
Appearing in IEEE International Symposium on Field-Programmable Custom Computng Machines (FCCM 2021), May 9–12, 2021

XBERT: Xilinx Logical-Level
Bitstream Embedded RAM Transfusion

Matthew Hofmann,∗ Zhiyao Tang,∗ Jonathan Orgill,† Jonathan Nelson,† David Glanzman,‡

Brent Nelson,† and André DeHon∗
∗Dept. of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
†Dept. of Electrical and Computer Engineering, Brigham Young University, Provo, UT, USA

‡Nvidia Corporation, Santa Clara, CA, USA
Email: {matth2k,zhiyaot}@seas.upenn.edu, nelson@ee.byu.edu, andre@ieee.org

Abstract—XBERT is an API and design toolset for zero-
cost access to the on-chip SRAM blocks on Xilinx architectures
using the device’s configuration path. The XBERT API is high-
level, allowing developers to specify DMA-like data transfers
of memory contents in terms of the logical memories in the
application source code and thus is applicable to essentially any
design targeting Xilinx devices. XBERT is broadly accessible to
application developers, hiding the low-level details of physical
mapping and bitstream encoding. XBERT is efficient, consuming
zero reconfigurable resources with no impact on Fmax. XBERT
achieves a bandwidth of 3–14 megabytes per second (MB/s) and
complete readback and translation of a memory in an isolated
36Kb block RAM in less than 0.5 ms on a Xilinx UltraScale+
MPSoC Zynq.

I. INTRODUCTION

Today’s FPGA fabrics include a large number of distributed,
embedded RAM blocks. While the most common use of these
embedded RAMs is to supply and store data used during
computations on the FPGA fabric, it is ocassionally necessary
to load them with data or inputs from outside the fabric or to
retrieve data that they store as output from the computation.

We could use FPGA fabric resources and dedicated fabric
input/output channels (e.g., AXI channels) to move data to
and from these embedded memories, but that consumes FPGA
fabric resources as well as the limited read/write ports on the
embedded RAM primitives. And, this extra logic can create
challenges to meet application timing requirements [1].

The contents of these embedded RAMs are also accessible
through an existing, dedicated on-chip network—the bitstream
reconfiguration path. Consequently, it should be possible to use
the bitstream reconfiguration path to move data in and out of
these embedded RAM blocks without consuming any FPGA
fabric resources. Furthermore, on SoC FPGAs with embedded
processors, the processor can manage reconfigurations as part
of the system computation.

However, mapping logical memories found in the original
design source to physical memories on the FPGA fabric is a
challenging task. Once the implementation tools have mapped
a large logical memory onto multiple smaller memories, identi-
fying which physical BRAM primitive holds particular logical
data is something not readily apparent to the application
programmer and something that may change every time the
design source is changed and remapped to the FPGA. Further,

the format of data used for bitstream programming is not
the same as the logical format for the stored data—the bits
of a logical memory are not arranged in neatly ascending
order within the BRAM initialization strings and the bits in
those initialization strings are subsequently scattered across a
number of configuration frames.

To address these needs, we created the Xilinx Bitstream
Embedded RAM Transfusion (XBERT) API to provide a
high-level interface to read and write the contents of logical
memories—memories as seen by the application developer in
the source-level (e.g., RTL, HLS, IP Blocks) design.1

Transfusion operations are combined read and write opera-
tions that extract old BRAM contents and supply new BRAM
contents. Importantly, these combined transfuse operations can
be more efficient than using separate read and write operations.

Our automatic tool flow extracts the information about how
logical memories are mapped to physical embedded RAMs
to allow the XBERT API to operate on those memories.
Our API is able to read and translate the resulting data to a
logical memory format in a fraction of a millisecond providing
effective data transfer rates in the MB/s. This is not as fast as
a dedicated, high-speed link (e.g., AXI channel at 5 GB/s), but
is adequate for memories that are accessed infrequently (e.g.,
to program with unique data at startup or recover data when
the program completes) or at modest bandwidth (e.g., periodic
parameter adjustments) as illustrated in Secs. II and III-F. And
significantly, this is achieved with no reduction in Fmax or
consumption of FPGA resources.

Our contributions include:
• An API to provide logical access to memories stored in

embedded RAMs in the FPGA fabric (Sec. V)
• An open-source implementation of the XBERT API for

the UltraScale+ MPSoC Zynq, including both the tool
flow to extract the logical↔physical mapping for individ-
ual memory bits and runtime support to read and write
the running FPGA’s memory contents (on-line at [2])

• A customized compression technique for the logical-to-
physical bit mapping that reduces translation table size
from megabytes to kilobytes (Sec. VII)

1Technically, XBERT works on the logical memory organization as re-
flected in a DCP (Design CheckPoint) file.

© 2021 IEEE



• A table-based acceleration that can reduce single BRAM
translation times to be comparable to DMA transfer times
(Sec. VIII)

• A characterization of the performance of the API imple-
mentation (Sec. IX)

II. CUSTOMERS OF ON-LINE TRANSFUSION

Many use cases exist for the general capability provided
by XBERT. Programming BRAM-configured overlay archi-
tectures is one obvious need to infrequently modify embedded
RAM contents, including updating program memory contents
in embedded soft processors such as RISC-V processor cores
[3], [4], custom VLIWs [5], and customized VLIW [5], [6],
and Vector [7], [8] processors. This need to load instructions
also applies to loading configurations for more specialized
overlay fabrics such as dedicated FSM evaluators [9], [10]
and Neural Networks [11] or simulators [12].

Another use case is at-speed unit testing of FPGA building
blocks, where it is desired to feed the module-under-test with
data at full rate and capture the results. This can be done
with a memory to source data into the module-under-test and
a second memory to record the results. Similarly, in live
debugging with an Internal Logic Analyzer (ILA) or trace
buffers [13], [14] to capture data during operation, the speed
at which we offload this data after a test is often not critical.

Finally, at the extreme, XBERT functionality could provide
an inexpensive way to support advanced abstractions like
CoRAM [15] on current FPGAs. CoRAM proposed adding
dedicated infrastructure to manage data movement between
embedded RAMs and a central memory and demonstrated
prototypes that built an overlay network on top of the FPGA.
Using XBERT, the same functionality could be provided using
the existing reconfiguration path hardware support without the
cost of the added overlay logic.

