multiple context FPGAs and processors

2. identified energy crossover points as a function of de-
sign size and a wide range of technology (e.g., metal
layers) and application characteristics including local-
ity, word width, and loop size

3. optimized heterogeneous, synchronous, multicontext
architecture and identification of the energy-minimizing
architectural parameters

4. comparison of relative energies for select organizations
across this design space

http://www.seas.upenn.edu/~andre
mailto:andre@acm.org


2. BACKGROUND
Before developing our detailed energy models, we first re-

view Rent’s Rule, the hierarchical network style we will use
for interconnect, and the asymptotic results from [2] that
leverage Rent’s Rule and the hierarchical networks.

2.1 Rent’s Rule
Typical circuits do not look like random graphs. Rather,

they have local clusters that can be physically placed to
minimize the number of nets that enter and exit a region.
First identified by E. F. Rent and published by Landman
and Russo [8], Rent’s Rule says that the number of wires
that must cross into or out of a region of N components is
reasonably modeled by:

BW = cNp (1)

where p is the Rent Exponent, which is typically in the range
0.5–0.7. The Rent Exponent can be used as a measure of
locality. Designs with a smaller fraction of wires exiting a
region, smaller BW , are characterized by a smaller p. Rent’s
Rule has been used to estimate wiring requirements in FP-
GAs (e.g. [7] used p = 0.78). As Hutton notes, both the
circuit netlists and the FPGA substrate can each be char-
acterized with their own Rent Parameters. For the scope
of this paper, we make the simplifying assumption that the
design and substrate Rent Parameters are matched.

Rent locality directly implies the wire length distributions
in a design [3]. If the circuit has a Rent Exponent less than
0.5, the average wirelength is a constant independent of the
number of gates, N . When the circuit has a Rent Exponent
greater than 0.5, the average wirelength scales as Np−0.5.

2.2 Hierarchical Network Review
Lieserson observed that excessive wiring in VLSI designs

could lead to area inefficient implementations. As a result,
he developed the Fat Tree interconnection network that has
limited wiring bandwidth that grows according to Rent’s
Rule and, like Rent’s Rule, can be parameterized by p [10].
The Butterfly Fat Tree (BFT) variant of the Fat Tree uses
simple, constant size switches at the tree stages [6] (See.
Fig. 1a). In this paper, we use a version of the BFT based
on directional wiring [12, 11].

In these networks, the bandwidth into each subtree grows
toward the root in accordance with Rent’s Rule. The growth
can be programmed discretely by selecting the use of band-
width preserving 2:1 stages (2 parent links for 1 child link
in each of the two sibling subtree) and bandwidth reduc-
ing 1:1 stages. By alternating 2:1 and 1:1 stages as shown
in Fig. 1a, the bandwidth increase by a factor of 2 across
two stages where the number of gates in the subtree has
increased by a factor of 4. This corresponds to a p of 0.5
(40.5 = 2). By changing the selection of 2:1 and 1:1 stages,
we can configure networks for different p’s. A p = 2

3
net-

work is realized by repeating a sequence of 2:1, 2:1, and 1:1

switches (
(
23
)0.67

= 4).
In the heterogeneous multicontext design, we allow the

tree to have a different set of Rent parameters (c′ = c
Ct

,

p′ = pt) from the design it supports and place configura-
tion memories local to the switches. To route the design,
we time multiplex the original wiring requirements over this
reduced physical network. When pt < p, the time multi-
plexing factor, and hence the size of the memories, grows
toward the root of the tree giving rise to the heterogeneous

multicontext interconnect. At the root of a subtree of size
N , the instruction memories are of depth CtN

p−pt . Fig. 1b
shows a Ct = 2, pt = 0.25, network used to implement the
c = 2, p = 0.5 network shown in Fig. 1a. It realizes the
p = 0.25 network by repeating the stage sequence of 2:1,

1:1, 1:1, and 1:1 switches (
(
24
)0.25

= 2). The switch at
the top of the 16-gate tree shown has memories of depth

CtN
p−pt = 2×

(
24
)0.25

= 4.

2.3 Asymptotic Review
To implement a computation sequentially, we must store

the intermediate state of the computation in a memory. A
circuit with N gates, stores each of the N gate outputs in
a large memory. The size N memory has a side length of
O(
√
N), meaning every input read or value stored will cost

O(
√
N) energy. In contrast, if we spatially layout the cir-

cuit for the graph, we can try to minimize the average wire-
length between producers and consumers. If the design has
a Rent Exponent less than 0.5, the average wirelength is
constant, and the energy per operation is O(1). If we have
an unlimited number of wire layers, we immediately know
that the wires between gates will be at most O(

√
N) and,

consequently, energy is no greater than O(
√
N). The wire-

length relation above suggests the wirelength will only grow
as O(Np−0.5), meaning the energy will always be less than

O(
√
N)—less than the sequential energy—until p = 1.0.

