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Abstract—Among various topologies for FPGA overlay
Network-on-Chip (NoC), the Butterfly Fat Tree (BFT) is known
to be fast and lightweight. The BFT has a hierarchical structure
that allows the routing capacity of each level to be configured
with bandwidth-reducing t switches and bandwidth-preserving π

switches, and this configuration can be exploited to customize the
NoC resources, spending area as needed to match the bandwidth
requirements of the application. However, a traditional BFT is
symmetric: switch types in all subtrees in the same level are
identical; this does not fully exploit the customization offered by
the FPGA. We evaluate asymmetric BFTs that have different
bandwidth in their subtrees, and we develop a converging
switch built with t switches that connects subtrees with different
bandwidths. Given the same resource budget, asymmetric BFTs
perform better than symmetric BFTs when NoC traffic is highly
unbalanced. In realistic workloads and statistical traffic patterns,
asymmetric BFTs achieve up to 32% and 76% more throughput
than symmetric BFTs, respectively.

I. INTRODUCTION

The growing capacity of the modern FPGA and design

complexity make the placement and routing process more

challenging. As the design size increases and routing

becomes complicated, interconnect can introduce significant

overhead in area and energy. A packet-switched Network-on-

Chip (NoC) can be a solution to routing-dominant SoC design.

Instead of using a dedicated interconnect for all operators,

we can time-share the NoC, and the NoC dynamically routes

packets to the destination at runtime.

FPGA vendors provide a “Hard” NoC, an embedded NoC

on the FPGA [1], [2], and researchers have long studied “Soft”

NoC, an overlay NoC built on top of the commercial FPGA

[3], [4]. While hard NoC can provide better performance per

area, soft NoC is more flexible because topology or NoC

configuration can be reconfigured according to the application

needs. Among various topologies for soft NoC, Butterfly-Fat

Tree (BFT) is cost-effective [5]–[7] and outperforms other

state-of-the-art network topologies [8].

When a graph is mapped on a BFT, it is intuitive

to bi-partition the graph in a way that the inter-partition

communication is minimized to prevent the unnecessary traffic

over the NoC. Then, each sub-graph can be assigned to each

subtree of a BFT, and the bi-partitioning process continues

for each subtree. However, there is no guarantee that the

communication in each partition is the same. After the bi-

partitioning, some portion of the graph could require more

bandwidth. Fig. 1 is a real example of a graph workload where

one-fourth of the nodes are located in each quadrant, and the

thickness of the edge represents the communication volume.

In Fig. 1’s case, inter-partition communication is reduced with

Fig. 1. An example of unbalanced sub-graphs after partitioning,
deezer-europe workload from [10]

bi-partitioning (between the green nodes and the red nodes),

but the communication requirements of the one half (within

the green nodes) are heavier than the other half (within the red

nodes). We observe that an asymmetric BFT performs better

in such cases, providing more bandwidth where needed.

There is no single best soft NoC for all applications,

but there are soft NoCs with different compositions that

can perform better for specific applications. We expand

the design space of soft NoC so that users can tailor the

NoC to their applications, more fully exploiting FPGA’s

reconfigurability. Unlike previous literature that recommends

a specific type of BFT based on the LUT budget on

the FPGA [8], [9] independent of the application, we

propose asymmetric BFT architectures that could exhibit better

throughput than symmetric BFT for applications where the

loads are unbalanced.

II. BACKGROUND

Although many previous publications on FPGA overlay

NoC employ a mesh topology for its simplicity, researchers

have shown that BFT performs better than other topologies at

equivalent area [8]. The BFT has a hierarchical structure with

the Processing Elements (PEs) located on the lowest level.

When a packet climbs up the hierarchy, it has exponentially

increasing choices of paths, and when it climbs down, the path

is determined by the address bits included in the packet.

