
Quality-Time Tradeoffs in Component-Specific Mapping:

How to Train Your
Dynamically Reconfigurable Array of Gates with Outrageous Network-delays

Hans Giesen
giesen@seas.upenn.edu

Raphael Rubin
rafi@seas.upenn.edu

Benjamin Gojman
bgojman@acm.org

André DeHon
andre@acm.org

Department of Electrical and Systems Engineering
University of Pennsylvania, 200 S. 33rd St., Philadelphia, PA 19104

ABSTRACT
How should we perform component-specific adaptation for
FPGAs? Prior work has demonstrated that the negative
effects of variation can be largely mitigated using complete
knowledge of device characteristics and full per-FPGA CAD
flow. However, the cost of per-FPGA characterization and
mapping could be prohibitively expensive. We explore light-
weight options for per-FPGA mapping that avoid the need
for a priori device characterization and perform less expen-
sive per FPGA customization work. We characterize the
tradeoff between Quality-of-Results (energy, delay) and per-
device mapping costs for 7 design points ranging from com-
plete mapping based on knowledge to no per-device map-
ping. We show that it is possible to get 48–77% of the
component-specific mapping delay benefit or 57% of the en-
ergy benefit with a mapping that takes less than 20 seconds
per FPGA. An incremental solution can start execution af-
ter a 21 ms bitstream load and converge to 77% delay benefit
after 18 seconds of runtime.

Keywords
FPGA; Variation; Component-Specific Mapping

1. INTRODUCTION
Process variation is large in today’s CMOS technology and

continues to grow as feature sizes scale down. At minimum
feature size, this results in nominally identical devices that
have a large range of threshold voltages and hence operating
delays. As a result, we are forced to use large, non-minimum
feature sizes, at the expense of higher capacitance, and to
use high operating voltages that lead to greater dynamic
and leakage energy to accommodate the worst-case fabri-
cated devices on today’s multi-billion transistor integrated

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FPGA ’17, February 22 - 24, 2017, Monterey, CA, USA
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4354-1/17/02. . . $15.00

DOI: http://dx.doi.org/10.1145/3020078.3026124

circuits. Consequently, we pay a large energy penalty for
variation that threatens to increase the energy used per LUT
evaluation as we scale to smaller feature sizes and undermine
the traditional benefits of feature-size scaling.

FPGAs, unlike ASICs, can mitigate the impact of vari-
ation by assigning functions to resources after fabrication,
when process variation has already occurred. Resources that
use transistors at the extreme tails of the device character-
istic distribution can be avoided. Slow resources can be as-
signed off the critical path. This allows resources to use
smaller transistors and operate at lower voltages. Full map-
ping benefits can reduce energy by 2-3× and allow the con-
tinued reduction of energy at smaller feature sizes [26].

Full component-specific mapping requires both an exten-
sive per-chip resource characterization phase [14] and per-
chip mapping phase [26] in contrast to the conventional one-
mapping-fits-all (OMFA) model that performs mapping only
once to be used across any number of specific FPGA compo-
nents. When full characterization may take days and map-
ping times run into hours, this cost can be prohibitive.

Lightweight repair schemes that precompute alternate re-
sources and select among them [19, 16, 28] provide more
practical schemes for pure defect tolerance. By performing a
single precomputation of alternative resources, this reduces
the per-FPGA mapping time down to seconds. This basic
idea can be applied to variation: identify the slow paths that
limit operation and replace them with faster, precomputed
alternatives. In this paper, we identify and explore a range
of algorithms for timing repair exploiting these precomputed
alternatives and characterize their costs and benefits.

We first review variation and component-specific mapping
(Sec. 2) and precomputed alternatives (Sec. 3). We tune
the routing architecture (Sec. 4) to the variation mitigation
problem, and then describe the mapping algorithms (Sec. 5).
Sec. 6 describes our methodology, Sec. 7 present our exper-
imental results, and Sec. 8 discusses their implications.

Our novel contributions include:
• Show how to adapt lightweight, load-time route alter-

native selection to address variation.
• Show how to adapt incremental, in-system repair to

address variation.
• Characterize time (runtime, measure) and quality (de-

lay, energy) achievable across 7 design points between
OMFA and full CAD, perfect-knowledge mapping.

http://dx.doi.org/10.1145/3020078.3026124

2. BACKGROUND

2.1 Process Variation
Even identically drawn transistors in a modern VLSI tech-

nology will differ from each other [4, 30]. Nominal critical
dimensions now measure in single or double-digit nanome-
ters, meaning the presence or absence of individual atoms
has a significant impact on performance. Phase-shift mask-
ing, etching, and lensing effects result in approximate feature
definition [3]. Differences in local oxide thickness [2], ran-
dom dopant fluctuation [1], and stochastic dopant placement
provide a strong random component to the composition of
each transistor. As a result, key characteristics, such as the
threshold voltage (Vth), vary widely from chip-to-chip and
from device-to-device within a single chip.