III. XBERT: OVERVIEW, CHALLENGES, AND SOLUTIONS

This section introduces XBERT, including the challenges
and operational requirements for a system like XBERT along
with its solutions to those problems and the resulting benefits.

A. Basic Single BRAM Operation

To start out, consider the simple use case of changing the
contents of a simple logical memory that maps to a single
36Kb BRAM. If the logical memory happens to be an XPM
instantiated memory, Xilinx’s UpdateMem program, running
on a host, can change the BRAM in the full bitstream. It
takes 4 seconds to run UpdateMem to change the bitstream
to reflect the new BRAM contents and 9 ms to load the full
bitstream onto a XCU3EG. This is both slow and demands
the use of a separate host machine.

Using the simplest write API in XBERT (bert_write)
we can perform the update while running code on an embed-
ded APU core on the Zynq and write the BRAM in 1.04 ms
(over 3900× faster). This includes 0.71 ms to translate the
bits (convert the logical memory bit description into a partial
bitstream) and 0.25 ms to write the partial bitstream to the

device through the Zynq PCAP; the write achieves 3.9 MB/s
bandwidth. Importantly, this XBERT write operation works for
any logical memory, not just those instantiated with an XPM.

B. Table-Based Translation, Compression, and Acceleration

While UpdateMem runs using the full Xilinx device
database for the part and the full set of design checkpoint
data for the design, XBERT replaces this information with
a minimal translation table describing where each logical
memory bit is mapped into the bitstream. This raw translation
table in XBERT initially takes 238 KB, but using compression
we can reduce that to 2.3 KB (Sec. VII).

The dominant component of the 1.04 ms XBERT time
above is in translation (0.71 ms), which consists mainly of
computing the bitstream locations for the individual bits from
the logical memory image. When we add an accelerated,
multi-bit, table-based translation ability to XBERT (Sec. VIII),
we can reduce this to 0.28 ms, so the entire write occurs in
0.62 ms for a throughput of 6.59 MB/s—about twice as fast
our unaccelerated case.

C. Transfusion - Combining Operations For Performance

Turning to the minimum DMA transfer time for our single
BRAM memory, we note it is large (0.25 ms), in part, because
writes occur in frames, requiring the writing of data for all 12
memories that share a frame in the UltraScale+ architecture
(Fig. 3). If we need to write many BRAMs in a frame, either
because a logical memory uses many BRAMs, or because we
need to write many logical memories that happen to share
a physical frame, we can reduce the DMA transfer time
per BRAM. At the extreme, we bring the per-BRAM DMA
transfer cost down by a factor of 12 to around 0.021 ms,
so the total per-BRAM write cost is around 0.32 ms (or
a throughput of 11.75 MB/s—about twice again the single
accelerated throughput). As a result, it is efficient to have a
scatter-gather interface that allows us to specify the full set of
logical memories we would like to write as a single operation
so the API can minimize the number of frame writes required.
Our transfuse API interface provides this capability (Sec. V).

While there are write enables that allow us to write a single
36Kb BRAM in a frame at a time, there are no write enables to
control independently writing the two 18Kb memories within a
single 36Kb BRAM. To write one 18Kb memory in isolation,
we may need to read the entire frame first in order to preserve
the value of a partner 18Kb memory in the block. The XBERT
transfuse API can combine this readback with the read of other
logical memories in the same physical frame (Sec. V).

D. Dealing With Larger Memories — Logical To Physical
Memory Mapping

For simplicity, the examples above used a logical memory
that mapped to only a single BRAM. In practice, logical
memories often map to multiple physical BRAMs. When this
happens, there are many choices for how the bits are packed
into memories. For example, in one 32×10,000 memory, we
have seen that Vivado mapped the bottom 18b ([17:0]) of the



memory to five 18×2048 RAMB36s, the next 9b ([26:18]) to
three 9×4096 RAMB36s, the next 4b ([30:27]) to two 4×8192
RAMB36s, and the final bit ([31]) to one 1×16,384 RAMB36;
this non-uniform mapping uses only 11 RAMB36s, whereas
in other designs, we have seen Vivado map a similarly sized
memory to a set of 16 RAMB36 memories, each 2 bits wide
by 16K words deep.

Finally, for memories smaller than a single BRAM, Vivado
may tie off high order address bits to values other than 0
meaning the logical 0 location for the memory does not start in
the normally expected location (the first frame of the frameset
for the physical BRAM).

To address these complicated and tedious physical map-
ping issues, the XBERT toolflow automatically extracts these
mapping details from the Vivado Design CheckPoint (DCP)
file or project as a part of its Logical to Physical Memory
Mapping capability. As a result application developers need
not deal with them—they are able to deal exclusively with
logical memory contents, and the many mapping details are
hidden from them by XBERT (Sec. V).

E. XBERT Design Flow Summary

Fig. 1 illustrates the host side preparation tool flow for
XBERT. Starting at the top, the user’s design (represented
minimally in the form of a design checkpoint) is processed to
extract information on the logical memories contained in the
original design source, resulting in an MDD file (Sec. IV-D).
That is then combined with bitstream information extracted
from Xilinx-produced .ll files to create a complete represen-
tation of the logical-to-physical memory mapping information
for the design (mydesign_uncompressed.{c,h}). This
is then compressed and optionally accelerated to produce a
mydesign.c file containing a compressed version of that
information as C data structures.

At the bottom of the figure, a final XBERT application is
assembled from three sets of source code: (1) the XBERT
runtime source code (bert.c), (2) the mydesign.c file,
and (3) the user’s application code (application.c).
This is linked against XBERT’s extended xilfpga libraries
(Sec. VI) into the final executable application program.

F. A Full Motivating Example

Consider developing a Huffman encoding accelerator that
contains four independent memories. This Huffman encoder
takes in a stream of bytes and compresses it by mapping each
byte to a variable-length code. And, for good compression, the
Huffman code should be tuned to the data being encoded.