This wirelength phenomena largely explains the spatial and
sequential asymptotic results from [2].

When we are limited to a constant number of metal lay-
ers, the side length grows as O(Np), and energy per gate
can grow as O(N2p−1), which is greater than the sequential

energy O(
√
N) when p > 0.75. This larger area and energy

is driven by the wiring required to support a large p design.
However, [2] also shows that, by using a pt < 0.5 hetero-
geneous multicontext BFT (previous section), we can bring

the energy per operation below O(
√
N) for any p < 1.

While the spatial design has lower energy, asymptotically,
it is not clear when the asymptotic effects begin to matter.
Furthermore, while the asymptotic analysis points to the
inefficiency of a sequential processor with a single memory,
it does not rule out the possibility that sequential processors
of some limited, fixed capacity could be less energy than fully
spatial designs. The asymptotic results do not address how
to organize the computation to minimize absolute energy.

3. MODELS

3.1 Computational Graph Model
Our computational model is a graph of interconnected op-

erators that must all be evaluated on each cycle of operation.
The graph could be a circuit netlist or a homogeneous syn-
chronous dataflow (SDF) graph [9]. The graph may include
state elements such as SDF delay elements or registers in a
circuit netlist. The graph may contain cyclic paths as long
as they are valid synchronous cycles, meaning there must be
one or more registers or delay elements on each cyclic path.
The operators are nodes in the graph. Nodes take in a fixed
set of inputs, perform some logical operation on the inputs,
and produce a fixed set of outputs. The node could be a
logical gate or a flip flop in a circuit netlist or an arithmetic
operation or delay element in an SDF graph. The edges in
the graph describe how outputs from one graph node be-
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Figure 1: Directional Butterfly Fat Tree (BFT) with c = 2, p = 0.5

come inputs to others. Each edge has a single source and
may have multiple destinations. Since the graph is a valid
synchronous graph, a cycle of computation can be computed
by ordering the nodes topologically and evaluating each node
once based on its inputs. As a simplifying assumption, we
assume every node switches on every evaluation cycle and
leave the issue of non-homogeneous node switching or low
activity to future work (Sec. 7).

3.2 Wire-Dominated Energy Model
To limit the complexity of the models and to improve their

generality, we use a wire-dominated energy model. Assum-
ing a fixed voltage for operation, dynamic switching energy
is proportional to the capacitance switched. The capac-
itance switched will come from both the gates driven by
each net and the capacitance of the wiring. In modern pro-
cesses the capacitance in the wiring is the dominant com-
ponent. At 32nm, the capacitance per unit wire of length
one minimum feature width, F , is 6.4×10−18 Farads, while
the capacitance of a transistor gate per minimum transis-
tor width unit is 29×10−18 Farads (From [1], INTC2 and
PIDS3-LOP). A dense SRAM cell is 140F 2. Crossing the
12F width of the cell is 12×6.4

29
≈ 2.6× more wire capaci-

tance than the gate. Other gates are packed less densely
than SRAM cells and have wiring that extends across mul-
tiple cells. As a consequence, we can reasonably focus on
the wire capacitance to get an adequate approximation for
dynamic capacitance switched. For this paper, we calculate
the total wire lengths switched in order understand dynamic
switching energy, Edyn.

Edyn ≈ 0.5V 2
∑

all wires i

αiLwirei × Cu (2)

Lwirei is the length of wire component i, and αi is its switch-
ing activity. Cu is the capacitance per unit length of wire.

3.3 Memory Energy Models
Our memory energy model is based on and illustrates the

wire-dominated model. For a random access memory with
a W -bit wide interface containing M W -bit words, the total

capacitance switched on a read or write operation is:

Crmem(W,M) = (log (M) + 2 (2W + 2))
√
WMAbitCu

(3)
To minimize energy, the core array is organized into a square
of length

√
WM bit cells on a side. We must drive the

log (M) address lines across the width of the array either for
the word-line decoders or for the final mux selection. We
must drive the bit-lines that run the height of the array for
the W bits selected. The W selected bits will then run the
width of the array in multiplexer selection. These two are
captured in the 2W term. The bit-line and a word-select
line run the width and height of the array, hence the “+2”
term. We assume the bit-line and word-lines switch on and
off for each memory operation and multiply those terms by
two. The area for this memory is:

Armem(W,M) =

(√
WMAbit + FP

(
log (M)

2

))2

(4)

FP is the full wire pitch. CACTI [14] estimates at 32nm and
below confirm the wire dominated energy assumption. Since
CACTI is optimized more for performance than energy, the
absolute CACTI results are uniformly 2.5× larger than the
estimate above. At the risk of being generous to the sequen-
tial designs where the energy is dominated by memories,
we use our smaller energy estimate as the main comparison
point. In select places (Fig. 3, 4, and 11), we also report
the larger memory energy case to illustrate the sensitivity
of results to the ratio of memory energy to wire energy.

