
DeepMatch: Practical Deep Packet Inspection in the Data Plane
using Network Processors

Joel Hypolite
The University of Pennsylvania

jhypolit@cis.upenn.edu

John Sonchack
Princeton University
jsonch@princeton.edu

Shlomo Hershkop
The University of Pennsylvania

hershkop@cis.upenn.edu

Nathan Dautenhahn
Rice University
ndd@rice.edu

André DeHon
The University of Pennsylvania

andre@acm.org

Jonathan M. Smith
The University of Pennsylvania

jms@cis.upenn.edu

ABSTRACT
Restricting data plane processing to packet headers precludes anal-
ysis of payloads to improve routing and security decisions. Deep-
Match delivers line-rate regular expression matching on payloads
using Network Processors (NPs). It further supports packet re-
ordering to match patterns in flows that cross packet boundaries.
Our evaluation shows that an implementation of DeepMatch, on a
40 Gbps Netronome NFP-6000 SmartNIC, achieves up to line rate for
streams of unrelated packets and up to 20 Gbps when searches span
multiple packets within a flow. In contrast with prior work, this
throughput is data-independent and adds no burstiness. DeepMatch
opens new opportunities for programmable data planes.

CCS CONCEPTS
• Networks → Deep packet inspection; Programming inter-
faces; Programmable networks;

KEYWORDS
Network processors, Programmable data planes, P4, SmartNIC
ACM Reference Format:
Joel Hypolite, John Sonchack, Shlomo Hershkop, Nathan Dautenhahn, An-
dré DeHon, and Jonathan M. Smith. 2020. DeepMatch: Practical Deep Packet
Inspection in the Data Plane using Network Processors. In The 16th Inter-
national Conference on emerging Networking EXperiments and Technologies
(CoNEXT ’20), December 1–4, 2020, Barcelona, Spain. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3386367.3431290

1 INTRODUCTION
Data plane programmability is a powerful tool for dynamic, network-
based optimizations. Concurrently, “big data”, decentralized micro
services, and the Internet of Things (IoT) are adding traffic to net-
works. Today’s data plane processing, while useful for network
telemetry and optimization, misses opportunities to better clas-
sify and route traffic using data that lie beyond the layer 3 and 4
headers. For example, malicious flows otherwise indistinguishable
from other traffic can often be identified based on patterns that

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CoNEXT ’20, December 1–4, 2020, Barcelona, Spain
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7948-9/20/12.
https://doi.org/10.1145/3386367.3431290

Security
Appliance
DPI
filtering

Security
Appliance
DPI
filtering

Security
Appliance

Scalability
Challenge

Network

1

DeepMatch
+ P4

Server

Applications

smartNIC

Header
rules

DPI
rules

DPI
rules

P4

2

3

Server

Header
rules

DPI
rules

Bottleneck

IDS

Applications

smartNIC

Figure 1: DPI today (left and network) is limited by per-
formance, scalability, and programming/management com-
plexities (shaded red) inherent to the underlying deploy-
ment models. DeepMatch (right) pushes DPI into the com-
modity SmartNICs currently used to accelerate header fil-
tering and integrates DPI with P4, which improves perfor-
mance and scalability while enabling a simpler deployment
model.

occur in packet payloads [28, 46, 55]. Flow classification, discussed
in Sec. 2, shows similar benefits. In deep packet inspection (DPI),
payloads are scanned for patterns written as regular expressions
(regex), a more expressive and natural extension of existing data
plane programming abstractions. Today’s systems, comprised of
software-defined networking (SDN) switches (which lack datapaths
needed for DPI’s payload processing) and the P4 language [19]
(which falls short of the expressiveness needed to process pay-
loads) force DPI solutions into middleboxes or hosts. Hardware
and software needed to upgrade from header-only processing adds
complexity and may be costly.

Network processors (NPs) can meld payload matching into data
plane processing. The DeepMatch design exploits the manycore
parallelism available in NPs to achieve a high performance DPI
regex matching capability integrated with P4 data plane programs.
DeepMatch is tuned to exploit architectural characteristics of NPs,
including complex distributed memory hierarchies, direct memory
access (DMA), and multithreading.

DeepMatch’s parallel processing scheme (Sec. 5) distributes pack-
ets to a tight Aho-Corasick deterministic-finite-automata (DFA)
matching loop [12] running on the NP cores (Sec. 5.2). Latency-
aware placement of DFA state within the NP ’s memory hierarchy

https://doi.org/10.1145/3386367.3431290
https://doi.org/10.1145/3386367.3431290

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Hypolite et al.

lets multithreading mask access times and enables the manycore NP
to achieve 40 Gbps line-rate pattern matching within packets. Regex
matching across the packets comprising a flow requires support for
reordering, as out-of-order arrivals must be correctly sequenced.
As this is missing from P4, DeepMatch must provide it, increasing
the complexity of packet handling due to the NP’s limited num-
ber of active threads, limited memory for instructions and local
state, and lack of dynamic memory allocation. DeepMatch ’s novel
resource placement and scheduling overcomes these limitations
and serializes many interleaved flows concurrently using the NP,
significantly expanding the power of P4. Notably, even as DFA state
expands to occupy larger (and slower) memories, making mem-
ory speed a bottleneck, DeepMatch ’s throughput is guaranteed,
regardless of packet contents.

We benchmark our DeepMatch prototype to evaluate how it
responds to specific types of traffic including increasing number
of flows, out-of-order packets (OoO), and packet bursts (Sec. 6).
DeepMatch illustrates design challenges for payload-processing at
line-rate on NPs, proposes solutions engineered to overcome per-
formance implications, and provides results from a thorough per-
formance evaluation that guides more general payload-processing
tasks.

Overall, this paper makes the following contributions:

• Demonstrate the first line rate DPI primitive, providing guar-
anteed data-independent throughput, embedded in a P4 dat-
aplane using the Netronome NFP-6000 programmable NP
(Sec. 5.4, Sec. 6.2)

• Demonstrate packet accounting and reordering to allow
flow-based DPI processing on programmable NPs (Sec. 5.5,
Sec. 6.3)

• Characterize performance achievable across a wide range of
task and network characteristics, providing insight into the
capabilities and limitations of programmable NPs (Sec. 6)

• Provide valuable lessons learned for future advanced uses of
NPs involving payload processing tasks

We provide an open-source release of DeepMatch at:
https://github.com/jhypolite/DeepMatch

2 PACKET FILTERING
Packet filtering (or classification) is the process of categorizing
packets in a network data plane [29]. It is a fundamental capability
allowing a shared data plane to provide differentiated services,
such as policy-based routing [22], monitoring [28], and security
enforcement [52, 60, 66].

There are two types of packet filters. First, header inspection
classifies based on layer 2—4 headers. It is typically used to distin-
guish between flows defined by endpoint or connection identifiers
(e.g., IP address or TCP/IP 5-tuple). Second, DPI classifies flows
based on patterns found in payloads. This enables finer-grained
filtering and richer policies that would be difficult or impossible to
implement using only information found in headers.

While both header filtering and DPI are critical in today’s net-
works, DPI is significantly more expensive and challenging to scale,
primarily due to the greater computation needed to perform per
byte payload processing. Furthermore, as Fig. 1 (left and middle)

illustrates, this gap is exacerbated due to the use of different plat-
forms and deployment models.

DPI has been deployed in essentially the same way for decades:
either atop dedicated appliances (i.e., middleboxes, Fig. 1 ①) or soft-
ware at the endhost (Fig. 1 ②). DPI appliances use tightly optimized
hardware and software to keep per-unit power cost low [42, 68, 72].
However, they are expensive in terms of unit cost, can become the
choke point in a network, and are notoriously difficult to manage
at scale [59]. The need to program them separately and differently
from the data plane is one contributor to the management complex-
ity.

Though running DPI engines on endhosts simplifies manage-
ment [40, 48], it also places a computational burden on general
purpose processors. Performance depends highly on both the input
patterns and packet workload (Sec. 7). Further, extra background
load on servers can have drastic impacts on application perfor-
mance [24, 37], e.g., response time.

Unlike DPI, header filtering has become significantly less expen-
sive and easier to scale. The key has been leveraging commodity
programmable networking equipment and designing high-level
abstractions that make header filtering policies easier to implement
(Fig. 1 ③). For example, P4 programmable SmartNICs reached 10%
of total controller and adapter market revenue in 2018, with es-
timates to be over 27% by 2021 [36]. These devices have the raw
compute power to support custom filtering at or near line rate.

Equally important, SmartNICs are only marginally more expen-
sive than their non-programmable counterparts,1 which allows
network operators to solve scalability issues by simply provision-
ing the commodity programmable elements in every server [2, 24]
or switch.

The primary goal of DeepMatch, illustrated in Fig. 1 (right), is
to leverage existing commodity network processing hardware to
support not only header inspection, but also DPI at high line rates
across the entire network with simple programming abstractions.
This is challenging for two reasons. First, as we discuss in Sec. 4,
real-time, network-processing hardware has inherent limitations
on memory sizes in order to provide guaranteed high-throughput
operation. Second, DPI is a much more computationally intensive
and complicated task than header filtering. The computational
intensity is inherent: finding a pattern that can start anywhere in
a packet and has arbitrary length requires scanning every byte
of a packet. Though simple string matching can have minimal
computational complexity, regex matching can be more efficient
when it is necessary to match many potential strings and variations.

3 P4 DPI INTEGRATION
Integrating DPI into P4 simplifies building advanced flow classi-
fication and security applications and integrating them with pro-
grammable forwarding policies. In this section, we highlight several
specific motivating examples.

1As an example, the NetronomeNFP-4000 2x40Gbps SmartNIC lists for around the same
amount as the latest generation Mellanox ConnectX fixed-function NIC ($650) [6, 9]
and uses similar amounts of energy under full load (25W) [5, 44]

https://github.com/jhypolite/DeepMatch

DeepMatch: Practical DPI on Network Processors CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

0 5 10
time (seconds)

0

500

1000

pa
th

lo
ad

(M
b/

s)

low latency high bandwidth

0 5 10
time (seconds)

0

500

1000

pa
th

lo
ad

(M
b/

s)

low latency high bandwidth

0 1000
Scan Cutoff (Bytes)

0.0

0.5

1.0

D
et

ec
tio

n
R

at
e

(%
)

(a) DeepMatch payload-content routing (b) routing with first 1024B of packet (c) Scan depth vs. detection rate

Figure 2: Sorting between low latency and high bandwidth paths for small (>1 KB) Redis object transfers

ingress {
if ((tcp.dport == REDIS_PORT)
|| (tcp.sport == REDIS_PORT)) {

logObjSize = scanPayload(packet); //
DeepMatch

if (logObjSize != 0)
lastObjSize[pkt.key] = logObjSize;

else if (lastObjSize[pkt.key] >= 5)
ip.tos = 1; // prefer high bandwidth.

else
ip.tos = 0; // prefer low latency.