We design the encoder to work for any encoding using an
encoding table (memory #1) and can use XBERT to update
its contents when changing encodings. The encoding table in
the HDL source is read-only but we can use bert_write to
load its contents. This takes 1.1 ms to load the table. Without
XBERT, we would need to use an AXI port to perform the
load, which would be faster, but adds LUTs and registers to
the design (Tab. I).

application.elf

application.c

mydesign.c

mydesign.dcp

generate_memory_locations

extract MDD, LL

compress (accelerate)

mydesign_uncompressed.{c,h}

mydesign.llmydesign.mdd

cc cccccc

ld

xilfpga.c bert.c

(include .h)

P
re

p
a
re

d
 o

n
 D

e
v
e
lo

p
m

e
n
t 
H

o
s
t

Run on 
Embedded
Core

Fig. 1. XBERT Tool Flow

TABLE I
IMPACT OF ADDING AXI ACCESS TO MEMORIES IN HUFFMAN EXAMPLE

Variant LUTs FFs Fmax
No AXI (XBERT only) 165 80 425 MHz
+ AXI for encoding table 1360 1125 405 MHz
+ AXI for histogram memory 2272 1818 405 MHz
+ AXI for results memory 3112 2531 405 MHz
+ AXI for input data memory 3903 3176 405 MHz

When we first design the encoder, we often want to test it
for functionality and speed before the data source and data
consumer are added to the design. We can do this by adding a
memory to hold the input data (memory #2) and a memory to
store the output data (memory #3). Using XBERT we need
nothing else. We can load new data to be compressed by
the encoder into the input memory using bert_write and
recover the compressed output using bert_read.

We also add a histogram memory to capture the character-
istics of the input data using a 256-element memory (memory
#4). Using bert_read we can read the contents of this
memory back in 0.45 ms. If we’re compressing one byte per
cycle, this histogram would need to perform both a read and a
write on each cycle, meaning both its ports are being used. For
a non-XBERT design to provide readback, it would need to
share one of the ports or duplicate the memory to effectively
provide another read port. With XBERT neither is required.

Using XBERT we can read or write any of the four
memories in the design. We could read the histogram memory
contents, compute a new encoding table tailored to the input
data stream, and write the new encoding table back to the
design, all in under 1.2 ms.

Tab. I shows the impact (area, Fmax) of adding AXI
interfaces to the design. We use an MMCM between the AXI
subsystem and the Huffman decoder so the latter can run at its
maximum clock rate and not be limited by the maximum AXI
clock rate of 333 MHz. Since this Huffman example is small,
the Fmax impact of providing access to the BRAMs is small.
In larger, highly congested designs, [1] claims eliminating
AXI BRAM access can realize as much as a 63% Fmax
improvement (Sec. IV-C).



IV. RELATED WORK

A. Physical BRAM Manipulation Applications and Tools

A number of tools have exploited cases where they could
provide useful functionality working with raw BRAMs without
requiring mapping or translation back to the logical level.
As early as 2000, Xilinx provided experimental, low-level
support for partial reconfiguration readback and reloading of
embedded RAMs [16], [17], used mainly for memory readback
and scrubbing [18]. More recently, ReconOS uses bitstream
reads and writes for multitasking [19] (to load and unload
BRAM contents via bitstreams). Metawire uses bitstreams to
move data from BRAM to BRAM to provide Network-on-
a-Chip (NoC) functionality; since they control the BRAM
mapping and move from BRAM to BRAM, they avoid the
need to translate from physical to logical mappings [20].
Similarly, several works have used direct BRAM writing for
specific applications including [21]–[23].

B. Physical Bitstream APIs

More recent work has aspired to provide an API
for physical-level bitstream manipulation. BITMAN pro-
vides a general physical level access mechanism to
BRAM contents with their change_BRAM_content(X,
Y, new_config) API [24]. As with the above tools, it
requires that some higher-level interface or manual devel-
oper intervention determine which BRAM locations need to
be changed and to format the configuration data, including
shuffling the logical bits to their locations in the physical
configuration mapping.

Similarly, recent work in [25] advocates this approach of
using bitstream readback and edits to read and write BRAM
contents and demonstrates their use to copy data between
BRAMs. But, it does not address identifying which physical
BRAMs are used for a particular logical memory. Nor does
it provide a complete description or high-level tool that will
allow a developer to map their HLS or RTL logical memory
contents into the bitstream or to extract bitstream contents and
reconstruct the state of the HLS or RTL memory.

C. Specialized Logical Memory Manipulation

Maxeler explores using the bitstream path to load and
read their “Mapped Memories” instead of a separate low-
speed bus [1]. They show that removing the low-speed bus
and its associated demand on fabric resources increases the
performance of their designs by up to 63%. Their bitstream
interface achieves up to 2 MB/s data transfer bandwidth.

The Maxeler use is, perhaps, most similar to what XBERT
provides. However, Maxeler (a) only uses this BRAM path
for a specific use of memories generated internally to their
compiler, (b) does not provide a general API available to
developers for use for any memory or any tool chain, and
(c) their tool must take control itself of the mapping of
logical memories to BRAMs because they do not have enough
information to determine how the Xilinx tools map logical
memories to physical memories.

Similarly, Xilinx Vivado provides support for changing the
initial value of configuration memories in a bitstream mostly to
support instruction memories for MicroBlaze processors [26].
This includes a BRAM Memory Map Infromation (MMI) file
that records the physical BRAMs used to support MicroBlaze
and Xilinx Parameterized Macro (XPM) memories and the
UpdateMEM tool that can update the bitstream with data
from a logical memory file [27]. The MMI generated by
Vivado does not cover all logical memories in the design, and
UpdateMEM only produces a complete bitstream.

XBERT closes all of the above gaps in these related
works by providing open-source, logical-level access to the
bitstream read and write path. It accommodates all designs,
all memories, and all tool flows that go through DCPs.

D. Existing Bitstream Manipulation Support

A number of tools are available that can be helpful in
creating bitstream manipulation tools. The XBERT system is
based, in part, on some of them.