Wiring capacity of a network can be described with Rent

parameter p [11] where the larger value of p indicates the

larger bisection bandwidth (IO = cnp, 0 ≤ p ≤ 1). The

primitive building blocks for BFT are t switches that have

one parent port and π switches that have two parent ports as

shown in Fig. 2. Arity refers to the number of the children

ports, and in this paper, we consider arity-2 switches like
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Fig. 2. Symmetric BFT-16 with different p values. By configuring switches in each level, we can adjust the bandwidth between the levels. However, symmetric
BFT uniformly provides more bandwidth and forces additional resource costs.

the ones in Fig. 2 while different arity values are possible

in the BFT architecture [12]. One differentiating factor of

BFT compared to other topologies is that the bandwidth of

each level of BFT can be configured by properly selecting

t switches and π switches [13]. If we want more bandwidth

between the specific levels, we can simply compose the layer

with π switches. This flexibility sharply contrasts with other

topologies like mesh where all channel widths need to increase

together to support more bandwidth.

We build upon the packet-switched, deflection-routed

BFT in [8]. Fig. 2 shows BFTs with 16 PEs. The

width of connection between layers in Fig. 2 represents

the communication bandwidth, and in the Fat-Tree-based

topology, the communication is thicker at the higher level in

the hierarchy. Blue numbers represent the channel widths in

the communication, so in the non-lowest level in the hierarchy,

there are multiple switches that make up each switching node.

BFT-16 with p = 0.67 (Fig. 2 (b)) provides more bandwidth

between level 1 and level 2 than BFT-16 with p = 0.5

(Fig. 2 (a)).

BFT’s hierarchical structure offers finer-grained control on

network channel bandwidth compared to other topologies.

Nevertheless, in a symmetric BFT, like the ones in Fig. 2, since

each level is homogeneously composed of either t switches

or π switches, to provide more bandwidth, all t switches

in the level have to be replaced with π switches, requiring

more switch area. For instance, when placed and routed on

Xilinx UltraScale+ ZU9EG, BFT-16 with p = 0.67 (Fig. 2 (b))

costs 7276 LUTs and 5991 FFs while BFT-16 with p = 0.5

(Fig. 2 (a)) costs 6248 LUTs and 5223 FFs.

III. ASYMMETRIC BFT

When graph workloads are mapped on the network, we

can place communicating nodes close to each other to exploit

locality [14]. A fast and simple approach is a placement

based on recursive bi-partitioning. A graph is bi-partitioned

to minimize edge communication, and then each partition is

assigned to a subtree of a BFT. In this way, subtrees are likely

to communicate locally. However, we observe that in some

applications, after the bi-partitioning, one partition exhibits

more traffic than another. The problem is that, in a traditional

symmetric BFT, as shown in Fig. 2, the layers of BFTs are

composed of single type of switches, and it is not possible

to selectively provide more bandwidth to some portion in the

NoC than others.
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Fig. 4. 16-8-2 Converging switch built with t switches and t−random (t′)
switches. Note that the two lowest levels consist of t switches and the upper
levels consist of t− random switches.

To support heterogeneous bandwidth with the similar

resource usage, we explore asymmetry in the BFT. We define

an asymmetric BFT as a BFT that has different switches in a

given level. Fig. 3 is an example of an asymmetric BFT that

has 256 PEs. The color scheme for the switches is consistent

with that of Fig. 2. Type 1’s subtree consists of π-π-π-π-π-π,

Type 2’s subtree consists of π-t-π-t-π-π, and Type 3’s subtree

consist of t-π-t-π-t-π-t switches. Therefore, the Type 1 subtree

is denser and provides more bandwidth for the PEs, and the

Type 3’s subtree is sparser and provides less bandwidth.

In Fig. 3’s example, Type 1’s subtree results in the channel

width of 64 to the level 1, and Type 2’s subtree results in the

channel width of 16 to the level 1. Type 3’s subtree results

in the channel width of 8 to the level 0. Thus, we need a

component in the level 1 that reduces the channel width to

match the bandwidth of the top and the bottom subtrees. We

introduce a converging switch that reduces the channel width



from the top subtrees to the bottom subtree.

While it is possible to build the converging switch out of

the original t switches only, using only t switches would not

spread out the traffic to exploit the wider channels; instead

it would concentrate the traffic and leave portions of the rich

bandwidth unused. Therefore, we use standard t switches in

the lowest level and use t−random switches (t′) in the higher

levels as shown in Fig. 4. In the switches of deflection-routed

BFT, there are the desirable direction where the packet wants

to go and the final direction where the packet ends up going if

the contention exists. As all the t switches in the converging

switch belong to the same level (level 1 in Fig. 3’s case), in

the strawman implementation of the converging switch that

uses only standard t switches, the same bits in the packet

are used to specify the desirable direction in all the stages

of the converging switch. This means the desirable direction

for a packet that is climbing down is either the lower left for

all the t switches or the lower right for all the t switches,

potentially causing congestion inside the converging switch.