}
apply(forwardingTable);

}

Figure 3: DPI for application layer routing.

3.1 Redis Application Layer Routing
DPI enables fine-grained quality of service (QoS) policies based on
application layer information [21, 38]. As an example, consider a
network optimized to balance latency and throughput of a scaled
out Redis [54] key-value database.

A typical deployment services two request classes: frequent re-
quests for small latency-sensitive objects [33] and infrequent re-
quests for large throughput-sensitive objects that increase overall
latency by saturating network queues.

The goal of a Redis-aware QoS policy is to isolate the two types
of requests, routing small objects on prioritized low latency paths
and large objects on low priority paths with high bandwidth. De-
termining the size of a Redis object is conceptually simple: it is
declared in the object’s header. However, extracting this header
correctly requires inspection of full packet payloads. A new object
can start at any point in a TCP stream because Redis connections
carry many requests. This means object requests may cross packet
boundaries, and packets must be re-ordered to observe the full
request.

We quantify the benefit of DPI for application-aware QoS by
analyzing a 2.7GB Redis trace with 4 clients streaming requests
to a single server, with a 90% / 10% split between small (1KB) and
large (1MB) objects. The policy uses regex to extract object sizes
and select network paths.

Fig. 2(a) shows the volume of traffic routed across each path. The
DPI signatures parse every object’s size prefix and ensure that only

10−4 10−2 100

request interarrival time (s)

0.0

0.5

1.0

cd
f sampling (100%)

sampling (50%)
sampling (10%)
Deepmatch

10 100 1000
monitor load (Mb/s)

sampling (100%)

sampling (50%)

sampling (10%)

Deepmatch

(a) Accuracy (b) Load

Figure 4: DPI Signature Sampling.

small objects are routed on the low latency path. As Fig.2(b) and
(c) show, DPI is critical for correctness. Object headers are missed
when less than the entire payload is scanned, causing transfers to
be routed on the wrong paths.

This policy is straightforward to implement with DPI capabilities
integrated into a P4 program. Fig. 3 shows pseudocode for the
program. It scans payloads for regex that discriminate between
object size prefixes with different orders of decimal magnitude,
e.g., regular expressions of the form: "\r\n\$.{𝐷}\r\n" , where
𝐷 is the number of decimal digits in the object size value. The
P4 program tracks the size of the most recent object transfer in
each Redis flow and tags packets with the path ID for downstream
switches.

3.2 Efficient Network Monitoring
We now look at prefiltering based on application layer metadata
not visible to today’s header-based prefilters [28, 43]. For example,
consider a telemetry system measuring Redis request interarrival
times and sizes. Tomeasure these distributions, a telemetry backend
needs to process packets that contain application layer request
headers. However, the data plane needs DPI to identify these packets
because a request header can begin anywhere in a TCP stream,
including crossing packet boundaries.

Fig. 15 in App. A shows a P4 program using DPI for prefiltering.
DeepMatch scans payloads for regular expressions that identify
request types. For example, this expression identifies GET requests:
"\r\n\GET\r\n". Whenever DeepMatch identifies a new request,
the P4 program simply clones the packet to a backend telemetry
server for measurement.

Fig. 4 quantifies the benefit of application layer prefiltering. It
shows the accuracy (a) and workload (b) of a telemetry server mea-
suring Redis GET request interarrival times. With DeepMatch DPI

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Hypolite et al.

Figure 5: The DeepMatch Architecture

prefiltering, the server measured the exact interarrival distribution,
while only processing the small fraction of packets containing re-
quest headers. In comparison, packet sampling had significantly
lower accuracy while cloning orders of magnitude more packets to
the server.

3.3 Packet Filtering for Security
IDS-style packet inspection (e.g. Snort [55] or Bro [46]) can be simi-
larly integrated. We provide an example in App. B. It is particularly
important to perform matches that cross packet boundaries for
security [53]; otherwise, an adversary could deliberately arrange
their malicious content to cross the boundary to evade detection.
This, too, demands packet reordering.

4 DPI ON NETWORK PROCESSORS
The restrictions on today’s P4-programmable data planes that only
allow them to process headers makes realizing DPI challenging.
NPs have considerable potential to perform DPI, but their design
encourages the algorithm and decomposition to be architecture-
aware.

4.1 Network Processor Architectures
NPs are manycore processors with cores specialized for guaranteed-
throughput packet processing. They are more akin to real-time
embedded processors than general-purpose cores. Small per-core
footprints mean that many such cores can be packed onto a chip to
maximize processing throughput. Hundreds of threads accessing
shared mutable state would create a bottleneck, so a decentral-
ized set of small memories local to each core is used to minimize
contention; these scratchpad memories are managed by the pro-
grammer rather than the system to guarantee predictable timing.
Programmers must manage hard constraints on code and data size.

These characteristics are common to most NPs (Tab. 1) and are
driven by fundamentals such as performance, silicon structure cost,
and demands of network processing; as such, these basic character-
istics are likely to persist in future NPs.

Table 1: Network Processor Characteristics

Vendor NP cores clock threads
avail. freq total

Cisco FP 2017 [39] 672 1.00 GHz 2,688
Cisco FP 2015 [1] 40 1.20 GHz 160
Microsemi WinPath4 [8] 48 0.50 GHz 320
Microsemi WinPath3 [7] 12 0.45 GHz 64
Netronome NFP-6000 [73] 80 1.20 GHz 640 (320)
Netronome NFP-4000 [10] 50 0.80 GHz 400 (200)

total threads in reduced thread mode in parentheses

The simplicity of the NP cores allows NPs to scale to support
large volumes of traffic in a cost-effective way, but it alsomeans they
do not natively support applications written in multi-threaded C
code targeted at general-purpose processors with larger memories,
implicitly managed caches, and complex, best-effort (not real-time)
processing cores, such as Instrusion Detection Systems (IDS). As
Sec. 7 shows, best-effort processing on general-purpose cores can
have high, data-stream dependent variation in throughput, making
them less suitable for providing consistent QoS guarantees.

4.2 Netronome Target Architecture Details
DeepMatch targets the Netronome NFP-6000 SmartNIC, a 40 Gbps
P4 programmable NIC. Characteristics and relevant components
of the NFP-6000 that impacted the design and implementation of
DeepMatch are shown in Fig. 5. While the parameters are NFP-
6000 specific, the features and the fact that programs must be tuned
to the specific numbers are common across NPs.

Processing Cores and Context. User code runs on up to 81 Flow
Processing Cores (FPC) distributed on seven islands. FPCs are 32-bit
RISC-based cores that run at 1.2 GHz and have 8 thread contexts.
648 threads are therefore available to a program. At most one thread
is executing at a time on an FPC. The threads in a FPC are non-
preemptive; threads must explicitly yield execution, and switching
contexts takes 2 cycles. Each FPC has a private code store that can
hold 8K instructions shared by its threads; these are not a cache

DeepMatch: Practical DPI on Network Processors CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

Close
Flow?

Find or Create
Hash Table

Entry

DFA Check

DMA
Packet to

OOO
Queue

Update
Flow State

Update
Flow State

DMA Packets, that
can be Processed,
from OOO Queue

DFA Check Update
Flow State

Free Flow State &
Reclaim Hash Entry

Process
Opposing

Flow

No

Yes

Close
Flow?

RST/FIN
Packet?

No Yesbegin

end

No

Process
Packet
Now?

No

Yes

LOCK FLOW

LOCK FLOW

LOCK REV FLOW

Stateful
DPI

Needed?

Stateful
DPI

Needed?

Yes
Yes

No

No

Figure 6: DeepMatch Flow of Execution for Intra- and Inter-Packet Regular Expression Matching

Table 2: Netronome memory hierarchy [73]
Memory Size Latency (cycles)
Code Store (CS) 8 K Instrs. 1
Local Memory (LM) 4 KB 1-3
Cluster Local Scratch (CLS) 64 KB 20-50
Cluster Target Memory (CTM) 256 KB 50-100
Internal Memory (IMEM) 4 MB 150-250
External Memory (EMEM) 2 GB 150-500

of active portions of a program; the entire application must be
described in 8K instructions (or 16K in shared-code mode). Each
FPC has 256 32-bit general-purpose registers shared amongst its 8
threads, or 32 registers per thread. If additional registers are needed
per thread, the NFP may run in a reduced thread mode with four
active threads per FPC, each with 64 registers.

Memory Hierarchy and Latency. FPCs have access to large, shared
global memories and small, local memories that are fast but require
programmer management. This hierarchy is shown in Tab. 2. Upon
issuing a read/write memory request, a FPC thread context switches
and waits until its request is handled. This overlaps memory latency
with computation in a different thread.

Packet Handling. When a packet arrives, the ingress Network
Block Interface (NBI) copies it to the CTM packet buffer of an
available FPC. By default, the first 1024 bytes of a packet are copied
to CTM, with the remainder copied to IMEM. DeepMatch doubles
the ctm_split_length to 2048 bytes to accommodate a complete
1500 byte MTU in the CTM buffer. This wastes ca. 500 bytes but
maximizes payload processing performance. Each FPC processes
its packet to completion, at which point it is sent to the egress NBI
for transmission.

DMA Engines. The NFP-6000 provides DMA engines for fast
and safe, semaphore-protected data transfers. There is a limit of 16
outstanding DMA commands per CTM.

Programming Languages. The NFP-6000 can be programmed
in both Micro-C and P4. Micro-C is an extended subset of C-89
[73]. It is limited by FPC capabilities, e.g., no recursion, no variable
argument lists to functions, no dynamic memory allocation. P4 is

supported with a compiler extension that translates P4 code into
Micro-C. Native Micro-C functions can be called by P4 programs.