The Xilinx tools have long produced Logic Location (LL)
files for memories as part of bitstream readback generation
[28]. The LL file contains the frame and bit location for every
data bit in a physical BRAM, but provides no mapping infor-
mation about the logical memories and how a logical memory
is mapped onto multiple physical BRAM tiles. Nonetheless,
the LL file is useful for deciphering the frame and bit positions
for a BRAM within XBERT as show in Fig. 1.

Project X-Ray [29] and the more recent Project U-Ray [30]
provide databases mapping the configuration bits in Xilinx
7-series and UltraScale+ devices to frame and bit locations.
These contain no information on logical-to-physical memory
mapping within a specific design but do provide information
and tools for bitstream encoding (understanding the locations
of physical memory bits within the bitstream).

Building upon Project X-Ray, BYU developed an open-
source tool, prjxray-bram-patch [31] that serves a
similar role as Vivado’s UpdateMEM, but works for all
logical memories in a design and for all design flows.
The bram-patch tool defines a Memory Description Data
(MDD) file that plays a similar role to the Xilinx MMI
file. Derived from a Vivado design using Tcl, an MDD file
describes, for each logical memory in a design, the collection
of physical BRAMs to which the logical memory is mapped,
how the logical memory bits were partitioned between the
physical memories, and how the bits are packed into the
INIT strings of a physical RAMB primitive. The XBERT
system uses this information as a part of its logical-to-physical
mapping step (Fig. 1).

V. THE XBERT API

XBERT is designed to run on the embedded APU cores on
Zynq SoCs. As shown in Fig. 2, it provides a logical-level
interface above that provided by xilfpga or the interface
provided by physical-level bitstream manipulation tools such
as BITMAN [24]. It does this by extending xilfpga with



frames

commands and frames

logical

xilfpga

xilfpga expanded

full bitstream read
full bitstream write
partial bitstream write

partial bitstream read

partial bitstream write

xbert
read logical memory
write logical memory
scatter−gather read/write of logical memory set

physical bram
bitman

bram write

Light red provided by Xilinx; light blue provided by
this work; light green from [24].

Fig. 2. API Layering for XBERT

partial reconfiguration support and command generation for
BRAM writes (Sec. VI).

The entry-level XBERT interface is a simple pair of routines
providing a DMA-like interface to read or write an entire
logical memory.

int bert_read(int logicalm,
uint64_t *data,
XFpga* XFpgaInstance);

int bert_write(int logicalm,
uint64_t *data,
XFpga* XFpgaInstance);

These routines take care of bit shuffling between the frame
format and the logical format of the memory as well as
performing the needed partial reconfiguration reads and writes.

To support these API calls, the XBERT preprocessing
tools process the MDD files (Sec. IV-D) to produce files
mydesign.h and mydesign.c (Fig. 1). These include
C code definitions of the specific memories in the design
including the logical-to-physical translation tables.

One limitation of the simple API above is that every read or
write call first does a logical to physical memory translation
followed by a bitstream read or write operation to the device.
This can be inefficient if the application needs to read or
update many different logical memories that are mapped to
the same configuration frames.

To allow more efficient transfer, XBERT also provides
an API that can read and write a set of multiple mem-
ories like a scatter-gather DMA operation. This is the
bert_transfuse() call that allows XBERT to perform
one set of frame reads, translations, and then a single set of
frame writes covering all the logical memories that may share
a set of frames:

int bert_transfuse(int num,
struct bert_meminfo *info,
XFpga* XFpgaInstance);

The bert_transfuse routine takes an array describ-
ing the operations on a collection of logical memories.
To describe each transfusion operation, it uses a structure
(bert_meminfo). The structure specifies the memory, the

operation (read or write), and the logical address range we
are reading or writing in the memory. To support data wider
than 64b, this supports an array with multiple data words
for each array slot. And, we allow operations on a subset of
words in the logical memory by specifying a start address
and length. This allows access and update to a subset of the
frames associated with the BRAMs holding data for the logical
memory, which is more efficient when only a portion of the
memory needs to be read or written. The transfuse operation
also arranges the set of write data along with PCAP control
instructions so that they can be performed with a single DMA
write transfer, minimizing the overhead of DMA setup.

The APIs assume that it is safe to perform the read and write
operation. Putting the computation into a safe state where the
memories are not being written during the read or write is
the responsibility of the application. For example, using the
standard Xilinx IP block-level interface protocol generated by
Vivado/VitisHLS [32], one might watch for the block to be
done (ap_done), perform the XBERT operations, then restart
the module (ap_start).

VI. PARTIAL RECONFIGURATION

Partial reconfiguration is the loading of configuration data
for a portion of the FPGA resources without disturbing the op-
eration of the remaining resources. In modern Xilinx devices,
the atomic unit of configuration is a frame that is organized
along FPGA columns. In the Xilinx UltraScale+ series, each
frame has 93 32b words. Since BRAM data constitutes a small
fraction of the total bitstream, using partial reconfiguration to
access only BRAM frames reduces bitstream read or write
time compared to full bitstream reads or writes.

In modern FPGA devices, embedded RAMs are placed
in columns. The UltraScale+ series have 36Kb BRAMs
(RAMB36) that can each alternately be configured as a pair
of 18Kb BRAMs (RAMB18). Each frame in the Xilinx
UltraScale+ series device covers 12 RAMB36 memories [33,
Chapter 8, Configuration Frames] and has 144b for each
RAMB36, 72b for each of the two RAMB18s. It takes 256
frames to cover the BRAM group (See Fig. 3). The set of
144b per BRAM in a frame are grouped into 240b blocks.
There is a write enable bit for each 144b RAMB36 group in
a frame roughly in the middle of the 240b block. The write
enables allow updates of a single BRAM36 at a time, but it is
always necessary to transfer data in units of frames. BRAM
data frames are separate from frames that hold routing or LUT
configurations.

Zynq devices include a Processor Configuration Access Port
(PCAP) to allow the embedded processor to read and write
configuration frames. For high-speed access, the processor can
configure DMA data tranfers to the PCAP to perform partial
reconfiguration operations. The UltraScale+ PCAP is 4B wide
with a peak operation of 200 MHz supporting up to 800 MB/s
[33, Chapter 8, Configuration Time].