Sequentially accessed memories, as are appropriate for the
instruction memories, can avoid the cost of addressing. A
simple shift register can activate the appropriate rows and
control the output multiplexer. The capacitance switched
for a sequentially accessed memory is:

Csmem(W,M) = (2 (2W + 1))
√
WMAbitCu (5)

The area of the sequential memory is:

Asmem(W,M) = WMAbit +
√
WMAshift (6)

+

√
M

W
Ashift +

(√
WM −W

)
Amux



4. SEQUENTIAL PROCESSOR
We start with a simple sequential architecture composed

of a 4-LUT to perform the computation, an instruction mem-
ory to specify the behavior of each logical 4-LUT in the
netlist graph, and a data memory to hold the value on each
edge, or net, in the netlist graph (Fig. 3 in [2]). We use a 4-
LUT because previous work showed it to be the least energy
for spatial designs [15, 13]; for the sake of this paper, we take
the LUT size as a constant and do not explore it as an opti-
mization parameter. For the wire-dominated energy model,
we ignore the gate energy for the 4-LUT and control and
focus on the memory energy. For each LUT evaluation, we
must read the instruction, read 4 data values from the data
memory, and write one value to data memory. This means a
total of five memory operations on the random-access mem-
ory that holds data. The total capacitance switched when
evaluating an N node graph is:

Cseq = 5NCrmem(1, N) (7)

+Ibits(N, p)Csmem(1, Ibits(N, p))

The instruction bits, Ibits, depend on the size of the graph
and the Rent Exponent, p. As [2] notes, a naive version
would spend log(N) bits for each of the read addresses, but
exploiting a Rent’s-Rule style recursive bisection, we can use
fewer bits to specify nodes that are “closer” in the recursive
bisection tree. Only the nets that are cut at the root of the
tree require log(N) bits; with p < 1, most require fewer.
Examining the recursive bisection tree, we can account for
the number of nets crossing at each tree level to understand
the total number of bits to specify addresses, Bsrc:

Bsrc =

log(N)∑
l=0

(
2lp × N

2l

)
= N

∑
2l(p−1) =

N

1− 2p−1
(8)

l is the height in the recursive bisection tree from the leaves
(l = 0) to the root (l = log(N)). Each instruction needs to
specify 4 inputs and one output, so we multiply this value by
5. Each instruction must also specify the 4-LUT function,
so we add 24 bits for the function, giving us:

Ibits =

(
5

1− 2p−1
+ 16

)
N (9)

It is clear from examining Eq. 9 that the instruction mem-
ory is larger than the data memory by a significant constant
factor. For p = 0.7, Ibits/N ≈ 43. For regular graph op-
erations, the instructions are the same for different data
values and can potentially be reused. A common form of
this is looping, where a set of instruction, the loop body,
are reused across a large set of data. Low-level image pro-
cessing or cellular automata are some of the most familiar
examples of this kind of looping, applying the same set of
operations to each neighborhood region of data. For a gen-
eral formulation, we introduce a separate variable I for the
total number of unique instructions required and allow that
to be independent of N . To first order, I can also be viewed
as modeling the impact of a first-level instruction cache, as-
suming the instruction trace is sufficiently localized that all
references are effectively satisfied in this cache.

We can also reduce the number of instructions by shar-
ing them across a wide word, W . One defining property
of processors is that they do not operate on single-bit data
elements, but rather operate on a set of bits (e.g., 8, 16,
32, 64) grouped into words. This allows them to read many

20 23 26 29 212 215 218 221 224 227 230
N (gates)

2−6

2−5

2−4

2−3

2−2

2−1

20
Energy Ratio

sequential (I≤128, W=1, total energy)
sequential (W=1, data energy only)
sequential (I≤128, W=16)
sequential (W=16, data energy only)
sequential (I≤16, W=64, total energy)
sequential (I≤128, W=64)
sequential (W=64, data energy only)

Figure 2: Sequential Energy Ratio to W = 1, I = N
for p = 0.7

bits from memory, both reducing the number of addresses
that must be specified and amortizing out the cost of spec-
ifying the address. Assuming the data bits stay fixed, this
also reduces the number of instructions, since an instruc-
tion now applies to a group of W bits. The word operations
are typically applying the same operation to each bit (e.g.,
bitwise-and, bitwise-xor), and even arithmetic operations
like add and subtract are effectively telling each bit of
the datapath to act like an adder bitslice. This is known as
a single-instruction, multiple-data (SIMD) operation since
a single instruction is reused to control the W bits in the
datapath. As a result, we can reformulate the energy for
the processor in terms of the SIMD width, W and the total
instructions, I.