5 SYSTEM DESIGN
DeepMatch is designed to provide fast and comprehensive DPI,
supporting two modes that offer different design points between
these goals. First, DeepMatch provides a stateless intra-packet regex
matching capability that is carefully designed to achieve sustained
peak processing rate when processing full payloads (Sec. 5.4). Sec-
ond, DeepMatch provides a stateful inter-packet regex matching
capability (Sec. 5.5). Content specified by a regex may appear any-
where in a flow (Sec. 3), even crossing packet boundaries. Thus,
DeepMatch must support reordering of packets and scanning across
the ordered payload of an entire TCP stream. Packet reordering is
not natively supported by P4, so we describe a capability that will
also be important to other advanced uses of NPs.

Fig. 5 illustrates DeepMatch’s architecture. Newly arrived pack-
ets are dispatched to worker threads running on FPCs. When inter-
packet matching is desired, FPCs consult and update flow state
to continue matches across packets (Fig. 6). Out-of-Order (OoO)
packets are buffered in large, shared memory until they can be
processed in order.

5.1 Key Challenges
The key challenge to guaranteed real-time, line-rate payload han-
dling is to simultaneously satisfy high computation, memory, and
data transfer requirements. This constrains the computation that
can be performed per payload byte and the tolerable memory la-
tency. Automatically-managed caches would make memory latency
variable, so NP architectures avoid caches, forcing the program-
mer to explicitly move data to control memory latency. Similarly,
programmers must limit data-dependent branching and looping
to guarantee worst-case computation and memory access time. In
some cases, tradeoffs among compute, memory, and data transfer
are needed to maximize achievable performance. We show how we
address these issues for DPI exploiting the architectural features in
NPs with a general methodology that forms the starting point for

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Hypolite et al.

analysis and implementation of other line-rate payload handling
tasks on NPs.

5.2 Regular Expression Matching Strategy
Each FPC performs matching within a packet. To acheive high-
throughput matching, we must minimize the instructions and mem-
ory access required to process each byte of the payload. DeepMatch
uses the Aho-Corasick algorithm [12] to compile regex into a de-
terministic finite automaton (DFA) [17]. The DFA allows a process
to check all patterns simultaneously by making a single state tran-
sition per byte. This avoids backtracking and results in guaranteed,
constant work per byte of input, important for real-time, line-rate
processing. The DFA is compactly implemented using a state tran-
sition table that maps a current state and a byte to a next state. End
states store flags indicating that one or more patterns matched, and
an end state table maps end states to the set of patterns matched.
DeepMatch’s DFA match loop examines every byte in the payload.
As such, the throughput achieved is not payload data-dependent.

5.3 Integrating P4 and DPI on Netronome
DeepMatch is implemented as an external P4 action, written in
Micro-C [73]. P4 code parses and filters packet headers and meta-
data. P4-defined match-action tables, populated in the control plane
at run-time, determine actions to apply to the packet based on the
parsed headers. DeepMatch is invoked as a table action settingmeta-
data for subsequent tables to match on (e.g., Fig. 16). The control
plane compiles regex into a DFA and loads DeepMatch at runtime.

5.4 Stateless Intra-Packet Regex Matching
Packet payloads are processed by the core DFA matching loop
(Sec. 5.2). Nominally, this requires that we read one character from
the payload, perform one lookup into the DFA state transition
table, and perform a number of instructions to manipulate the
data, setup the memory references, and handle loop control. Our
implementation required 15 instructions per input character to
execute a DFA state update.

We use a simple throughput analysis to compute an upper bound
on the network throughput the NP can sustain:

𝑁𝑐𝑜𝑟𝑒𝑠 × 𝐹𝑐𝑜𝑟𝑒 ×𝐶𝑃𝐵 ≥ Network Throughput (1)

where 𝑁𝑐𝑜𝑟𝑒𝑠 is the number of cores, 𝐹𝑐𝑜𝑟𝑒 is core frequency, 𝐶𝑃𝐵
is the cycles the core must execute per input bit.

Assuming throughput limits computation, rather than memory
latency which we address next, the 𝑁𝑐𝑜𝑟𝑒𝑠=81 FPCs running at
𝐹𝑐𝑜𝑟𝑒=1.2 GHz, can support about 50Gbps:

81 × 1.2 × 109cycles/s × 8b/byte
15cycles/byte

= 52Gbps (2)

FPCs can exploit threading to hide memory latency. However,
the memory latencies for performing the payload byte read and
DFA state lookup can be high (Tab. 2). Accessing a payload in CTM
can take 100 cycles. Similarly, reading a DFA table from CTM costs
100 cycles. To fully hide the read latency, we would need 200/15+1
= 14 threads running on each FPC, which is greater than the FPCs
can support.

In general, we hidememory latency by switching to other threads
(Fig. 7). When all threads are running the same computation, each

T1 T2 T3 T4 T5 T6 T7 T8 T1 T2 T3 T4 T5 T6 T7 T8

T1 memory latency T1 memory latency

T1FPC Use

Memory

Figure 7: Using Threads to Hide Memory Latency

thread can run its compute cycles, 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑐𝑦𝑐𝑙𝑒𝑠 , 15 here, while
another thread is waiting on memory access latency. When the
total memory latency is 𝐿𝑚𝑒𝑚 , this gives a constraint:

𝐿𝑚𝑒𝑚 < 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑐𝑦𝑐𝑙𝑒𝑠 × (𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠 − 1) (3)

Alternately, since 𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠 = 8 for the NFP-6000, we can use
Eq. 3 to see that we can afford a memory latency of about 15×7=105
cycles to approach the full computational throughput of the FPCs.
This implies the DFA transition table cannot be placed in the large
EMEM, with a memory latency of 150–500 cycles, if we aim to
operate at 40 Gbps (line rate processing). Further, we may need to
avoid performing per byte reads from the payload in CTM.

The payload byte read penalty is reduced by transferring the
payload in 32-byte batches from the CTM packet buffer to local
memory via transfer registers. Each batch is then processed byte-
by-byte. The performance gains are significant, as CTM access
times are 50-100 cycles, compared to 1-3 cycles for local memory.
For example, a 1024-byte payload requires approximately 76,800
cycles to access all bytes when read one at a time from the CTM
buffer, whereas, the batched approach requires only 4,448 cycles,
or about 5 cycles per byte read. Performing the batched transfers
does require more FPC instruction cycles (20), bringing our peak
performance from FPCs down to about 40Gbps.

81 × 1.2 × 109cycles/s × 8b/byte
20cycles/byte

= 39Gbps (4)

This is an example where we trade more computation (larger
𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑐𝑦𝑐𝑙𝑒𝑠) in order to reduce memory latency that would oth-
erwise place a larger limit on computational throughput. An equiv-
alent way of formulating the memory latency effect in Eq. 3 is to
represent the effect of memory latency on throughput:

𝑁𝑐𝑜𝑟𝑒𝑠 × 𝐹𝑐𝑜𝑟𝑒 ×
𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠 − 1

𝐿𝑚𝑒𝑚
×𝑏𝑖𝑡𝑠 ≥ Network Throughput (5)

Here, 𝑏𝑖𝑡𝑠 is the number of bits processed on each read (or reads)
requiring the 𝐿𝑚𝑒𝑚 memory latency cycles. The achievable through-
put is the minimum of Eq. 1 and Eq. 5.

Eq. 4 shows us 20 cycles per byte is the upper bound on available
computation for any payload processing application to run at the
40Gbps line rate on the NFP-6000.

Placing the DFA transition table in CLS keeps memory latency
low enough (50 cycles) that we can, potentially, achieve the full
40 Gbps DPI throughput. Since CLS memories are local to a cluster,
DFA transition tables must be replicated in each cluster (8 copies).
This limits performance loss and variability from memory con-
tention, which can occur on the larger, shared memories, which is
not modeled in our simple equations above.

5.5 Stateful Inter-packet Regex Matching
An extended DeepMatch can support regex matching across packet
boundaries within a flow. This forces us to evaluate packets in flow
order (serialization), requiring per-flow state for Out-of-Order(OoO)
packet storage and retrieval. Thus, throughput available to a single

DeepMatch: Practical DPI on Network Processors CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

flow is limited and aggregate performance depends on the number
of flows.

5.5.1 Finding patterns across packet boundaries. DeepMatch
maintains per-flow DFA state and sequences packets in a flow using
TCP sequence numbers. Immediately after a packet is processed
(see Fig. 6), the OoO buffer is checked for queued packets; this
maximizes the per flow processing rate.

The flow state resides in IMEM while the OoO packet data is
kept in EMEM. There are two 4MB IMEMmemory engines. As each
flow needs a 28B record, there is an upper limit of 290K flows. Since
IMEM is split and shared (about 10% is used for system variables),
the actual limit is lower. 50K flows occupies about one third of one
of the IMEMs. There are three EMEM memory engines, each with
8GB of DRAM. Each EMEM can hold 5.4 million maximum length
(1500B) packets that can be split between flows and OoO packets
per flow.

𝐸𝑀𝐸𝑀𝑂𝑜𝑂_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ≥ 𝑁𝑓 𝑙𝑜𝑤 × 𝑁𝑂𝑜𝑂_𝑝𝑒𝑟_𝑓 𝑙𝑜𝑤 (6)

About 30% of total EMEM capacity is used for system variables.
Using 4GB, half of one of the EMEMs, for the OoO buffers, and
assuming 100 OoO packets per flow (𝑁𝑂𝑜𝑂_𝑝𝑒𝑟_𝑓 𝑙𝑜𝑤), over 25K
flows can be supported. As references to this state occur only once
per packet, longer access times are tolerable; as access by any FPC
can occur, these memories must be accessible by all FPCs. DMA
engines offload data transfers of packet data to and from EMEM.

For our prototype, we sized the packet buffers to track 320 flows
(𝑁𝑓 𝑙𝑜𝑤) with 100 OoO packets per flow (𝑁𝑂𝑜𝑂_𝑝𝑒𝑟_𝑓 𝑙𝑜𝑤). This is
in line with requirements for operation in data center NICs, which
typically observe from 10s to 1000s of concurrent flows [56]. With
320 flows, and 28B records, the flow state table in IMEM needs less
than 10KB of memory. DeepMatch manages locks on shared state
to avoid stalls (Fig. 6). Locks are flow-specific and are held only
during brief per-packet operations; they are specifically not held
during packet DMA operations and payload scanning.