Xilinx provides the xilfpga library [34] (Fig. 2) for
performing DMA bitstream transfers on Zynq UltraScale+
components. It allows full bitstream load and readback and



BRAM 0

BRAM 11

BRAM Group

2
5
5

0 1 2

BRAM 6

BRAM 5

96 bits

24 bit gap

frame (2976 bits)

72b in 108

72b in 108

Fig. 3. Frame Organization for UltraScale+ BRAM Contents

partial bitstream load for .bit files that include a header of
control commands to the PCAP.

XBERT provides expanded versions of routines in the
xilfpga API (Fig. 2). xilfpga did not provide a par-
tial bitstream readback operation, so we modified the read
operation to take in both a frame address and number of
frames. XBERT also provides a version of write that takes
raw frame data and fills in the configuration commands to set
frame address and specify a write operation since these are
needed to turn raw frame data into a proper partial bitstream.
This expansion was necessary to support writes, since we are
generating our own frame set and do not have the bitstream
configuration command header normally produced by Vivado
when it produces a bitstream.

Due to lack of flow control, xilfpga readback operations
can only run reliably at a lower rate than the 200 MHz peak
operation (Sec. VI). The default configuration in the 2019.2
xilfpga release sets the clock down to 23.8 MHz for a
top throughput of 95 MB/s using the PCAP Clock Genera-
tor Configuration (PCAP_CTRL (CRL_APB) register). Our
experience suggests 150 MHz is likely to work reliably, for a
top throughput of 600 MB/s.

VII. COMPRESSING TRANSLATION TABLE

The logical-to-physical translation tables (Sec. III) can be-
come quite large. If we simply stored a 32b frame address
and a 16b bit position for each bit in a BRAM, the translation
table would be at least 48× larger than the total BRAM data
we hope to map. Fortunately, there is some structure. We don’t
need to store the frame for every bit when multiple bits are in
the same frame, as is typical. This can save a factor of 3.

To compress further, we exploit the way the bit positions
repeat among frames. To illustrate, let’s start by considering
the simple case of a single BRAM design. A single frame
will hold some number of logical words in its 144 bits. In the
case of a 72b-wide logical memory, this could be 2 logical
words; in the case of an 8b-wide logical memory, this could
be 16 logical words. Define Wframe to be this value (2 or 16

above). For each successive group of Wframe words, the offset
positions within the frame are the same, allowing us to algorth-
mically determine the frame offset (logical address/Wframe)
and reuse a single bit map for the (up to 144) bits in the
frame to the offset within the frame. For the case of this
single BRAM design, this means we only need to store one
frame address (the base) and (up to) 144 bit offset addresses
(could do with 12b for the 2976 bits in a frame, but we round
to 16b). So, we need at most 32+144×16=2336b instead of
48×36864=1.7 Mbits with no compression.

To be general, we must support the variety of ways that a
logical memory can be mapped to physical BRAMs. This can
mean multiple BRAMs organized in parallel to support the
logical word width (e.g. 8 BRAMs that each supply 4b of a
32b word), multiple BRAMs covering different address ranges
to handle deep memories (e.g. 2 BRAMs covering a 36x2048
memory where one handles addresses 0 through 1023 and an-
other handles addresses 1024 through 2047), or combinations
thereof. There are even cases where the component BRAMs
hold heterogeneous sub-widths and sub-depths (example in
Sec. III). So, the general compression case is more involved to
deal with these additional irregularities. Nonetheless, there is
regularity across frames that can be described algorithmically.
This allows us to generalize the single-BRAM observations to
form a general compression strategy. Using these observations,
we signficantly compress the translation tables (Tab. III).

VIII. ACCELERATED TRANSLATION

As we see in Tab. IV, once we speed up read DMA,
translation time is slow compared to DMA transfer times.
Even with pre-compiled tables, the code is still extracting
and inserting one bit at a time. We implemented a multi-bit
accelerated conversion where we pre-compute the impact of a
sequence of bits (e.g., a byte) in the word (or frame) to create
a vector of bits to be applied to the frame (or words) and store
them in a table.

for (int b=0;b<bytes_in_word;b++) {
uint8_t field=(logical>>(b*8))&BMASK;
physical|=table_lookup[b][field]; }

This reduces the processor cycles but demands larger transla-
tion tables. Our current implementation supports these trans-
lation tables for single-BRAM memories.

IX. EVALUATION

As illustrated in Sec. III and highlighted throughout the
paper, the size and performance of XBERT transfers are highly
design-dependent, API-usage-dependent, and impacted by our
optimizations. In this section, we evaluate the performance of
the API across several scenarios to concretely characterize the
performance implications of these various cases.

A. Methodology

Our experiments use Vivado 2018.3 including SDK. Embed-
ded ARM processor code is compiled -O3. Experiments are
performed on the Ultra96 v2 board that includes an XCZU3EG



containing 216 RAMB36s. Designs are run on a bare metal
configuration. We integrated xilfpga source from 2019.2
due to bugs in the 2018.3 version of xilfpga.

A primary performance metric is effective throughput. Ef-
fective throughput accounts for that fact that the useful data is
only a subset of the data transferred in frames. For example, if
we only want the contents of one RAMB36 in an UltraScale+
device frame, we get 144 relevant bits per frame but must
transfer an entire 2976-bit frame.

To illustrate typical application scenarios, we include a
couple of complete designs. These give some indication of
how frames share BRAMs from multiple logical memories.

• Huffman—our Verilog design from Sec. III-F. It has
4 logical memories consuming 4 RAMB18s and 3,903
LUTs. Each logical memory fits in a single RAMB18.

• Rendering—the Rendering HLS benchmark from the
Rosetta Benchmark Suit [35]. It has 11 logical memories
consuming 41 RAMB36s, 9 RAMB18s and 11,109 LUTs.
Several memories are large, requiring many BRAMs.
Some memories have gaps where no bits are defined.

B. Results

1) Raw Bitstream Data Transfers: Tab. II shows raw bit-
stream transfer times and raw and effective throughputs. This
shows the DMA transfer performance and implications without
the time required for translation, which is separated out in the
next section. Note that accessing all the BRAMs in a frame
(single BRAM frame-set rows) provides the highest effective
throughput. Since most of the bits in a BRAM frame are
BRAM data bits, the effective bandwidth is over half the raw
bandwidth. Note that this effective bandwidth is higher than
a full bitstream read or write even when we care about every
bit of the BRAMs in all the BRAMs on the chip, since the
partial read is only reading frames that hold BRAM data.