Cseqlw = 5

(
N

W

)
Crmem

(
W,

N

W

)
(10)

+

(
Ibits(N, p)

W

)
Csmem(1, Ibits(I, p))

Fig. 2 compares the energy ratios at p = 0.7 to show the
impact of limited instructions, I, and SIMD word width, W .
All cases are normalized to the I = N , W = 1 sequential
energy case. As the “data energy only” curves show, there is
a clear crossover point where data energy begins to dominate
instruction memory energy.

5. SPATIAL PROCESSING
The fully spatial processing architecture builds a 4-LUT

for each node in the graph along with the BFT interconnec-
tion network. Instructions (configuration bits) are stored
local to each LUT and interconnect multiplexer control bits
and never change, consuming no dynamic energy. Dynamic
energy is consumed switching the wire capacitance routing
data between LUTs. To model this capacitance, we need to
know the number and lengths of the wires, which, in turn,
demands we know the area of the structure.

Area is driven either by the active area for LUTs, con-
figuration bits, and switches or the wiring area for routing
interconnect. Since these use different layers, an accurate
calculation might take the maximum of the area required for
wiring and interconnect. To simplify analytic calculation, we
will add together area for wiring and active elements. The
result is potentially a conservative overestimate, by as much
as a factor of two when wiring area is the same as active



area. When one area component dominates, as it does for
large designs, the sum becomes close to the maximum.

For simplicity, we use 2-input multiplexers as the basic
building block for switching (Fig. 1c), including in the C-
box connections between the network and the LUT. c is
the number of base channels in the tree. Since this is a
bidirectional network, there are both c inputs and c outputs
from the network at each leaf (Fig. 1a). We will be using
c = 5. The leaf area includes the LUT, its configuration bits,
and the C-box multiplexers to select the LUT inputs from
the tree network. C-box multiplexers can be depopulated
to exploit the fact that they are feeding a 4-LUT [5]. The
single output is driven into all of the network inputs at the
leaf, leaving their selection to the network switches.

Aleaf = A4lut + 24Abit + ((c− 4)4)) (Amux2 +Abit) (11)

From Figs. 1a and 1c, we see that each directional wire pair
at the top of a subtree is associated with 3 two-input mul-
tiplexers. Counting based on wiring at each tree level gives
the total switch area:

Asws =

(
c
∑(

2lpN

2l

))
(3Abit + 3Amux2) (12)

Putting these together:

Aactive = NAleaf +Asws (13)

For wiring we first count the number of wire channels
needed across the width of the chip by looking across all
overlapping wiring channels:

Wires = 2

(
cNp + 2cNp

(
1

2

)2p

+ 4cNp

(
1

2

)4p

+ . . .

)
= 2cNp

∑
2(1−2p)l (14)

The constant two at the beginning of Eq. 14 accounts for
the separate up and down links of the bidirectional chan-
nels. The exponent increases by a factor of two since we
are counting every other stage to account the contribution
of wires to a single dimension. The constant in front dou-
bles since we’re doubling the number of wire channels that
parallel each other at every other tree stage.

The actual width required by the wires will depend on the
number of metal layers available for programmable intercon-
nect routing in the process. We will assume half the metal
layers are available for horizontal wiring and half for verti-
cal. We further assume we can perfectly use all the metal
layers in each direction. This gives:

Lwire =
Wires× FP
Mlayers/2

=
2FP ×Wires

Mlayers
(15)

FP is the full pitch of the wires, which we take as 2 to
normalize to the half-pitch feature size used in defining Cu.
The length of the side of the entire design is thus:

Lside ≤
√
Aactive + Lwire (16)

We then determine the total wire capacitance switched by
summing up the capacitance of all the wires.

Cspatial =
∑

cNp2i

(
N

2i

)(
Lside

2di/2e

)
(17)

The ceiling in the sum accounts for the fact that every other
stage extends in a different dimension, so the subtree width
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Figure 3: Energy Ratio to W = 1, I = N Sequential
for p = 0.7
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shrinks every other stage. Computing the subtree length as
a fraction of Lside like this is a conservative overestimate of
wire length since lower level wiring runs do not need to cross
upper-layer wiring.

Fig. 3 shows the energy ratios to the sequential architec-
ture at p = 0.7. The spatial energy is always below the
sequential energy and the benefit grows with design size,
N . Large word width, W , and tight loops (small I) reduce
the spatial benefit, but do not eliminate it. We include an
8-metal case as typical for current technology. At 32nm,
the ITRS [1] suggests up to 13 metal layers are available,
so even if some of those are dedicated to local wiring and
power and clock distribution, eight metal layers may rea-
sonable be available for network routing. If the technology
or memory design is more expensive relative to wiring (e.g.,
2.5× as appropriate to match CACTI memories), the spatial
advantage is even larger.