5.5.2 Performance. Supporting inter-packet regex matching re-
quires additional per-packet handling to consult and maintain per
flow state. For large packets, this cost is mostly amortized across the
payload bytes. The header processing time goes from 3,309 cycles
per packet in the intra-packet case to 8,221 cycles per packet in
the inter-packet flow matching case; this means header processing
time can dominate for payloads smaller than 411 Bytes.

𝐻𝑒𝑎𝑑𝑒𝑟𝑐𝑦𝑐𝑙𝑒𝑠 ≥ 𝐶𝑃𝐵 × 8 × 𝑁𝑏𝑦𝑡𝑒𝑠 (7)

𝐻𝑒𝑎𝑑𝑒𝑟𝑐𝑦𝑐𝑙𝑒𝑠

𝐶𝑃𝐵
=

8221
20

= 411 ≥ 𝑁𝑏𝑦𝑡𝑒𝑠 (8)

The core DFA matching loop remains unchanged, so the same basic
performance phenomena are in play, but the combination of the
limits in the NFP architecture, including the size of the local store
and the number of registers per thread, combined with the addi-
tional code and state needed for inter-packet regex work to reduce
the performance we can extract. Finally, OoO packets must be sent
to and retrieved from larger memories, introducing additional time
and throughput limits on packet processing.

Increased Code and Data Requirements. With the additional inter-
packet matching support described above, the DeepMatch code
compiles to 12,729 instructions. Each FPC code store has an 8K
instruction limit, but the shared code store option on the NFP allows
a larger image to be split between two paired FPCs, effectively
doubling the instruction limit, but potentially adding contention
on instruction fetch. We use the default code-splitting mode, where
even instructions are placed in one code store and odd instructions
in the other code store. Shared code mode demands an even number
of FPCs, so we can only use 80 (instead of 81) FPCs in this mode. As
shown in Fig. 9, we do see performance impacts from contention
on the instruction memories.

Due to the added code complexity, we hit the limit for the com-
piler register allocator and local memory spillage, and thus, Deep-
Match must run in reduced-thread mode when supporting inter-
packet regex matching. In this mode, only four threads are available
per FPC reducing the ability to tolerate memory latency by half
(Eq. 3). The benefit is that each of the four threads has access to
twice as many context relative registers. Combined with shared
code mode’s requirement to have an even number of MEs, the result
is a maximum of 80×4=320 concurrent threads.

Impact on DFA matching loop. Dropping to 4 threads, reduces
our ability to tolerate memory latency (Eq. 3) to about 20×3=60
cycles. By itself, that might not impact performance when the DFA
transition table is in CLS, but it will make the performance loss
higher for the larger memories. The shared-code operation may
double the number of cycles for instruction execution from 20 to 40.
At the extreme, this now brings our potential performance down
to about 20Gbps.

80 × 1.2 × 109cycles/s × 8b/byte
40cycles/byte

= 19Gbps (9)

OoO Data Movement. When packets arrive in order, the basic
dataflow does not change. The packet is stored in the CTM which is
located within the cluster of FPCs and does not change the time for
data access. OoO packets must be sent to EMEM and then retrieved
from EMEM to the CTM. DMA engines make this more efficient
than simply reading individual words from the high latency EMEM,
but there is added latency to recover a packet from EMEM. Further-
more, the limit of 16 concurrent DMA transfers means contention
effects can further limit performance.

Per Flow Performance. A single flow is now essentially serialized
to operate on a single FPC. Multithreaded latency hiding does not
matter to single flow throughput. With 20 instructions per byte
of processing and 50 cycles of CLS latency, a single flow will be
limited to about 140Mbps.

1.2 × 109cycles/s × 8b/byte
(20 + 50) cycles/byte = 0.137Gbps (10)

Additional flows add linearly at first, with each getting its own
FPC. Even at 80 flows, while the FPCs share instruction memories,
most of the cycles are in memory wait rather than instruction fetch.
Eventually, instruction contention becomes a significant effect as
noted above.

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Hypolite et al.

200 400 600 800 1000 1200 1400

Payload Size (Bytes)

10

15

20

25

30

35

40
B

an
d

w
id

th
(G

b
p

s)
CLS

CTM

IMEM

EMEM

Figure 8: Intra-packet RegexMatching Performance: DFA lo-
cation and payload size affect throughput when shared code
mode and reduced threads mode are off.

6 EVALUATION
We evaluate DeepMatch with a series of benchmarks that character-
ize the performance achieved under a variety of task and network
scenarios.

6.1 Experimental Setup
6.1.1 Testbed. We benchmark DeepMatch in a simple two node

topology. The NFP card that runs DeepMatch is installed in a Dell
PowerEdge R720 with dual Intel Xeon E5-2650 v2 8-core 2.60 GHz
processors and 64 GB DDR3 1600MHz RAM. It is connected, via
40 GbE cables, to a traffic generation server. The traffic generation
server is a Dell PowerEdge R720 with dual Intel Xeon E5-2680 v2
10-core 2.80 GHz processors, 256 GB DDR3 1866 MHz RAM, and a
Mellanox ConnectX-4 40/100 GbE NIC. It uses dpdk/pktgen [3] for
replay and capture.

6.1.2 Measurements. We measure the lossless throughput of
DeepMatch: the maximum sustained rate at which DeepMatch
can operate without dropping a single packet. We use packet traces
of synthetic TCP flows that we generated to control the following
factors: packet size, flow count, flow bandwidth, packet ordering,
and burst size. To determine throughput, an automated script re-
peats trials that send packets to DeepMatch at a target transmit rate
then checks for packet drops. Trials continue with decreasing trans-
mit rates until no drops are detected. For stateful flow scanning,
the script also ensures that all flows close properly.

6.2 Stateless DeepMatch
Fig. 8 shows we achieve line rate (40 Gbps) with the DFA transition
table in CLS memory up to 800 byte packets. Throughput drops for
larger memories since the 8 threads are not sufficient to hide the
memory latency performing the DFA lookups. The performance
drop between 800 byte and 1024 byte packets is very distinct and re-
peatable, but we have not been able to isolate a specific mechanism
or effect that clearly explains the performance drop.

We highlight typical packet sizes reported by CAIDA and Face-
book. The range of mean and median packet sizes reported by the
CAIDA nyc (dirA) monitor for an 11 month period (March 2018 -
January 2019) is 785-924 bytes and 865-1400 bytes respectively [26].

Facebook provides the distribution of packet sizes in a datacenter
for four host types [56]. They report Hadoop traffic as bimodal,
either MTU length (1500 bytes) or TCP ACK. The median packet
size for other services is less than 200 bytes with less than 10% of
packets fully utilizing the MTU.

The DeepMatch results in Fig. 8–14 do not depend on the specific
regex being matched beyond the size of the DFA. This is an advan-
tage of the real-time, guaranteed-throughput design. Fig. 8 and
others show separate performance curves for the different mem-
ories implied by the DFA sizes. Tab. 4 shows how various pattern
rulesets map to DFA sizes and memory requirements. Simple filter-
ing tasks like PII scanning easily fit in the fast, local CLS memory.
Larger Snort rule sets for more complex IDS tasks must be placed
in slower memories.

6.2.1 Discussion. Since the small local memories are such a
large benefit, it may be worthwhile to compress the transition
tables so that they fit into smaller, faster memories. In particular,
the transition tables are often sparse. This could potentially benefit
from DFA compression techniques in the literature [23, 35]. Sparse
table handling often requires more computational instructions to
unpack or interpret the transition table representation. This is a
case where the computational complexity must be balanced with
the compactness gain to maximize net performance.

6.3 Stateful DeepMatch
To benchmark stateful DeepMatch, which scans across the ordered
payload of an entire TCP stream, we vary four additional aspects
of our workloads. First, the number of flows in a dataset are varied
from 1 to 320—the maximum number of concurrently executing
threads. This allows us to determine how the flow rate varies from
the single flow rate up to peak utilization. Second, we vary the
datasets OoO-ness using an algorithm that allows us to turn the
knob on the number of OoO packets. The algorithm swaps the last
two packets in every length k sequence, resulting in a dataset with
1/k OoO packets. This works up to a maximum 50% OoO when k=2.
This has the effect that there is no more than one packet OoO at a
time. Third, we vary the burstiness of the packets in the dataset by
sending k consecutive packets of a single flow, followed by sending
k rounds of single packets from the remaining flows. This has the
effect of creating OoO-ness while keeping a constant aggregate
flow rate. Lastly, we round-robin iterate through each flow sending
k consecutive packets from a flow at each iteration. This forces
DeepMatch to handle bursts from some flow and process OoO
packets in other flows simultaneously.

Since the code for stateful DPI is complex, shared code store and
reduced threads mode (4 threads per FPC) are set for all these trials.

6.3.1 Results. Fig. 9 shows DeepMatch throughput for 320 flows
with the DFA transition table in CLS memory. The inter-packet flow
matching achieves over 20Gbps on large packets, consistent with
expectations (Eq. 9). Smaller packets are penalized more by the ad-
ditional per-packet processing needed to maintain flow state, with
throughput dropping below half (10 Gbps) when header processing
begins to dominate below 400 Byte packets, consistent with our
estimates of header processing time (Sec. 5.5.2). The four additional,
intra-packet matching curves help explain the impact of reduced

DeepMatch: Practical DPI on Network Processors CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

200 400 600 800 1000 1200 1400

Payload Size (Bytes)

10

15

20

25

30

35

40
B

an
d

w
id

th
(G

b
p

s)

Intra-packet,CS=0,RT=0

Intra-packet,CS=0,RT=1

Intra-packet,CS=1,RT=0

Intra-packet,CS=1,RT=1

Inter-packet, 320 flows

Figure 9: Intra- and Inter-Packet Performance on 320 Flows.
CS=shared code mode, RT=reduced thread mode (CS=1 and
RT=1 for the Inter-packet case).

200 400 600 800 1000 1200 1400

Payload Size (Bytes)

5.0

7.5

10.0

12.5

15.0

17.5

20.0

B
an

d
w

id
th

(G
b

p
s)

CLS

CTM

IMEM

EMEM

Figure 10: Inter-Packet Performance on 320 Flows

200 400 600 800 1000 1200 1400

Payload Size (Bytes)

0.04

0.06

0.08

0.10

0.12

B
an

d
w

id
th

(G
b

p
s)

CLS

CTM

IMEM

EMEM

Figure 11: Single Flow Inter-Packet Performance

thread and shared code operating modes. The top curve with all 8
threads and no shared code operation is the same CLS performance
we see in Fig. 8. The other three curves show the effects of reducing
threads and sharing code. We see those effects alone are responsible
for reducing peak performance to 24Gbps. Maintaining flow state
only adds an additionl 4 Gbps loss in throughput.