2) Translation: Tab. III reports the translation table sizes
and times and effective throughputs for translating between
logical and frame representations.

Tab. III shows that we can reduce translation tables about
two orders of magnitudes, into the kilobyte range per BRAM
(Sec. VII). Compression slightly slows translation. Accelera-
tion (Sec. VIII) roughly halves translation time, while adding
tables that are about as large as the uncompressed tables. Seven
of the 11 memories in Rendering are single BRAM memories,
but those only account for 4% of the bits, so acceleration
makes small impact when translating all the memories.

3) BERT API Operation: Single Memory: Tab. IV summa-
rizes the performance reading and writing a simple 512×64
memory that fills a RAMB36 block. The first line shows the
default read speed (Sec. VI) with the second showing the
impact of increasing the PCAP DMA read speed to 150 MHz
(600MB/s). The third line shows the impact of compression;
in this case it slows down translation slightly. The fourth line
then shows the impact of acceleration, which roughly halves
the translation time.

The next three lines (labeled “Frameset”) look at trans-
fering all 12 memories that share the same set of frames.

The first case captures the total time when performing sep-
arate bert_read and bert_write operations on each
memory; this takes roughly 12 times as long as the single
BRAM case since it is just the sum of the individual times,
and it achieves the same bandwidth. The middle line uses
bert_transfuse to either read or write all 12 memories
in one operation; as a result, the DMA transfer time is
comparable to the transfer time in each of the individual
BRAM reads, while the translation time is almost 12 times
larger since each memory must be separately translated. Since
DMA transfer time was roughly comparable to translation time
in the single RAMB36 read or write, this results in roughly
double net throughput. The last of the frameset lines shows
the impact of performing a single transfuse operation that both
reads and writes all the memories.

The final line in the table shows reading and writing a single
frame (two 64b words) from the RAMB36. This takes less time
than reading or writing the whole memory and translating all
the frames. The translation time can be small here. However,
since there is considerable fixed time in setting up the DMA
operations, the net throughput is low.

4) BERT API Operation: Application Level: The single
BRAM and the transfuse of all the BRAMs in a frame set cases
in Tab. IV bracket expected typical performance. Tab. V shows
the transfuse performance on the applications when we read
or write all memories. Huffman shows a 2–3× improvement
with transfuse operations. Rendering shows little benefit, with
translation taking more time in the transfuse case, possibly
due to caching effects for the large frame memory it needs
to accommodate all memories. Since the dominant time is
typically in translation, total transfusion time is mostly linear
in the data being read and written.

X. CONCLUSIONS

The configuration path on modern FPGAs provides access
to embedded memories. In terms of FPGA resources, it is
a lightweight interface to get data in and out of embedded
memories. XBERT provides a user-level API that makes using
this capability lightweight for the application developer, as
well. With XBERT accessing a logical memory is as easy
as an API call. This is useful for loading initial memory
states at program startup, recovering final data and status at
program completion, debugging, and for infrequent data trans-
fers between the FPGA fabric and the embedded cores. The
XBERT API takes care of logical-to-physical translations and
includes optimizations to compress the necessary translation
information and to minimize the data that must be transferred
in and out of the FPGA. The XBERT tool flow automates the
generation of the translation information needed by the API.

ACKNOWLEDGMENTS

Matthew Hofmann was supported by the Vagelos Integrated
Program in Energy Research (VIPER) program. Zhiyao Tang
was supported by the Rachleff Scholars Program. Jonathan
Orgill and Jonathan Nelson were supported by Watson Fel-
lowships. Xilinx donated Vivado tools for use in this work.



TABLE II
RAW BITSTREAM READ AND WRITE TIMES ON XCZU3EG

Raw Raw 1 BRAM Effective all BRAMs Effective
What Time Thput Thput Thput

(ms) (MB/s) bits (MB/s) bits (MB/s)
full bitstream read (24 MHz) 58.50 95.2 36,864 0.079 7,962,624 17.0
full bitstream read (150 MHz) 9.37 594.0 36,864 0.492 7,962,624 106.2
full bitstream write 8.34 667.6 36,864 0.553 7,962,624 119.3
single BRAM frame-set read (24 MHz) 1.01 87.2 36,864 4.560 442,368 54.7
single BRAM frame-set read (150 MHz) 0.20 477.8 36,864 23.000 442,368 276.5
single BRAM frame-set write 0.21 462.2 36,864 22.300 442,368 267.1
single BRAM frame read (24 MHz) 0.10 8.4 144 0.178 1,728 2.1
single BRAM frame read (150 MHz) 0.10 8.4 144 0.178 1,728 2.1
single BRAM frame write 0.10 9.7 144 0.178 1,728 2.1

“frame-set” is the set of 256 frames that contain the contents of a single BRAM (Fig. 3).
24 MHz is the read speed in xilfpga; 150 MHz is the highest speed we were able to reliablity run DMA readback.

TABLE III
TRANSLATION TIME ON XCZU3EG

Uncompressed Effective Compressed Effective Accelerated Effective
What Table Time Thput Table Time Thput Table Time Thput

Size (B) (ms) (MB/s) Size (B) (ms) (MB/s) Size (B) (ms) (MB/s)
frames→logical: single RAMB18 (x36) 148,832 0.38 6.1 2,128 0.49 4.7 126,920 0.25 9.2
logical→frames: single RAMB18 (x36) 148,832 0.43 5.4 2,128 0.50 4.6 126,920 0.18 12.8
frames→logical: single RAMB36 (x64) 263,520 0.61 6.7 2,352 0.79 5.2 243,808 0.40 10.2
logical→frames: single RAMB36 (x64) 263,520 0.71 5.8 2,352 0.84 4.9 243,808 0.37 11.1
frames→logical: all BRAMs Huffman 313,528 0.96 5.1 4,424 0.98 5.0 320,648 0.61 8.0
logical→frames: all BRAMs Huffman 313,528 1.00 4.9 4,424 1.16 4.2 320,648 0.35 13.9
frames→logical: all BRAMs Rendering 11,847,032 32.84 5.6 91,968 51.71 3.6 413,936 50.70 3.6
logical→frames: all BRAMs Rendering 11,847,032 38.07 4.9 91,968 51.64 3.6 413,936 50.64 3.7