However, when p > 0.75, the benefits of the spatial design
will eventually diminish or reverse, as illustrated in Fig. 4 for
p = 0.8. Here, the spatial design is less energy for W = 1,
I = N up to billions of 4-LUTs, but the benefit is beginning
to diminish. When the word width is larger and the instruc-
tion memory small, the sequential design can be more energy
efficient. For 8 metal layers, I ≤ 128, and W = 16, the se-
quential design becomes more energy efficient around 64K
4-LUTs. Both the growing spatial benefit below p = 0.75 and
the diminishing spatial benefits above p = 0.75 show that
asymptotic effects do matter for this design size. Asymp-
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totically, the sequential energy of O(
√
N) per operation is

larger than the spatial energy of O(N2p−1) when p < 0.75
and smaller when p > 0.75 (Sec. 2.3, [2]).

We do not evaluate the impact of looping and SIMD word
width for the spatial design. The spatial design is already
spending no switching energy on instructions, so there is
no instruction energy to reduce with instruction sharing.
Word grouping could reduce the number of configuration
bits required. However, since the designs are wire rather
than active area dominated, the savings is not significant.

6. MULTICONTEXT
The sequential and spatial designs are extremes in a larger

design space. Since we see regions where each achieves lower
energy, the natural question arises: is there an intermediate
point in the design space that achieves even lower energy
than the extremes? In this section, we extend our energy
analysis to the heterogeneous multicontext design from [2].

We consider three main architectural variables S, pt, and
Ct. S is the leaf serialization. We assign S nodes to each
physical leaf PE and evaluate them on a single 4-LUT. Ct is
a constant serialization of the interconnect. pt is the growth
of the physical tree. As a result, the number of physical
wires at the top of the hierarchical network (Fig. 1b) is
c
Ct
Npt rather than cNp when pt < p, meaning there is a

communication serialization of CtN
p−pt .

In this section, we first show the composition and re-
sources for the leaf PE, then identify the interconnect re-
sources, before addressing coordination. We identify the
coordination challenge, examine the asynchronous proposal
from [2], and introduce a synchronous version that is more
efficient for typical designs. Finally, we determine the en-
ergy minimizing parameters and compare to the spatial and
sequential extremes from the previous sections.

6.1 PE
Fig. 5 shows the multicontext PE. Each PE has a single

4-LUT fed by four independent data memories. Each data
memory selects inputs from the incoming network wires to
the PE. Independent instruction memories control each data
memory write and the evaluation of the PEs. Each data
memory holds S values so that the four together can provide
the 4 inputs to each of the S nodes assigned to this PE. In
the extreme case where there is only one PE (S = N), this is
four times the data memory required since there are only N

different data items. The input instruction memories need
to be large enough to write S values into memory that may
arrive over CtS

p−pt cycles, so we define their depth:

Cp = max
(
S,CtS

p−pt
)

(18)

We compute the area of the PE as:

Ape = 4Amux

(
c

Ct
Spt

)
+ 4Armem(1, S) +A4lut

+4Asmem

(
log

(
c

Ct
Spt + 1

)
+ log (S) , Cp

)
+Asmem (4 log (S) + 16, S) (19)

We compute the capacitance contribution from the PE per
node evaluated as:

Cpe = 8Crmem (1, S)

+4
Cp

S
Csmem

(
log

(
c

Ct
Spt + 1

)
+ log (S) , Cp

)
+Csmem (4 log (S) + 16, S)

+2× 6Cwire

√
Armem(1, S) (log (S) + 1) (20)

The eight on the random access memory captures the fact
that we read and write to each data memory once for each
PE evaluation. The final term captures the fact that we
must route address wires over data memories that cannot
all be adjacent to the associated instruction memories.

6.2 Network
The network is designed to be parameterizable between

the fully spatial network used in Sec. 5 (when pt = p and
Ct = 1) and a binary tree (when pt = 0 and Ct = c, Fig. 5(a)
in [2]). When the network is not fully spatial, the data trans-
fer will need to be sequentialized across some of the network
links. In order to support this, the switches at those data
links will have instruction memories to allow them to change
behavior. With pt < p, the amount of sequentialization and
hence the size of the switching instruction memories grow
toward the root of the fat tree. This means there will be
points in the tree where an upper-level switch changes be-
havior while a lower-level switch remains unchanging.

To understand the area for the array, we must, again,
account for both active and wiring area. The total area
going into switches is:

Asw =

log(N)∑
l=log(S)

(
N

2l

)(
c

Ct

)(
2l
)pt

(21)

×
(

3Amux2 +Asmem

(
3, Ct

(
2l
)p−pt

))
This includes both the area of the switch and the area of the
instruction memory for the switch. Three bits control each
of the three multiplexers in the 1:1 switch.