Fig. 10 shows that as we move to slower memories than the CLS,
we see performance drops as expected.

As noted, the single flow performance is limited. Fig. 11 shows
how this varies with memory and packet size. As expected, large

packets in CLS achieve 0.140 Gbps. Fig. 12 shows how peak through-
put increases with flows. Particularly for large packets, it scales
roughly linearly as expected.

Fig. 13 shows the impact of OoO packets on performance. We
vary the fraction of packets that are OoO. Packets that arrive in-
order are processed directly from the CTM, while all packets that
arrive before the next expected sequence number are sent to EMEM
and retrieved in order. The percentage denotes the fraction of pack-
ets that must be sent to EMEM. This shows a drop to 15 Gbps for
5% OoO packets and graceful degradation as OoO-ness increases.

A large scale study of a Tier-1 IP Backbone measured approxi-
mately 5% of packets out of order [32]. In data centers, reordering
can be significantly lower because data plane algorithms are typi-
cally engineered to minimize reordering [13] because of its effect
on TCP throughput.

Fig. 14 shows the impact of traffic bursts on performance. If
a burst of packets arrive for a single flow, they must be buffered
and sequentialized at the single packet flow rate (Fig. 11). This
effectively means the packets in that flow are treated the same as
OoO packets. Except for the first packet in the flow, packets in
the burst must be copied to EMEM until they can be sequentially
processed by the FPC processing the first packet. Fig. 14 shows little
performance degradation effects from bursts despite the fact these
incur additional data transfers. The eager handling of OoO traffic
allows us to sustain full rate even on flows that are serialized to a
single FPC. The care to not hold locks during long operations means
that little FPC processing capacity is lost while coordinating the
storage and retrieval of these OoO packets. DCTCP [14] measures
the workloads in three production clusters. They report packet
bursts are limited by the TCP window and at 10 Gbps line rates,
hosts tend to send bursts of 30-40 packets.

6.3.2 Discussion. While 40Gbps line rate is not possible in the
flow-based case, under a larger set of scenarios it is possible to
support 10 Gbps traffic. This is still a healthy network rate for many
clients and servers.

There is a large performance drop for the flow-based case that
comes from the larger code requirements and the larger amount
of state. It is possible that a tighter implementation could reduce
the code and state. As such, the intra-packet case serves as a limit
estimate on the additional performance achievable with a tighter
implementation.

With more sophisticated code splitting or replication, it is likely
possible to reduce or eliminate the impact of shared code, bringing
the flow-based case closer to the intra-packet matching case. For
example, the critical DeepMatch loop code is a small fraction of the
total code. If this code were replicated in the instruction memories
and accessed locally, the main performance impact of shared code
would go away.

Our implementation shows that 40Gbps line-rate payload pro-
cessing is possible on the NFP-6000. For any payload inspection task
(e.g., feature extraction, anomaly detection [70]), it will be necessary
to keep cycles per byte below 20 and memory latency per byte below
105 cycles to achieve the full 40 Gbps line rate. More generally, Eq. 1
and 5 provide the first order budgeting constraints for this class of
NPs.

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Hypolite et al.

0 50 100 150 200 250 300

Number of Flows

0

1

2

3

4

5

6

7

8

B
an

d
w

id
th

(G
b

p
s)

Payload Size = 256

CLS

CTM

IMEM

EMEM

0 50 100 150 200 250 300

Number of Flows

0

5

10

15

20

B
an

d
w

id
th

(G
b

p
s)

Payload Size = 1024

CLS

CTM

IMEM

EMEM

0 50 100 150 200 250 300

Number of Flows

0

5

10

15

20

B
an

d
w

id
th

(G
b

p
s)

Payload Size = 1400

CLS

CTM

IMEM

EMEM

Figure 12: Inter-Packet Performance versus Flows (In-Order Packets)

0 10 20 30 40 50

Out-of-Orderness (%)

5.0

7.5

10.0

12.5

15.0

17.5

20.0

B
an

d
w

id
th

(G
b

p
s)

DFA Memory Location = CLS

256 B Payload

512 B Payload

1024 B Payload

1400 B Payload

Figure 13: Inter-Packet Bandwidth vs. OoO (320 Flows)

0 20 40 60 80 100

Burst Size (No. Packets)

6

8

10

12

14

16

18

20

B
an

d
w

id
th

(G
b

p
s)

DFA Memory Location = CLS

Single Flow 256 B Payload

Single Flow 512 B Payload

Single Flow 1024 B Payload

Single Flow 1400 B Payload

DFA Memory Location = CLS

All Flows 256 B Payload

All Flows 512 B Payload

All Flows 1024 B Payload

All Flows 1400 B Payload

Figure 14: Inter-Packet BW vs. Burst (320 Flows)

Table 3: Server-Class Machines used for Evaluation

Clock Power (W)
Name CPU Cores (GHz) Idle HS

High Clock E3-1270 v6 4 3.8 30 89
Many Core E5-2683 v4 32 2.6 135 389

“HS” = Hyperscan

7 COMPARISONWITH HYPERSCAN
We compare DeepMatch with Hyperscan, a heavily optimized
state-of-the-art DPI library that runs on general-purpose proces-
sors [71, 72] and is a best-in-breed representative of current multi-
core patternmatchers. Hyperscan aggressively exploits direct string

matching to reduce DFA sizes and tomaximally exploit SIMDmatch-
ing support on modern Intel IA64 architectures. Hyperscan exploits
common-case optimizations making its performance highly data
dependent; its performance varies to the extent the data streams it
processes match these common cases that it exploits.

We use two hosts to evaluate Hyperscan (Tab. 3). Each with Intel
Xeon CPUs (with SSE3, SSE4.2, POPCNT, BMI, BMI2, and AVX2
support). and dual-port 40Gbps Mellanox ConnectX-4 NICs.

We compare DeepMatch and Hyperscan performance on diverse
rulesets (Tab. 4), including Emerging Threats [31], Snort [11], Redis
[54] application layer routing (Sec. 3.1), personally identifiable infor-
mation (PII), and network monitoring (Sec. 3.2). We run Intra- and
Inter-packet pattern matching trials using various 768 byte/320 flow
packet datasets, including random and ruleset-specific near-match
payloads.

The “% patterns” columns in Tab. 4 show the percentage of pat-
terns that remain after filtering for matcher compatibility. In some
cases (e.g. community all, emerging threats all) Hyperscan only
supports a small fraction of the rules. In these cases, DeepMatch
supports a larger fraction while maintaining the same performance.
This also makes the comparison optimistic for Hyperscan, since
properly supporting those patterns would likely degrade through-
put.

Raw Hyperscan does not perform packet reordering. The pro-
cessor cores will need to spend cycles processing and reordering
packets. This typically requires 1 cycle/bps [25], suggesting the
two systems will saturate at 15.2 Gbps and 83Gbps even without
Hyperscan running. We measure TCP receive and reorder on our
test machines and see they both achieve 5Gbps on a single core
at 3.8 GHz and 2.6 GHz. Generously assuming perfect scaling, this
means 20Gbps and 160Gbps using all processors on the machines
to perform TCP reception and reordering. For a simple calculation,
we generously assume the servers can reorder traffic at the rate
identified above while running Hyperscan. We report the feasi-
ble throughput as the minimum of the throughput supported by
Hyperscan pattern matching and TCP reordering.

The results in Tab. 5 show that whereas DeepMatch performance
is data independent, Hyperscan performance is highly data depen-
dent. To illustrate this, we show two columns of results for Hyper-
scan on each server. One column includes random traffic, while
the second includes traffic designed to be near-matches to patterns
in the pattern set. This near-match pattern set is designed to be a
worst-case for Hyperscan, defeating many of its common-case op-
timizations that allow it to perform simpler processing when it can

DeepMatch: Practical DPI on Network Processors CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

Table 4: Regular Expression patterns and their effect on DFA size and performance

Pattern Total HyperScan DeepMatch
Pattern Set Type Patterns % Patterns % Patterns # DFA States DFA Size (bytes) Memory
scada string 1 100% 100% 11 5632 CLS
emerging-icmp string 16 100% 100% 37 18944 CLS
PII regex 3 100% 100% 96 49152 CLS
emerging-telnet regex 3 100% 100% 10 5120 CLS
redis regex 8 100% 100% 31 15872 CLS
netmon regex 1 100% 100% 8 4096 CLS
protocol-finger string 14 100% 100% 142 72704 CTM
protocol-imap string 25 100% 100% 355 181760 CTM
emerging-shellcode regex 15 93% 100% 349 178688 CTM
os-mobile regex 8 88% 100% 189 96768 CTM
emerging-p2p string 143 100% 100% 4340 2222080 IMEM
protocol-ftp string 18 100% 100% 554 283648 IMEM
emerge mobile_mal regex 43 26% 98% 1537 786944 IMEM
emerging-scada regex 8 75% 100% 857 438784 IMEM
server-other string 2118 100% 100% 86837 44460544 EMEM
emerging-trojans string 9608 100% 100% 412676 211290112 EMEM
emerging-trojans regex 1496 30% 96% 742765 380295680 EMEM
server-mail regex 93 91% 95% 3642492 1864955904 EMEM
emerging-pop3 regex 16 100% 100% 34524 17676288 EMEM
community all string 134 100% 100% 3464 1773568 IMEM
emerging threats all string 5546 100% 100% 243857 124854784 EMEM
community all regex 546 54% 84% 3631070 1859107840 EMEM
emerging threats all regex 5159 32% 90% 2121305 1086108160 EMEM

”PII” = personally identifiable information, ”emerge mobile_mal” = emerging_mobile malware

quickly classify non-matches. To generate a near-match payload
for a specific pattern, we use a library [4] to generate an exact-
match payload, then truncate it by one byte at a time until it no
longer matches. Hyperscan often slows down by over an order
of magnitude when processing near-match traffic. While Hyper-
scan can often outperform DeepMatch on random traffic, the near
match traffic almost always runs slower on the “high clock” ma-
chine. This highlights DeepMatch’s ability to provide guaranteed,
data-independent throughput.