TABLE IV
BERT API SINGLE RAM36 PERFORMANCE ON XZCU3EG

Read Write
Effective Clock Time Effective Time Effective

What Bits Freq. Trans. DMA Total Thrput Trans. DMA Total Thrput
(bits) (MHz) (ms) (ms) (ms) (MB/s) (ms) (ms) (ms) (MB/s)

Uncompressed 32768 24 0.61 1.22 1.84 2.22 0.71 0.25 1.04 3.92
Uncompressed (Sec. VI) 32768 150 0.61 0.42 1.03 3.94 0.71 0.25 1.04 3.91
Compressed (Sec. VII) 32768 150 0.86 0.45 1.32 3.08 0.87 0.27 1.21 3.37
Accelerated (Sec. VIII) 32768 150 0.39 0.45 0.85 4.81 0.28 0.27 0.62 6.59
Frameset, accelerated, separate ops 393216 150 4.67 5.41 10.13 4.85 3.72 3.35 8.10 6.06
Frameset, accelerated, transfuse 393216 150 3.71 0.45 4.18 11.74 3.71 0.46 4.18 11.75
Frameset, accelerated, transfuse 786432 150 Read and Write all → 6.27 0.70 7.00 14.03
Single Frame, accelerated 128 150 0.32 0.30 0.63 0.03 0.00 0.10 0.11 0.14

24 MHz is the read speed in xilfpga; 150 MHz is the highest speed we were able to reliablity run DMA readback.

TABLE V
BERT API APPLICATION PERFORMANCE ON XZCU3EG

Read Write
Effective Clock Time Effective Time Effective

What Bits Freq. Trans. DMA Total Thrput Trans. DMA Total Thrput
(bits) (MHz) (ms) (ms) (ms) (MB/s) (ms) (ms) (ms) (MB/s)

Huffman, accelerated, separate ops 38912 150 0.70 1.67 2.40 2.02 0.38 1.81 2.48 1.95
Huffman, accelerated, transfuse 38192 150 0.45 0.45 0.91 5.30 0.45 0.45 0.90 5.35
Huffman, accelerated, transfuse 77824 150 Read and Write all → 0.86 0.69 1.62 5.99
Rendering, acclerated, separate ops 1480192 150 43.08 7.05 50.19 3.68 45.98 7.41 54.50 3.39
Rendering, accelerated, transfuse 1480192 150 50.70 4.35 55.08 3.35 50.64 4.31 54.97 3.36
Rendering, accelerated transfuse 2960384 150 Read and Write all → 103.08 6.30 110.15 3.35

150 MHz is the highest speed we were able to reliablity run DMA readback.



REFERENCES

[1] K. Heyse, J. Basteleus, B. A. Farisi, D. Stroobandt, O. Kadlcek, and
O. Pell, “On the impact of replacing low-speed configuration buses
on FPGAs with the chip’s internal configuration infrastructure,” ACM
Transactions on Reconfigurable Technology and Systems, Oct. 2015.
[Online]. Available: https://doi.org/10.1145/2700835

[2] XBERT Github Website, 2021. [Online]. Available: https://github.com/
icgrp/bert/

[3] K. Asanović and D. A. Patterson, “Instruction sets should be free: The
case for RISC-V,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2014-146, 2014.

[4] J. Gray, “GRVI phalanx: A massively parallel RISC-V FPGA accel-
erator accelerator,” in Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines, 2016, pp. 17–20.

[5] I. Tili, K. Ovtcharov, and J. G. Steffan, “Reducing the performance
gap between soft scalar CPUs and custom hardware with TILT,”
ACM Transactions on Reconfigurable Technology and Systems,
vol. 10, no. 3, pp. 22:1–22:23, Jun. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3079757

[6] N. Kapre and A. DeHon, “VLIW-SCORE: Beyond C for Sequential
Control of SPICE FPGA Acceleration,” in Proceedings of the In-
ternational Conference on Field-Programmable Technology. IEEE,
December 2011.

[7] P. Yiannacouras, J. G. Steffan, and J. Rose, “Portable, flexible, and
scalable soft vector processors,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 20, no. 8, pp. 1429–1442, 2012.

[8] A. Severance, J. Edwards, H. Omidian, and G. Lemieux, “Soft vector
processors with streaming pipelines,” in Proceedings of the International
Symposium on Field-Programmable Gate Arrays, 2014, pp. 117–126.

[9] P. Cooke, L. Hao, and G. Stitt, “Finite-state-machine overlay
architectures for fast FPGA compilation and application portability,”
ACM Transactions on Embedded Computing Systems, vol. 14, no. 3,
pp. 54:1–54:25, 2015. [Online]. Available: http://doi.acm.org/10.1145/
2700082

[10] V. Sateesh, C. Mckeon, J. Winograd, and A. DeHon, “Pipelined parallel
finite automata evaluation,” Proceedings of the International Conference
on Field-Programmable Technology, 2019.

[11] M. deLorimier, N. Kapre, N. Mehta, D. Rizzo, I. Eslick, R. Rubin,
T. E. Uribe, T. F. Knight, Jr., and A. DeHon, “GraphStep: A sys-
tem architecture for sparse-graph algorithms,” in Proceedings of the
IEEE Symposium on Field-Programmable Custom Computing Machines.
IEEE, 2006, pp. 143–151.

[12] N. Kapre and A. DeHon, “SPICE2: Spatial Processors Interconnected
for Concurrent Execution for Accelerating the SPICE Circuit Simulator
Using an FPGA,” IEEE Transactions on Computed-Aided Design for
Integrated Circuits and Systems, vol. 31, no. 1, pp. 9–22, January 2012.