In the t − random switch, on the other hand, the desirable

downward direction ignores the destination bit and is set to

the lower left at the one cycle and set to the lower right

at the next cycle, alternately. These t − random switches

in the non-lowest levels of the converging switch spread out

the traffic, and in the lowest level, the t switches send the

packet based on the address bits in the packet to make sure

that the packet is delivered to the correct subtree. The only

difference between a t− random switch and a t switch is the

desirable downward direction (left or right). The rest of the

architecture, like the packet arbitration, stays the same. For

example, a deflected packet takes priority and is immediately

turned back in the next cycle, as done in the base deflection-

routing. Because we build on top of the deflection-routed

BFT, deflection-routed scheme’s randomness already requires

reorder buffers (reassembly buffers) in PEs. Our t− random

switch adds no new requirements for reordering beyond those

that already exist for the deflection-routed BFT. The benefit

of t− random is evaluated in Sec.V-C.

All the PEs in an asymmetric BFT can still communicate

with each other but with higher bandwidth on specific subtrees

and lower bandwidth on other subtrees. Fig. 4 is a converging

switch that reduces the channel width of 16 and 8 to the

channel width of 2, but the architecture can be extended to

other power of two combinations, like 64-16-8 in Fig. 3.

IV. METHODOLOGY

Tab. I describes two symmetric BFTs (S0, S1) and two

asymmetric BFTs (AS0, AS1) that we use for the evaluation.

These BFTs are all deflection-routed BFTs [8]. The number of

PEs is 256. When BFT-256 has four subtrees with 64 PEs (st-

0,1,2,3), both AS0 and AS1 have two dense subtrees and two

sparse subtrees. Subtrees of different densities are connected

with a converging switch. The switch composition column

refers to the switch type from the lowest level (leftmost) to

the second-highest level (rightmost), so Fig. 3’s asymmetric

BFT corresponds to AS1. For Rent parameter p of symmetric

BFTs (S0, S1), p = 0.5 is chosen because p = 0.5 is known to

be area-universal, meaning that the networking resources are

relatively well-balanced and scalable with the computation [5],

[15]. While we provide two examples of asymmetric BFTs, the

idea can be extended to any number of different subtrees with

appropriate converging switches.

We run synthesis, placement and routing with Xilinx

Vivado 2022.1 targeting UltraScale+ ZU9EG FPGA to extract

resource usage. Dummy PEs are attached to the NoC for

testing purposes. A packet consists of a single flit with 1

valid bit, 8 bits of PE address, an 11-bit sequence number and

32 bits of data. The packet composition can change depending

on design requirements, but it should be the same for both

symmetric and asymmetric BFTs for a fair comparison. Both

symmetric and asymmetric BFTs need sequence bits in the

packet for reorder buffers in the PEs as they use the deflection-

routed scheme.

TABLE I
SYMMETRIC BFT-256S (S0, S1) AND ASYMMETRIC BFT-256S (AS0,

AS1) EXAMPLE (52B, SINGLE FLIT PACKET)

LUTs Switch Composition
Cnvg. Switch

Comp. LUTs

S0 122778 p = 0.5 π-t-π-t-π-t-π - -

S1 143870 p = 0.5 π-π-t-t-π-π-t - -

AS0 142896
st-0,1: π-π-π-t-π-π-c

32-32-8 15829
st-2,3: t-π-t-π-t-π-t

AS1 143029
st-0: π-π-π-π-π-π-c

64-16-8 21480st-1: π-t-π-t-π-π-c
st-2,3: t-π-t-π-t-π-t

st-i: subtree-i / c: converging switch

The converging switch columns (Cnvg. Switch) in Tab. I

shows the configuration of the converging switch and the

resource usage of the converging switch. AS1’s converging

switch (channel width of 64 is converged to the channel width

of 8) has a deeper hierarchy than AS0’s (channel width of 32 is

converged to the channel width of 8), and the resource usage

for the converging switch increases accordingly. We have a

script1 to generate Verilog codes for asymmetric BFTs, given

the switch configurations. Asymmetric BFTs for the evaluation

are selected so that they consume fewer LUTs than symmetric

BFT-256 (S1) to be a fair comparison with the symmetric

BFTs.