Amcactive =

(
N

S

)
Ape +Asw (22)

We count the number of wire widths across each side of the
array:

MCWires = 2

log(N)/2∑
l=log(S)/2

(√
N

22l

)(
c

Ct

)(
22l
)pt

(23)
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Figure 6: No Coordination Overhead Energy Ratio
to Spatial for p = 0.8 at N = 107 and Mlayers = 8

Side length due to wires is then:

Lmcwire =
2× FP ×MCWires

Mlayers
(24)

Including both wires and active area contributions:

Lmcside ≤
√
Amcactive + Lmcwire (25)

Interconnect energy will have contributions both from data
transmission on wires and from switch instruction memories.
For total wire data transmission capacitance, we compute a
weighted sum based on wire length and usage.

Cmcwire =

log(N)∑
l=log(S)

(
N

2l

)(
c2lp

)( Lmcside

2d(log(N)−l)/2e

)
(26)

For total switch instruction memory capacitance, we com-
pute a weighted sum of the switch instruction memory uses.

Cmcimem =

log(N)∑
l=log(S)

(
N

2l

)(
c

Ct

)(
2l
)pt (

Ct2
l(p−pt)

)
×Csmem

(
3, Ct

(
2l
)p−pt

)
(27)

Putting this together with the PE capacitance:

Cmc = NCpe + Cmcwire + Cmcimem (28)

Before dealing with coordination overhead, we can exam-
ine how multicontext energy compares to spatial energy as-
suming there is negligible overhead for coordination (Fig. 6).
The multicontext designs shown here are normalized to the
energy of the spatial design and achieve enough savings to
drop below the sequential energy even for the W = 64 design
(c.f. Fig. 4). At S = Ct = 1 and pt = p the multicontext
design is larger than the spatial design (ratio above 2) due
to memories and the PE structure in the multicontext case.
We see that sequentializing the leaf alone (S) has little ef-
fect reducing energy since we still pay all the energy for
the network above the sequential leaf. Interconnect sequen-
tialization, both through Ct and pt, is effective at reducing
energy. These directly attack the larger area that goes into
switches and wiring that is driving the wire lengths in the
spatial design when p > 0.5.

6.3 Coordination
For multicontext evaluation, ordering of node evaluation

in the graph is also an issue. For the fully sequential design,
we can sequence the nodes topologically within the energy
framework we’ve described. For the fully spatial design, all

edges have their own physical wires, allowing LUTs to evalu-
ate and send their results as dictated by precedence without
coordination between the LUTs. However, for the multicon-
text design, we must control when graph nodes are evaluated
on each physical PE and when an edge is routed on a shared
wire. Because of precedence constraints, we cannot simply
divide nodes by the PE sharing factor, S, and evaluate N/S
nodes on each of S cycles.

To illustrate, consider the case of a depth 2 graph on an
S = Ct = 2, Pt = p design. For some graphs, we will be
lucky such that (1) half the nodes are at depth 1 from the
inputs and half at are depth 2, (2) each PE is assigned one
node at depth 1 and one at depth 2, (3) we can route the
outputs of the first half of the PEs through the network
with exactly half the wire links. In this case, we can read
the first configuration, evaluate the first half of the nodes,
route their outputs through the network, read the second
configuration from local memories, then evaluate the second
half of the nodes and route their outputs. However, (1) the
simple Rent’s Rule spatial bisection we took to get p did not
consider dividing wires and PEs by evaluation time, (2) we
can get a pair of nodes at a PE that are the same depth
from the input, and (3) there are designs where significantly
more than half the nodes are at depth 2. That is, in the
general case, the configuration memories may need to change
at more than two different times. While each configuration
memory only needs to provide one of two values, some PEs
and interconnect links may require both to evaluate depth
one nodes, while others may require both to evaluate depths
two nodes. This means we can change configurations at any
of four different times.

A depth D graph could need to switch at any of D ×
max

(
S,CtN

p−pt
)

times. The simplest way to handle this
would be to give every PE and switch a memory of this
depth and globally clock the design. However, this would
add substantial energy by (1) making the design larger and
hence the wires longer, (2) making the memory energy more
expensive, (3) adding substantial energy for clocking.

6.4 Asynchronous
A simple way to avoid making the memories larger is

to allow the switches to operate asynchronously based on
data presence [2]. The mapping from a spatial design to an
asynchronous, heterogeneous multicontext design is a way
to use the minimum instruction memory depths identified
in Sec. 6.2. The switch instruction tells each switch which
input it should wait upon and route next, so the switch only
acts and uses energy as data becomes available.

The downside of asynchronous control is that we must
route a handshake and acknowledgment with every data
signal. This means all wiring channels have three times
as many wires; for the asynchronous version of MCWires
(Eq. 23), we must multiply the channel widths by 3. Each
asynchronous link makes four transitions to transfer data
rather than one, meaning, in addition to the longer wires, we
must account for more switching events in the asynchronous
Cmcwire (Eq. 26). Furthermore, we expect the asynchronous
switches to be larger than the synchronous switches; driven
by the 3× wiring, we assume they are 3× the area.