[13] E. Hung and S. J. Wilton, “Towards simulator-like observability for
FPGAs: A virtual overlay network for trace-buffers,” in Proceedings of
the International Symposium on Field-Programmable Gate Arrays, 2013,
p. 19–28. [Online]. Available: https://doi.org/10.1145/2435264.2435272

[14] J. Goeders and S. J. E. Wilton, “Signal-tracing techniques for in-system
FPGA debugging of high-level synthesis circuits,” IEEE Transactions
on Computed-Aided Design for Integrated Circuits and Systems, vol. 36,
no. 1, pp. 83–96, 2017.

[15] E. S. Chung, J. C. Hoe, and K. Mai, “CoRAM: An in-fabric memory
architecture for FPGA-based computing,” in Proceedings of the Interna-
tional Symposium on Field-Programmable Gate Arrays, 2011, pp. 97–
106.

[16] Virtex FPGA Series Configuration and Readback, Xilinx, Inc., 2100
Logic Drive, San Jose, CA 95124, March 2005, XAPP 138. [Online].
Available: https://www.xilinx.com/support/documentation/application
notes/xapp138.pdf

[17] S. McMillan and S. A. Guccione, “Partial run-time reconfiguration
using JRTR,” in Proceedings of the International Conference on Field-
Programmable Logic and Applications, ser. LNCS, no. 1896. Springer-
Verlag, 2000, pp. 352–360.

[18] C. Carmichael, M. Caffrey, and A. Salaza, Correcting Single-Event
Upsets Through Virtex Partial Configuration, Xilinx, Inc., 2100 Logic
Drive, San Jose, CA 95124, June 2000, XAPP 216. [Online].
Available: https://www.xilinx.com/support/documentation/application
notes/xapp216.pdf

[19] M. Happe, A. Traber, and A. Trammel, “Preemptive hardware multi-
tasking in ReconOS,” in Proceedings of the International Conference
on Reconfigurable Computing: Architectures, Tools and Applications,
ser. LNCS vol. 9040. Springer, 2015.

[20] M. Shelburne, C. Patterson, P. Athanas, M. Jones, B. Martin, and
R. Fong, “Metawire: Using FPGA configuration circuitry to emulate a
Network-on-Chip,” in International Conference on Field Programmable
Logic and Applications, 2008, pp. 257–262.

[21] R. le Roux, G. van Schoor, and P. van Vuuren, “Block RAM imple-
mentation of a reconfigurable real-time PID controller,” in 2012 IEEE
14th International Conference on High Performance Computing and
Communication 2012 IEEE 9th International Conference on Embedded
Software and Systems, 2012, pp. 1383–1390.

[22] P. Swierczynski, M. Fyrbiak, P. Koppe, A. Moradi, and C. Paar,
“Interdiction in practice–—hardware trojan against a high-security USB
flash drive,” Journal of Cryptographic Engineering, vol. 7, pp. 199–211,
2017. [Online]. Available: https://doi.org/10.1007/s13389-016-0132-7

[23] D. Ziener, J. Pirkl, and J. Teich, “Configuration tampering of BRAM-
based AES implementations on FPGAs,” in 2018 International Confer-
ence on ReConFigurable Computing and FPGAs (ReConFig), 2018, pp.
1–7.

[24] K. Dang Pham, E. Horta, and D. Koch, “BITMAN: A tool and API for
FPGA bitstream manipulations,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2017, 2017, pp. 894–897.

[25] J. Gomez-Cornejo, A. Zuloaga, I. Villalta, J. D. Ser., U. Kretzschmar,
and J. Lazaro, “A novel BRAM content accessing and processing method
based on FPGA configuration bitstream,” Journal of Microprocessors
and Microsystems, vol. 49, no. C, pp. 64–76, Mar. 2017. [Online].
Available: https://doi.org/10.1016/j.micpro.2017.01.009

[26] “Xilinx Microblaze Soft Processor Core,” Webpage, 2012, http://www.
xilinx.com/tools/microblaze.htm.

[27] Vivado Design Suite User Guide, Embedded Pro-
cessor Hardware Design, Xilinx, Inc., 2100 Logic
Drive, San Jose, CA 95124, December 2017. [Online].
Available: https://www.xilinx.com/support/documentation/sw manuals/
xilinx2017 4/ug898-vivado-embedded-design.pdf

[28] Configuration Readback Capture in UltraScale FPGAs, Xilinx, Inc.,
2100 Logic Drive, San Jose, CA 95124, November 2015, XAPP 1230.
[Online]. Available: https://www.xilinx.com/support/documentation/
application notes/xapp1230-configuration-readback-capture.pdf

[29] “Project X-Ray: Documenting the Xilinx 7-series bistream format,”
https://github.com/SymbiFlow/prjxray, 2020.

[30] “Project U-Ray: Xilinx UltraScale bitstream documentation,” https:
//github.com/SymbiFlow/prjuray-db, 2020.

[31] B. Nelson and J. Orgill, “Project X-Ray BRAM patch,” https://github.
com/SymbiFlow/prjxray-bram-patch, 2020.

[32] Vitis Unified Software Development Platform 2020.2 Documentation:
Managing Interface Synthesis, Xilinx, Inc., 2100 Logic Drive, San Jose,
CA 95124, March 2021. [Online]. Available: https://www.xilinx.com/
html docs/xilinx2020 2/vitis doc/managing interface synthesis.html

[33] UG909: Vivado Design Suite User Guide: Partial Reconfiguration,
Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124, December 2017.
[Online]. Available: https://www.xilinx.com/support/documentation/sw
manuals/xilinx2017 4/ug909-vivado-partial-reconfiguration.pdf

[34] “Xilfpga,” https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/
18841910/Xilfpga, 2020.

[35] Y. Zhou, U. Gupta, S. Dai, R. Zhao, N. Srivastava, H. Jin, J. Feath-
erston, Y.-H. Lai, G. Liu, G. A. Velasquez, W. Wang, and Z. Zhang,
“Rosetta: A realistic high-level synthesis benchmark suite for software
programmable FPGAs,” in Proceedings of the International Symposium
on Field-Programmable Gate Arrays, 2018, pp. 269–278.

Web link for this document: <http://ic.ese.upenn.edu/abstracts/bert fccm2021.html>