TABLE II
WORST NEGATIVE SLACK (NS) FOR DIFFERENT SWITCH TYPES WHEN

PLACED AND ROUTED ON ZU9EG, PACKET SIZE = 52B

SW
type

clock period (ns)
1.0 1.2 1.4 1.6 1.8 2.0 2.2

t -1.21 0.012 0.174 0.244 0.381 0.459 0.585

t rnd -0.181 -0.055 0.157 0.168 0.328 0.487 0.703

π -1.217 -0.878 -0.720 -0.434 -0.340 -0.003 0.053

We also run synthesis, placement and routing on t switches,

t − random switches, and π switches separately, setting the

1scripts for RTL generation for asymmetric BFTs and all the experiments
are open-sourced in https://github.com/icgrp/asym bft



switch level as 7 (the lowest level). Tab. II shows the worst

negative slacks when switches are routed with different system

clock speeds. Max clock frequencies of t switch, t− random

switch, and π switch are estimated as 833 MHz, 769 MHz,

476 MHz based on the clock period and the slack. As π

switch has more complex routing within the switch, max clock

frequency is slower than t switch, consistent with the results

from [8]. LUT costs for t switch, t− random switch, and π

switch are 171, 172, and 285–287 respectively. FF costs are

156, 157, and 209. The t − random switch has almost the

same logic complexity as the t switch; since the t− random

is still faster than the π switch, it will not limit the clock

frequency of the system with a proper floorplanning.

We use iverilog to run simulations for realistic

workloads and synthetic traffic patterns. After the simulation

is finished, we check whether the messages are all properly

transferred. Then, the worst-case latency and throughput are

recorded.

V. EVALUATION

A. Realistic workloads

Fig. 5 illustrates the throughput advantage of asymmetric

BFTs for realistic, Graph Analytics workloads from [10]. The

datasets are undirected graphs, and each graph edge counts

for two packets, swapping the sender and the receiver. The

total number of packets for each benchmark ranges from 16K

to 485K. We use metis [16] to cluster the graph into 256

parts using a recursive bisection scheme with the objective to

minimize the edge cuts. We check the number of messages

whose destination is in the dense subtree (st-0,1) and the

number of messages whose destination is in the sparse subtree

(st-2,3). If the number of messages traveling to the sparse

subtree is larger, we simply reverse the placement so that

node 0 becomes node 255, node 1 becomes node 254, and

so on. Within the dense subtree, if the number of messages

traveling to st-1 is larger than st-0, we try reversed placement

as well to benefit from AS1 which offers a large bandwidth

in st-0. The number of total datasets is 60 including 32

reversed node placement versions. Thus, the number of unique

datasets is 28. The injection rate, the rate that each PE sends

messages to the network, is set to 100%, which means that

all the PEs attempt to send valid packets every cycle. The

throughput (pkt/cycle/PE) is the average packet delivery rate

computed as the total number of packets divided by the total

elapsed cycles, divided by the number of PEs.

Fig. 5 (a) shows that in realistic workloads, the asymmetric

BFTs can achieve up to 32% higher throughput than the

symmetric BFTs. Not all real-world applications exhibit

asymmetric traffic, and for applications where the loads are

relatively balanced, it is natural that symmetric BFTs are

the better options. But even after the graph is bi-partitioned,

one partition’s communication can be heavier than another

partition’s like the benchmarks in Fig. 5 (a), and in such

cases, asymmetric BFTs have an advantage over symmetric

BFTs. In Fig. 5 (a), we selectively include benchmarks

that exhibit at least 10% improvement in throughput with
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Fig. 5. (a): Throughput comparison on selected realistic benchmarks,
(b): Throughput benefit (max(AS0,AS1)/max(S0,S1)) for different traffic
ratios (# of messages ending in st-0,1/# of messages ending in st-2,3) in
all realistic benchmarks

asymmetric BFTs (musae-twt-DE, deezer-europe,

gemsec-fb-new-sites, CA-CondMat, CA-HepTh,

gemsec-fb-gov).