Hyperscan achieves some of its most impressive speeds running
pure string matching tasks where it can directly exploit the SIMD
datapath to match multiple characters per cycle. In contrast, when
Hyperscan must handle more complex regex, its performance can
drop significantly (e.g., protocol-finger, emerging-trojans). Deep-
Match performance is more predictable, depending only on the
memory placement based on the size of the DFA for the rule set.

The “high clock” and “many core” servers consume 89W and
389W, respectively (Tab. 3). The DeepMatch NFP-6000 consumes
40W. For 40Gbps intra-packet matching, DeepMatch requires only
45% and 10% the energy of the servers. Since the “high clock” server
is limited to 20Gbps when reordering packets, DeepMatch also
provides this energy benefit for inter-packet matching. Even if we
generously assume the “many core” server can support two 40Gbps
network ports with reordering, DeepMatch is still only 20% the
energy of the server. For near-match traffic, the servers running

Hyperscan drop below DeepMatch performance, providing an even
greater energy advantage to DeepMatch.

8 RELATEDWORK
DeepMatch builds on prior work investigating payload-based in-
trusion detection on NPs [18, 47, 50], offering orders of magnitude
more performance and features such as flow scanning and integra-
tion with a high-level data plane language.

Recent studies leveraging SDN to improve security [57, 61] have
made control planes more secure [74], and security applications
easier to implement [60] and more capable [69]. Data plane ef-
forts have focused on security extensions to defend against various
attacks [45, 62, 65, 66]. DeepMatch compliments these efforts by
adding support for DPI and demonstrating a path to SmartNIC and
P4 integration.

Prior work on data plane programming abstractions have focused
on header processing [16, 19, 41, 49, 58]. DeepMatch extends this
to harness rich payload data.

Efforts to improve server-based DPI performance have focused
on reducing overheads [34] or offloading work to GPUs [27, 63,
64, 67] and accelerators [42]. In contrast, DeepMatch guarantees
data-independent throughput and runs on more energy efficient
NPs [51].

There has also been work on optimizing pattern matching algo-
rithms. Chen et al. [20] and Hua et al. [30] increase throughput by
redesigning Aho-Corasick to process multiple bytes of input per

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Hypolite et al.

Table 5: DeepMatch and Hyperscan Performance (*all results in Gbps)

DeepMatch Hyperscan
High Clock Many Core

Pattern Set Pattern Intra- Inter- Intra- Inter- Intra- Inter-
Type Mem. Rnd Near Rnd Near Rnd Near Rnd Near

scada string CLS 40 14 210 7.4 20 7.4 839 29 160 29
emerging-icmp string CLS 40 14 160 12 20 12 830 160 160 160
PII regex CLS 40 14 30 13 20 13 130 51 130 51
emerging-telnet regex CLS 40 14 160 5.1 20 5.1 740 23 160 23
redis regex CLS 40 14 188 12 20 12 830 39 160 39
netmon regex CLS 40 14 198 10 20 10 840 18 160 18
protocol-finger string CTM 32 11 48 2.0 20 2.0 210 10 160 10
protocol-imap string CTM 32 11 190 6.8 20 6.8 780 31 160 31
emerging shellcode regex CTM 32 11 100 3.3 20 3.3 440 18 160 18
os-mobile regex CTM 32 11 480 47 20 20 1200 220 160 160
emerging-p2p string IMEM 18 8.0 16 4.8 16 4.8 70 20 70 20
protocol-ftp string IMEM 18 8.0 190 2.0 20 2.0 170 12 160 12
emerge mobile_mal regex IMEM 18 8.0 190 2.4 20 2.4 760 13 160 13
emerging-scada regex IMEM 18 8.0 160 35 20 20 710 190 160 160
server-other string EMEM 16 6.4 3.8 1.5 3.8 1.5 17 6.9 17 6.9
emerging-trojans string EMEM 16 6.4 1.8 0.97 1.8 0.97 7.7 4.2 7.7 4.2
emerging-trojans regex EMEM 16 6.4 17 1.2 17 1.2 62 6.0 62 6.0
server-mail regex EMEM 16 6.4 5.9 1.2 5.9 1.2 26 5.4 26 5.4
emerging-pop3 regex EMEM 16 6.4 150 31 20 20 640 160 160 160
community all string IMEM 18 8.0 99 9.5 20 9.5 460 50 160 50
emerging threats all string EMEM 16 6.4 45 4.2 20 4.2 200 19 160 19
community all regex EMEM 16 6.4 28 4.1 20 4.1 110 20 110 20
emerging threats all regex EMEM 16 6.4 0.35 0.37 0.35 0.37 1.8 1.8 1.8 1.8

“PII” = personally identifiable information, “emerge mobile_mal” = emerging-mobile_malware

operation. Such optimizations compliment DeepMatch and can be
integrated into future versions.

9 CONCLUSION
Programmable data planes enable further progress in in-network
processing. While initially limited to header processing, network
processorsmake payload processing viable, but getting high through-
put onmultigigabit links without compromising QoS remains tricky.
DeepMatch can examine all data in a packet (e.g., for DPI) at 40 Gbps.
More complexity (e.g., larger regular expression matching, flow
matching, reordering) reduces throughput, but DeepMatch sustains
throughput greater than 10Gbps while preserving QoS. DeepMatch
is a natural extension to P4 header processing, and the approach
of offloading sophisticated DPI to SmartNICs is inexpensive and
energy-efficient.

ACKNOWLEDGMENTS
This work is funded in part by the Office of Naval Research under
grant N000141512006 and N000141812557. Any opinions, findings,
conclusions, or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
Office of Naval Research.

REFERENCES
[1] 2015. The Cisco Flow Processor: Cisco’s Next Generation Network Proces-

sor. (2015), 13. https://www.cisco.com/c/en/us/products/collateral/routers/
asr-1000-series-aggregation-services-routers/solution_overview_c22-448936.
pdf

[2] 2017. Ericsson Cloud SDN with Netronome Agilio® Server Networking Platform
Achieves Massive TCO Savings in Cloud Data Centers. https://www.netronome.
com/m/redactor_files/SB_Netronome_Ericsson_Cloud.pdf. (2017).

[3] 2019. Data Plane Development Kit (DPDK). https://www.dpdk.org/. (2019).
[4] 2019. EXREX. https://github.com/asciimoo/exrex. (2019).
[5] 2019. HP EDR InfiniBand Adapters (Mellanox ConnectX-5). https://h20195.

www2.hpe.com/v2/GetPDF.aspx/c04950955.pdf. (2019).
[6] 2019. Mellanox ConnectX-5 EN Dual Port 40 Gigabit Ethernet Adapter Card.

https://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=3394. (2019).
[7] 2019. Microsemi WinPath3. https://www.microsemi.com/product-directory/

winpath/4120-winpath3. (2019). Accessed: 2019-09-11.
[8] 2019. Microsemi WinPath4. https://www.microsemi.com/product-directory/

winpath/4122-winpath4#overview. (2019). Accessed: 2019-09-11.
[9] 2019. Netronome Agilio CX Dual-Port 40 Gigabit Ethernet SmartNIC. https:

//www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=3018. (2019).
[10] 2019. Netronome Agilio SmartNICs. https://www.netronome.com/products/

agilio-cx/. (2019). Accessed: 2019-09-11.
[11] 2019. Snort Community Ruleset. https://www.snort.org/downloads#rules. (2019).

Accessed: 2019-07-11.
[12] Alfred V. Aho and Margaret J. Corasick. 1975. Efficient String Matching: An

Aid to Bibliographic Search. Commun. ACM 18, 6 (June 1975), 333–340. https:
//doi.org/10.1145/360825.360855

[13] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Francis Matus, Rong Pan, Navindra
Yadav, George Varghese, et al. 2014. CONGA: Distributed congestion-aware load
balancing for datacenters. In ACM SIGCOMM Computer Communication Review,
Vol. 44. ACM, 503–514.

[14] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.

https://www.cisco.com/c/en/us/products/collateral/routers/asr-1000-series-aggregation-services-routers/solution_overview_c22-448936.pdf
https://www.cisco.com/c/en/us/products/collateral/routers/asr-1000-series-aggregation-services-routers/solution_overview_c22-448936.pdf
https://www.cisco.com/c/en/us/products/collateral/routers/asr-1000-series-aggregation-services-routers/solution_overview_c22-448936.pdf
https://www.netronome.com/m/redactor_files/SB_Netronome_Ericsson_Cloud.pdf
https://www.netronome.com/m/redactor_files/SB_Netronome_Ericsson_Cloud.pdf
https://www.dpdk.org/
https://github.com/asciimoo/exrex
https://h20195.www2.hpe.com/v2/GetPDF.aspx/c04950955.pdf
https://h20195.www2.hpe.com/v2/GetPDF.aspx/c04950955.pdf
https://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=3394
https://www.microsemi.com/product-directory/winpath/4120-winpath3
https://www.microsemi.com/product-directory/winpath/4120-winpath3
https://www.microsemi.com/product-directory/winpath/4122-winpath4#overview
https://www.microsemi.com/product-directory/winpath/4122-winpath4#overview
https://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=3018
https://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=3018
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://www.snort.org/downloads#rules
https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/360825.360855

DeepMatch: Practical DPI on Network Processors CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

Data Center TCP (DCTCP). In Proceedings of the ACM SIGCOMM 2010 Confer-
ence (SIGCOMM ’10). ACM, New York, NY, USA, 63–74. https://doi.org/10.1145/
1851182.1851192

[15] Kostas G Anagnostakis, Stelios Sidiroglou, Periklis Akritidis, Konstantinos Xini-
dis, Evangelos Markatos, and Angelos D Keromytis. 2005. Detecting targeted
attacks using shadow honeypots. (2005).

[16] Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer Rexford,
and David Walker. 2016. SNAP: Stateful network-wide abstractions for packet
processing. In Proceedings of the 2016 ACM SIGCOMM Conference. ACM, 29–43.

[17] G. Berry and R. Sethi. 1986. From Regular Expressions to Deterministic Automata.
Theor. Comput. Sci. 48, 1 (Dec. 1986), 117–126. http://dl.acm.org/citation.cfm?id=
39528.39537

[18] Herbert Bos and Kaiming Huang. 2004. A network intrusion detection system
on IXP1200 network processors with support for large rule sets. (2004).