6.5 Synchronous
As noted above (Sec. 6.3) it would be expensive to simply

make all memories deeper and clock every switch and PE



at the worst-case sequentialization. Ideally, we would map
the design directly for multicontext evaluation, carefully se-
lecting which nodes can share a PE and scheduling PEs and
wires to fit into a minimum number of cycles. However, for
the reasons previously noted, without doing that mapping,
we cannot guarantee how it will turn out. Here we describe
synchronous evaluation strategies to minimize the memory
depth expansion and estimate the likely range of values.

6.5.1 Heterogeneous Memory Clocking
We can clock the different tree levels proportional to their

original multicontext depth (Ct2
l(p−pt)), meaning the tree

switches closer to the root are clocked more often than the
tree switches closer to the leaves. To do this, we evaluate
the tree once for each leaf serialization Ct. That means,
we evaluate the top of the tree Np−pt times, the next level(
N
2

)p−pt times, and so forth until we clock the leaf once. At
adjacent tree levels, the higher level will switch either once
or twice for each time the lower level switch changes. At the
level boundaries, the clock is divided where needed so that
the lower level switches at half the rate of the upper level.

Fig. 7 shows the basic operation for heterogeneous clock-
ing. Here, level i+ 1 is sequentialized at the same rate as i,
which is sequentialized twice as heavily as level i− 1. As a
result, we must clock levels i+ 1 and i twice for every time
we clock level i − 1. To realize the connection set A → p0,
C → B, p0 → C, D → A, p1 → D, we pass A → p0,
C → B, p0→ C, on the first cycle and D → A, p1→ D on
the second. If i − 1 is, itself, sequentialized, we allow it to
switch on the second cycle.

To estimate clock energy, we must estimate the total ca-
pacitance switched across all the clocking required.

Cclk = CSF · Ct × (Ctdist + Csdist) (29)

CSF account for the fact that the clock switches multi-
ple times per evaluation. We assume a 2-phase clock that
switches up and down each evaluation, so use CSF = 4.
Ctdist deals with the wiring to distribute clock to each tree
level and is weighted by the number of times the tree level
is switched.

Ctdist =
∑(

2l
)p−pt

× Lmcside

(
2l/2

2
√
N

)(
N

2l

)
=

Lmcside

2

∑
2l(p−pt)

(√
N

2l/2

)
Csdist deals with the wiring to distribute the clock to the
individual switch memories within a tree level.

Csdist =

l=log(N)∑
l=log(S)

(
2l
)p−pt

(
3

2

)
Nsw(l)

√
Asw w mem(l)

(30)
The 3

2
arises from H-Tree distribution over the switch area.

Nsw(l) is the total number of switches at level l in all sub-
trees:

Nsw(l) =

(
N

2l

)(
c

Ctxt

)(
2l
)pt

(31)

The area for a switch with its memory at a given level is:

Asw w mem(l) =
√(

A1:1 +Aimem

(
3, Ctxt (2l)p−pt

))
(32)
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Figure 7: Heterogeneous Clocking Example

6.5.2 Context Switching
With the heterogeneous upper-level switching scheme, we

route the entire interconnection pattern with Ct leaf switch-
ing cycles. Precedence constraints may prevent us from per-
forming this route once; it may be necessary to route signals
at different times. As a general formulation, we introduce a
context factor, CF , as a multiplier on Ct, then define:

C′t = CF × Ct (33)

Our evaluation strategy can then be to make the memories
CF larger and clock the leaf levels CF as many times. In
estimation, we replace Ct by C′t when calculating memory
depth and evaluation cycles (e.g., Eq. 29). In the best case,
D = 1, all results can be routed simultaneously and CF = 1.
This may also be achievable with good packing of nodes into
PEs and scheduling of wires. In the worst case, CF = D,
and we must route the network at every graph depth. Mod-
ern designs are often pipelined to be shallow, resulting in a
small D. As we will see the best values of Ct are around 8,
so a typical operating regime will have Ct ≥ D. In practice,
when Ct ≥ D, it should be possible to keep CF ≈ 2. That
is, we need at least Ct leaf routes to handle the leaf inter-
connect serialization, which is also enough to handle node
serialization when Ct ≥ S. Since Ct ≥ D, we will have
depths that need more than one context for routing, Cti .
The routing required for nodes at a particular depth may
not perfectly fill an integral number of contexts, meaning
we may end up with one partially filled context per depth.
So, we have:

C′t =

D∑
i=1

Cti ≤ Ct +D ≤ 2Ct (34)

Local routing hotspots could make this worse. In the follow-
ing we use CF = 4 as a likely conservative bound, expecting
realistic cases to have a CF somewhere between 1 and 4.