We also evaluate the correlation (Fig. 5 (b)) between the

throughput benefit of asymmetric BFTs and the traffic ratio

of the dense subtrees (st-0,1) and the sparse subtrees (st-

2,3) for all benchmarks. Throughput benefit is computed as

the maximum throughput achieved by AS0 and AS1 divided

by the maximum throughput achieved by S0 and S1. The

traffic ratio is the number of messages delivered to PEs in

dense subtrees divided the number of messages delivered to

PEs in sparse subtrees. The color schemes of the markers

correspond to the BFT type that performs the best for the

graph workload. Therefore, markers whose throughput benefits

are less than 1 are colored red (S0 or S1) and markers whose

throughput benefits are greater than 1 are colored blue (AS0 or

AS1). musae-twt-DE that shows 32% better throughput in

asymmetric BFTs has a traffic ratio of 4.92. This is consistent

with our expectation that asymmetric BFTs are better when

there exists more traffic in the dense subtrees (traffic ratio >

2.2) and there exists less traffic in the sparse subtree.

B. Random traffic

To better characterize the underlying phenomena, we also

evaluate asymmetric BFTs with four different synthetic traffic

patterns:

• Test-0: each PE randomly sends to another.

• Test-1: all PEs in st-0,1 are active and only 1/4 of PEs

in st-2,3 are active. Each PE randomly sends to another.

• Test-2: each PE in st-0,1 randomly sends to another PE in

st-0,1. The PEs in st-2,3 randomly send to PEs in st-0,1

with slow injection rate.
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Fig. 6. Throughput comparison on different random traffic patterns
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Fig. 7. Effect of t− random switches in converging switch for Test-1

• Test-3: each PE in st-0 randomly sends to another PE in

st-0. The PEs in st-1,2,3 randomly send to PEs in st-0

with slow injection rate.

Fig. 6 illustrates the throughput performances for symmetric

BFTs and asymmetric BFTs on different traffic patterns.

The number of messages per PE is set to 1024. We see

that symmetric BFTs are better in Test-0 because the lower

bandwidth in s-2,3 causes congestion in asymmetric BFTs.

Test-1 and Test-2 are the simulated scenarios that st-0,1 are

more active than st-2,3. As expected, AS0 that has more

bandwidth in st-0,1 exhibits up to 46% (Test-1) and 60%

(Test-2) improved throughput than S0 and S1. Test-3 is the

simulated scenario that st-0 is more active than the others.

As expected, AS1 that has more bandwidth in st-0 exhibits

up to 76% improved throughput than S0 and S1. In Test-

2 and Test-3, when the slow injection rate from the sparse

subtrees is low enough, asymmetric BFTs perform better. But

as the slow injection rate increases, the benefit in throughput

decreases because the sparse subtrees in asymmetric BFT

become congested.

C. t-random switch

To characterize the benefits of using t− random switches

inside the converging switch as described in Sec. III, AS0 S

and AS1 S in Fig. 7 refer to corresponding asymmetric BFTs

with a strawman implementation of a converging switch that

consists of only standard t switches. In Test-1, t − random

switches significantly improve the worst-case latency (orders

of magnitude) and the throughput (up to 65%), relieving the

congestion in the leftmost switches and the rightmost switches.

D. Limitation

To take full advantage of asymmetric BFT, the users need

to have some understanding of the application’s traffic pattern

because they need to configure the asymmetric BFT to provide

more bandwidth where needed. We believe such a constraint

is acceptable as soft NoC can always be reconfigured with

other logic on FPGA. Because the resource utilization of

symmetric BFT and the resource utilization of asymmetric

BFT are similar, users can select the NoC overlay, leaving

PEs untouched.

VI. CONCLUSIONS

The advantage of soft NoC on top of reconfigurable fabric

is that users can customize the NoC to the applications, and

the asymmetric BFT provides more options to the users. We

demonstrate that given the same LUT budget, in realistic

workloads and different random traffic patterns, asymmetric

BFTs with converging switches built with t−random switches

can achieve up to 32% and 76% more throughput than

symmetric BFTs.
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