[19] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87–95.

[20] Chien-Chi Chen and Sheng-De Wang. 2012. A multi-character transition string
matching architecture based on Aho-Corasick algorithm. Int. J. Innovative Com-
put. Inf. Control 8, 12 (2012), 8367–8386.

[21] Luca Deri, Maurizio Martinelli, Tomasz Bujlow, and Alfredo Cardigliano. 2014.
ndpi: Open-source high-speed deep packet inspection. In Wireless Communi-
cations and Mobile Computing Conference (IWCMC), 2014 International. IEEE,
617–622.

[22] Hilmi E Egilmez, Seyhan Civanlar, and A Murat Tekalp. 2013. An optimization
framework for QoS-enabled adaptive video streaming over OpenFlow networks.
IEEE Transactions on Multimedia 15, 3 (2013), 710–715.

[23] Domenico Ficara, Stefano Giordano, Gregorio Procissi, Fabio Vitucci, Gianni
Antichi, and Andrea Di Pietro. 2008. An improved DFA for fast regular expression
matching. ACM SIGCOMM Computer Communication Review 38, 5 (2008), 29–40.

[24] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. 2018. Azure accelerated networking: SmartNICs in the public cloud.
In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18). 51–66.

[25] Annie P Foong, Thomas R Huff, Herbert H Hum, Jaidev R Patwardhan, and Greg J
Regnier. 2003. TCP performance re-visited. In 2003 IEEE International Symposium
on Performance Analysis of Systems and Software. ISPASS 2003. IEEE, 70–79.

[26] Center for Applied Internet Data Analysis. 2019. The CAIDA UCSD Statistical
information for the CAIDA Anonymized Internet Traces. https://www.caida.org/
data/passive/passive_trace_statistics.xml. (November 2019).

[27] Younghwan Go, Muhammad Asim Jamshed, YoungGyoun Moon, Changho
Hwang, and KyoungSoo Park. 2017. APUNet: Revitalizing GPU as Packet Pro-
cessing Accelerator.. In NSDI. 83–96.

[28] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and
Walter Willinger. 2018. Sonata: query-driven streaming network telemetry. In
Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication. ACM, 357–371.

[29] Pankaj Gupta and Nick McKeown. 2001. Algorithms for packet classification.
IEEE Network 15, 2 (2001), 24–32.

[30] Nan Hua, Haoyu Song, and TV Lakshman. 2009. Variable-stride multi-pattern
matching for scalable deep packet inspection. In INFOCOM 2009, IEEE. IEEE,
415–423.

[31] Proofpoint Inc. 2019. Emerging Threats Rule Server. https://rules.emergingthreats.
net/. (2019). Accessed: 2019-07-11.

[32] Sharad Jaiswal, Gianluca Iannaccone, Christophe Diot, Jim Kurose, and Don
Towsley. 2007. Measurement and classification of out-of-sequence packets in
a tier-1 IP backbone. IEEE/ACM Transactions on Networking (ToN) 15, 1 (2007),
54–66.

[33] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M Voelker, and Amin
Vahdat. 2012. Chronos: Predictable low latency for data center applications. In
Proceedings of the Third ACM Symposium on Cloud Computing. ACM, 9.

[34] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Rebecca Steinert, and Gerald
Q. Maguire Jr. 2018. Metron: NFV Service Chains at the True Speed of the
Underlying Hardware. In 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18). USENIX Association, Renton, WA, 171–186. https:
//www.usenix.org/conference/nsdi18/presentation/katsikas

[35] Sailesh Kumar, Jonathan Turner, and John Williams. 2006. Advanced Algorithms
for Fast and Scalable Deep Packet Inspection. In Proceedings of the 2006 ACM/IEEE
Symposium on Architecture for Networking and Communications Systems (ANCS
’06). ACM, New York, NY, USA, 81–92. https://doi.org/10.1145/1185347.1185359

[36] David Levi andMark Reichenberg. 2018. Ethernity Networks Company Overview:
Making Truly Programmable Networks a Reality. (November 2018).

[37] Jialin Li, Naveen Kr Sharma, Dan RK Ports, and Steven D Gribble. 2014. Tales of
the tail: Hardware, os, and application-level sources of tail latency. In Proceedings
of the ACM Symposium on Cloud Computing. ACM, 1–14.

[38] Y. Li and J. Li. 2014. MultiClassifier: A combination of DPI and ML for application-
layer classification in SDN. In The 2014 2nd International Conference on Systems
and Informatics (ICSAI 2014). 682–686. https://doi.org/10.1109/ICSAI.2014.7009372

[39] James Markevitch and Srinivasa Malladi. 2017. A 400Gbps Multi-Core Network
Processor. (August 2017).

[40] McAfee. 2014. Next-Generation IPS Integrated with VMware NSX™ for Software-
Defined Data Centers. https://www.vmware.com/content/dam/digitalmarketing/
vmware/en/pdf/products/nsx/vmware-nsx-mcafee-solution-brief.pdf. (2014).

[41] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
Enabling Innovation in Campus Networks. SIGCOMM Comput. Commun. Rev.
(CCR) 38, 2 (2008).

[42] Jaehyun Nam,Muhammad Jamshed, Byungkwon Choi, Dongsu Han, and Kyoung-
Soo Park. 2015. Haetae: Scaling the Performance of Network Intrusion Detection
with Many-Core Processors. In International Workshop on Recent Advances in
Intrusion Detection. Springer, 89–110.

[43] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat
Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. 2017.
Language-Directed Hardware Design for Network Performance Monitoring. In
Proceedings of the Conference of the ACM Special Interest Group on Data Commu-
nication. ACM, 85–98.

[44] Linley Newsletter. 2016. Netronome Optimizes iNIC for Cloud.
https://www.linleygroup.com/newsletters/newsletter_detail.php?num=
5475&year=2016&tag=3. (February 2016).

[45] Taejune Park, Yeonkeun Kim, and Seungwon Shin. 2016. Unisafe: A union of
security actions for software switches. In Proceedings of the 2016 ACM Interna-
tional Workshop on Security in Software Defined Networks & Network Function
Virtualization. ACM, 13–18.

[46] Vern Paxson. 1999. Bro: A System for Detecting Network Intruders in Real-Time.
(1999).

[47] V. Paxson, R. Sommer, and N. Weaver. 2007. An architecture for exploiting multi-
core processors to parallelize network intrusion prevention. In 2007 IEEE Sarnoff
Symposium. 1–7. https://doi.org/10.1109/SARNOF.2007.4567341

[48] Justin Pettit, Ben Pfaff, Joe Stringer, Cheng-Chun Tu, Brenden Blanco, and Alex
Tessmer. 2018. Bringing platform harmony to VMware NSX. ACM SIGOPS
Operating Systems Review 51, 1 (2018), 123–128.

[49] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kaufmann, Simon Peter,
Rastislav Bodik, and Thomas Anderson. 2018. Floem: a programming system
for NIC-accelerated network applications. In 13th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 18). 663–679.

[50] Piti Piyachon and Yan Luo. 2006. Efficient memory utilization on network
processors for deep packet inspection. In Proceedings of the 2006 ACM/IEEE
symposium on Architecture for networking and communications systems. ACM,
71–80.

[51] Gergely Pongrácz, László Molnár, Zoltán Lajos Kis, and Zoltán Turányi. 2013.
Cheap silicon: a myth or reality? picking the right data plane hardware for soft-
ware defined networking. In Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking. ACM, 103–108.

[52] S. Pontarelli, M. Bonola, and G. Bianchi. 2017. Smashing SDN "built-in" actions:
Programmable data plane packet manipulation in hardware. In 2017 IEEE Confer-
ence on Network Softwarization (NetSoft). 1–9. https://doi.org/10.1109/NETSOFT.
2017.8004106

[53] Thomas H. Ptacek and Timothy N. Newsham. 1998. Insertion, Evasion, and
Denial of Service: Eluding Network Intrusion Detection. https://apps.dtic.mil/sti/
pdfs/ADA391565.pdf. (January 1998).

[54] Redis. 2018. Redis. https://redis.io/. (February 2018).
[55] Martin Roesch et al. 1999. Snort: Lightweight intrusion detection for networks..

In Lisa, Vol. 99. 229–238.
[56] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren. 2015.

Inside the social network’s (datacenter) network. In ACM SIGCOMM Computer
Communication Review, Vol. 45. ACM, 123–137.

[57] Sandra Scott-Hayward, Gemma O’Callaghan, and Sakir Sezer. 2013. SDN security:
A survey. In 2013 IEEE SDN For Future Networks and Services (SDN4FNS). IEEE,
1–7.

[58] Niraj Shah, William Plishker, and Kurt Keutzer. 2004. NP-Click: A programming
model for the Intel IXP1200. In Network Processor Design. Elsevier, 181–201.

[59] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Rat-
nasamy, and Vyas Sekar. 2012. Making middleboxes someone else’s problem:
network processing as a cloud service. ACM SIGCOMMComputer Communication
Review 42, 4 (2012), 13–24.

[60] Seungwon Shin, Phil Porras, Vinod Yegneswaran, Martin Fong, Guofei Gu,
and Mabry Tyson. 2013. FRESCO: Modular Composable Security Services for
Software-Defined Networks. In Proc. Network and Distributed System Security
Symposium (NDSS).

[61] Seungwon Shin, Lei Xu, Sungmin Hong, and Guofei Gu. 2016. Enhancing network
security through software defined networking (SDN). In 2016 25th international
conference on computer communication and networks (ICCCN). IEEE, 1–9.

https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/1851182.1851192
http://dl.acm.org/citation.cfm?id=39528.39537
http://dl.acm.org/citation.cfm?id=39528.39537
https://www.caida.org/data/passive/passive_trace_statistics.xml
https://www.caida.org/data/passive/passive_trace_statistics.xml
https://rules.emergingthreats.net/
https://rules.emergingthreats.net/
https://www.usenix.org/conference/nsdi18/presentation/katsikas
https://www.usenix.org/conference/nsdi18/presentation/katsikas
https://doi.org/10.1145/1185347.1185359
https://doi.org/10.1109/ICSAI.2014.7009372
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/nsx/vmware-nsx-mcafee-solution-brief.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/nsx/vmware-nsx-mcafee-solution-brief.pdf
https://www.linleygroup.com/newsletters/newsletter_detail.php?num=5475&year=2016&tag=3
https://www.linleygroup.com/newsletters/newsletter_detail.php?num=5475&year=2016&tag=3
https://doi.org/10.1109/SARNOF.2007.4567341
https://doi.org/10.1109/NETSOFT.2017.8004106
https://doi.org/10.1109/NETSOFT.2017.8004106
https://apps.dtic.mil/sti/pdfs/ADA391565.pdf
https://apps.dtic.mil/sti/pdfs/ADA391565.pdf
https://redis.io/

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Hypolite et al.