Note that the total switching energy on the wires and
memories can remain proportional to the traffic that needs
to be routed; it does not need to be multiplied by this CF
factor. We must arrange for the switch configurations to
change only when a different edge must actually be routed.
To achieve this, we program the unused context memory
slots to return the same value as the preceding cycle so they
do not switch their output causing the switch to select a
different input. Since we use sequential memories for in-
structions, selection of sequential memory locations is based
on a shift register, and we avoid paying the cost of address
line toggles for these extra memory contexts. We do have
to pay for the longer wires associated with these memories,
which we model by making the memories C′t deep.

Fig. 8 compares the various coordination strategies, all
normalized to the fully spatial case. For designs smaller than
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32K 4-LUTs, the coordination energy makes all multicon-
text designs more expensive than spatial designs. For larger
designs, the multicontext designs can be smaller. However,
the asynchronous requires more energy than spatial up to
16 million 4-LUTs, by which point, even a context factor,
CF , of 4 achieves less energy than the asynchronous design.

6.6 Comparisons
To understand the size of designs viable over the range of

the ITRS 2012 roadmap [1], Fig. 9 plots the area of spatial
and multicontext designs and marks the capacity of a mod-
erate (1cm2) chip at current 32nm technology and a large
(2cm2) chip at the 6nm technology predicted for 2026. This
establishes that we could soon build multicontext designs
with over 2 million 4-LUTs and establishes the potential
viability of multicontext designs up to 512M LUTs.

Fig. 10 varies the physical tree Rent Exponent, pt, for
100 million 4-LUT designs. This shows that pt around 0.5
minimizes energy. This is consistent with the asymptotic
results that tell us that we need pt < 0.5 to avoid wirelengths
that grow faster than

√
N . These absolute results shows that

the binary tree (pt = 0) is more expensive than a pt = 0.49
tree and, more generally, the energy increases as the Rent
Exponent decreases from around pt = 0.49. Below pt =
0.5, we can become switch and memory rather than wire
dominated, such that additional interconnect sharing does
not significantly reduce wire lengths. However, this sharing
does increase instruction memory energy.

Fig. 11 shows how the various energy components con-
tribute to total switching energy. Even at pt = 0.49, wire
energy dominates with no further sequentialization (S =
Ct = 1). As the context and processor sharing increases,
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the switch instruction memory and PE energy increase to
the point where PE energy costs grow faster than the wiring
energy savings, inducing an energy minimum around Ct =
S = 16. Fig. 11 also shows the impact of memory being rel-
atively more expensive. Since the minimum energy point is
wire dominated, the impact of larger memories has a smaller
effect at the energy-minimizing multicontext point than it
does on a fully sequential design (c.f. Fig. 3).

The benefits of using a pt < 0.5 tree increase with p for
p > 0.5 as shown in Fig. 12. This savings is enough to match
W = 64 at p = 0.8 for 512M 4-LUT designs. Nonetheless, at
even higher p’s, the multicontext design will require larger
designs before it will achieve lower energy than the wide
word sequential implementation—sizes that are not feasible
in the next decade.

7. DISCUSSION AND OPEN ISSUES
Throughout this paper, we have assumed full activity for

the communication links between nodes. This is an upper
bound for absolute energy. However, activity will have a
differential effect on the designs explored. The fully spa-
tial design will directly benefit from a low activity edge—
the output of a node drives a single wire, and if the node
doesn’t change values on a cycle, the wire does not switch.
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A multicontext design that is sharing a wire between two
different edges may switch twice on a cycle even if neither
edge switches; if one node is non-active at 0 and the other
at 1, when they are time multiplexed onto the same physical
link, we pay two transitions on that cycle. As a result, we
expect this effect to increase the advantage of spatial imple-
mentations over sequential implementations, and we expect
this effect to reduce the benefits of multicontext evaluation
over spatial compared to what we have shown here.

In some cases, it will be possible to exploit wordwidth
optimizations for multicontext evaluation. For example, if
S = Ct = W and p = pt we may need no more than a
single configuration like the spatial design. Even with pt <
p, the memories in the interconnect can be up to a factor
of W smaller than in the W = 1 case assumed in Sec. 6.
Additional development is needed to treat this properly.

8. CONCLUSIONS
With energy-limited technology, architectures that mini-

mize energy will maximize the computational performance
offered at a given power-envelope or energy budget. Com-
munication locality, which we can quantify with Rent’s Rule,
is an important characteristics of computational tasks that
determines how efficiently the task can be implemented.
When the Rent Exponent, p, is less than 0.75, FPGAs use
less energy than processors, even after considering SIMD
word optimizations and tight loops that share instructions
across operations. For the larger p designs, multicontext FP-
GAs can reduce energy compared to spatial designs (single-
context FPGAs) by sharing interconnect wires to limit wire
area. This allows them to reduce the energy requirements
below sequential (processor) designs, at least up to p = 0.8,
for the design sizes feasible in the next decade.
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