[62] Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu. 2013. Avant-
guard: Scalable and vigilant switch flow management in software-defined net-
works. In Proceedings of the 2013 ACM SIGSAC conference on Computer & commu-
nications security. ACM, 413–424.

[63] Pragati Shrivastava and Kotaro Kataoka. 2016. FastSplit: Fast and Dynamic IP
Mobility Management in SDN. In 26th International Telecommunication Networks
and Applications Conference, ITNAC 2016, Dunedin, New Zealand, December 7-9,
2016. 166–172. https://doi.org/10.1109/ATNAC.2016.7878803

[64] Mark Silberstein, Sangman Kim, Seonggu Huh, Xinya Zhang, Yige Hu, Amir
Wated, and Emmett Witchel. 2016. GPUnet: Networking Abstractions for GPU
Programs. ACM Trans. Comput. Syst. 34, 3, Article 9 (Sept. 2016), 31 pages.
https://doi.org/10.1145/2963098

[65] John Sonchack, Anurag Dubey, Adam J Aviv, Jonathan M Smith, and Eric Keller.
2016. Timing-based reconnaissance and defense in software-defined networks.
In Proceedings of the 32nd Annual Conference on Computer Security Applications.
ACM, 89–100.

[66] John Sonchack, Adam J. Aviv, Eric Keller, and Jonathan Smith. 2016. Enabling
Practical Software-defined Networking Security Applications with OFX. https:
//doi.org/10.14722/ndss.2016.23309

[67] Weibin Sun and Robert Ricci. 2013. Fast and Flexible: Parallel Packet Processing
with GPUs and Click. In Proceedings of the Ninth ACM/IEEE Symposium on Ar-
chitectures for Networking and Communications Systems (ANCS ’13). IEEE Press,
Piscataway, NJ, USA, 25–36. http://dl.acm.org/citation.cfm?id=2537857.2537861

[68] Giorgos Vasiliadis, Spiros Antonatos, Michalis Polychronakis, Evangelos P
Markatos, and Sotiris Ioannidis. 2008. Gnort: High performance network in-
trusion detection using graphics processors. In International Workshop on Recent
Advances in Intrusion Detection. Springer, 116–134.

[69] Haopei Wang, Guangliang Yang, Phakpoom Chinprutthiwong, Lei Xu, Yangyong
Zhang, and Guofei Gu. 2018. Towards fine-grained network security forensics
and diagnosis in the sdn era. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 3–16.

[70] Ke Wang and Salvatore J. Stolfo. 2004. Anomalous Payload-Based Network
Intrusion Detection. In Recent Advances in Intrusion Detection, Erland Jonsson,
Alfonso Valdes, and Magnus Almgren (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 203–222.

[71] Xiang Wang et al. 2019. HyperScan. https://www.hyperscan.io. (2019).
[72] Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park, Geoff Langdale, Jiayu

Hu, and Heqing Zhu. 2019. Hyperscan: A Fast Multi-pattern Regex Matcher
for Modern CPUs. In Proceedings of the 16th USENIX Conference on Networked
Systems Design and Implementation (NSDI’19). USENIX Association, 631–648.
http://dl.acm.org/citation.cfm?id=3323234.3323286

[73] Stuart Wray. 2014. The Joy of Micro-C. https://open-nfp.org/m/documents/
the-joy-of-micro-c_fcjSfra.pdf. (December 2014).

[74] Menghao Zhang, Guanyu Li, Lei Xu, Jun Bi, Guofei Gu, and Jiasong Bai. 2018.
Control plane reflection attacks in SDNs: new attacks and countermeasures. In
International Symposium on Research in Attacks, Intrusions, and Defenses. Springer,
161–183.

https://doi.org/10.1109/ATNAC.2016.7878803
https://doi.org/10.1145/2963098
https://doi.org/10.14722/ndss.2016.23309
https://doi.org/10.14722/ndss.2016.23309
http://dl.acm.org/citation.cfm?id=2537857.2537861
https://www.hyperscan.io
http://dl.acm.org/citation.cfm?id=3323234.3323286
https://open-nfp.org/m/documents/the-joy-of-micro-c_fcjSfra.pdf
https://open-nfp.org/m/documents/the-joy-of-micro-c_fcjSfra.pdf

DeepMatch: Practical DPI on Network Processors CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

ingress {
if ((tcp.dport == REDIS_PORT)
|| (tcp.sport == REDIS_PORT)) {

requestType = scanPayload(packet); // DeepMatch
if (requestType != 0){

apply(cloneTable); // clone to monitor.
}

}
apply(forwardingTable);

}

Figure 15: DPI for fine-grained telemetry filtering.

A P4 DPI INTEGRATION FOR NETWORK
MONITORING

Fig. 15 shows how DeepMatch DPI flow classification is integrated
for the network monitoring task.

B PACKET FILTERING FOR SECURITY
Fig. 16 shows a longer concrete example: a P414 program2 that

uses DeepMatch to embed an advanced DPI-based security policy
into a header-based P4 forwarding program. In a SmartNIC-based
data center, this program could be pushed to the SmartNIC in every
server to directly enforce global security policies at high line rates.

The program in Fig. 16 breaks down into two general stages:
header/DPI filtering and policy enforcement.We describe each stage
and an example of how it could be used to secure a deployment of
Apache servers below.

B.1 Header and DPI filtering
The filtering stage classifies packets based on their headers and
the presence of patterns in their payloads. In Fig. 16’s program,
secFilterTable is a match-action table that selectively applies
DeepMatch based on source IP address. Each entry in the table maps
a source IP address to an invocation of either the noOp action, which
does nothing, or the deepMatch payload scanning action. An entry
also stores action parameters for deepMatch that determine which
rule set to use and whether to match across packet boundaries. In a
server running Apache, a P4 SmartNIC could apply an application-
specific ruleset to detect threats (e.g., the server-apache ruleset
benchmarked in Tab. 4) in flows from untrusted external hosts.

B.2 Policy enforcement
Based on the output of the filtering stage, the policy enforcement
stage determines how a packet should be handled. In Fig. 16’s pro-
gram, secPolicyTable uses secMeta.dpiRuleMatchId, the out-
put of DeepMatch, along with the packet’s destination IP address
and TCP / UDP port to determine whether to allow, drop/alert,
redirect, or rate limit a packet. For the drop/alert and redirect sce-
narios, the policy is enforced by altering the contents of the packet
header and setting a metadata flag (secMeta.policy) that prevents
the standard forwarding table from being invoked. Rate limiting is

2The core DeepMatch Micro-C function could also be integrated into P416 as an
external function or object.

// Per-packet security related metadata.
header_type secMeta_t {

fields {
dpiRuleMatchId : 16; // Match pattern ID
policy : 8; // Security policy
meterColor : 8; } // Flow rate meter

}
metadata secMeta_t secMeta;
// Entry point for parsed packets.
control ingress {

apply(secFilterTable); // Apply DPI
apply(secPolicyTable); // Enforce policy
if (secMeta.policy == RATELIMIT) {

apply(rateLimitTable); }
// Forward if no policy violations
if (secMeta.policy == PERMIT) {

fwdControl(); }
}
table secFilterTable {

reads { ipv4.srcAddr : ternary; }
actions { deepMatch; noOp; } }

table secPolicyTable {
reads {

ipv4.dstAddr : exact;
tcpUdp.dstPort : exact;
secMeta.dpiRuleMatchId : exact; }

actions { permit; deny;
rateLimit; honeypot; }

}
table rateLimitTable {

reads { secMeta.meterColor : exact; }
actions { permit; noOp; } }

// Allow packet.
action permit() {

modify_field(secMeta.secPolicy, PERMIT); }
// Drop packet & clone to monitor w/ match info
action deny(collectorCloneSpec) {

modify_field(secMeta.secPolicy, DENY);
clone_i2i(collectorCloneSpec, secMetaFields); }

// Rate limit this flow.
action rateLimit(flowId) {

modify_field(secMeta.secPolicy, RATELIMIT);
meter(ddosMeter, meta.flowKeyHash, secMeta.meterColor); }

// Redirect packet to honeypot.
action honeypot(honeypotAddr, egrPortId) {

modify_field(ipv4.dstAddr, honeypotAddr);
modify_field(meta.egrPortId, egrPortId); }

// Invoke deepMatch & set secMeta.dpiRuleMatchId.
extern action deepMatch(flowOrdering, rulesetId);

Figure 16: P4 Integration of DPI Packet Classification

enforced by a downstream table that uses the 𝑃4metering primitive
to determine if a flow is exceeding a threshold rate. In the Apache
webserver example, this stage could drop packets that match mal-
ware rules and are destined for a port running an Apache service,
redirect matching packets destined for non-Apache ports to a hon-
eypot server [15], and rate limit flows that match Denial-of-Service
(DoS) rules.

	Abstract
	1 Introduction
	2 Packet Filtering
	3 P4 DPI Integration
	3.1 Redis Application Layer Routing
	3.2 Efficient Network Monitoring
	3.3 Packet Filtering for Security

	4 DPI on Network Processors
	4.1 Network Processor Architectures
	4.2 Netronome Target Architecture Details

	5 System Design
	5.1 Key Challenges
	5.2 Regular Expression Matching Strategy
	5.3 Integrating P4 and DPI on Netronome
	5.4 Stateless Intra-Packet Regex Matching
	5.5 Stateful Inter-packet Regex Matching

	6 Evaluation
	6.1 Experimental Setup
	6.2 Stateless DeepMatch
	6.3 Stateful DeepMatch

	7 Comparison with Hyperscan
	8 Related Work
	9 Conclusion
	References
	A P4 DPI Integration for Network Monitoring
	B Packet Filtering for Security
	B.1 Header and DPI filtering
	B.2 Policy enforcement