These effects directly impact the delay of each resource in
the FPGA [32]. In modern, short-channel, velocity-saturated
transistors operating above threshold, delay scales linearly
in Vdd − Vth, such that devices slow down as Vth increases.
On a 65 nm FPGA, Gojman measures a spread of over 100 ps
for nominally identical paths within a LAB [14] and nomi-
nally identical interconnect segments [13], and these spreads
increase as features sizes shrink.

Variation also limits our ability to scale down operating
voltage, resulting in higher dynamic energy [7]. Since delay
above threshold is proportional to Vdd−Vth, we are forced to
increase Vdd to offset high Vth values, increasing the dynamic
operating energy that scales as C (Vdd)2. Design function-
ality depends on all used devices being able to switch, and
design delay is determined by the slowest of numerous paral-
lel paths. With random Vth variation, this means we sample
the Vth-distribution millions-to-billions of times on today’s
FPGAs, and the worst device among those sampled will be
the limiting Vth for operation.

One way to combat variation is to increase device size,
which increases energy through increased switching capaci-
tance. For random dopant variation, variance scales roughly
as 1√

L·W , where L and W are the length and width of the

transistor [18]. By scaling up device widths, we reduce the
relative effects of variation. However, this also directly in-
creases the device capacitance and indirectly increases the
wire capacitance by making the chip larger and hence wires
longer. This reverse scaling of device size increases the C in
the dynamic operating energy C (Vdd)2.

2.2 Component-Specific Mapping
The idea of component-specific mapping for defects has a

history that predates FPGAs. We have long accepted that
hard disks will not be manufactured perfectly and use de-
fect maps to avoid the small fraction of sectors that cannot
reliably store data. The TERAMAC computer provided the
first large-scale use of defect identification and component-
specific mapping for FPGA-like architectures [9]. This re-
quired a complete run of the placement and routing tools
that were aware of the defects in the machine. Wong and
Gojman extended the characterization of resources from de-
fects to variation, showing how a modern FPGA with ad-
justable clocks can self-characterize the delay of individual
resources [33, 14]. Using a Configured Test Circuit (CTC) on
the FPGA fabric, they measure the delay of specific resource
sets. Mehta extended the component-specific mapping con-
cept to variation mitigation, building upon the data that
Wong and Gojman showed how to extract [26].

The TERAMAC and Mehta model accepts that we must
first measure devices and bring that information into the
routing and perhaps placement phase. This means we must
measure and store gigabytes of information for each chip,
and we must run the CAD tools uniquely for each chip—a
contrast from the component-independent model where we
only need to generate a single mapping that can be reused
across any number of chips.

To avoid the cost of full chip mapping, we can design the
architecture or architectural mapping to allow small edits
to the bitstream to exchange bad resources for good ones.
Lach first showed how to strategically reserve spare LUTs
and precompute alternate mappings that allow any defec-
tive LUT to be replaced locally [19]. Rubin showed how to
reserve spare wiring tracks and precompute alternate routes
to locally avoid interconnect defects [28]. These solutions
accept a loss of efficiency from the full mapping approach
in order to avoid the cost of computing a completely unique
mapping for each chip. They also invest additional up-front
costs to precompute alternatives to defects in order to min-
imize the per-chip mapping costs.

2.3 Temperature, Activity, and Aging
Beyond manufacturing variation, environmental and us-

age effects can also impact the delay of individual resources,
and aging can change their delay over time [31]. Component-
specific mapping allows us to reduce the manufacturing mar-
gins, but may still need margins for these other environment
and usage effects. To the extent environment effects impact
the die uniformly, such as ambient temperature, dynamic
voltage scaling [8] used on top of component-specific map-
ping can reduce the level of margining. Local variation in
chip activity [36] can cause resource delays to diverge from
the delays captured by isolated CTC tests [22]. The online-
monitoring techniques we adapt from COSMIC TRIP [12]
(Sec. 5.5) capture these effects, while the algorithms that use
CTC testing will not. Periodic re-characterization of the de-
lays can reduce the necessary aging margins, which becomes
more viable with the lightweight load-time techniques we
describe here or can be eliminated with COSMIC TRIP.

3. CHOOSE-YOUR-OWN-ADVENTURE
All of our lightweight algorithms build on Choose-Your-

own-Adventure (CYA) precomputed alternatives [28]. The
CYA bitstream is organized by 2-point nets and contains
multiple alternative paths for each 2-point net route. A 2-
point net links a single source to a single destination; a full
net with fanout to multiple destinations is represented by
a collection of 2-point nets. At load time, the bitstream
loader configures each 2-point net, then performs a simple
test to validate that the configured route successfully trans-
mits the intended signal. If it works, the loader keeps the
path and proceeds to load the next 2-point net. If it fails, it
tries one of the alternatives for the 2-point net stored in the
bitstream. The loader does not require significant state or
decision making; it simply loads bit patterns and branches
on success failure indications from tests. The original CYA
formulation suggested it could be an extension of the ex-
isting FSM that controlled bitstream loading. We expect
the supervisory processors on the Stratix-10 [17] could be
programmed to perform CYA bitstream loading.

The standard CYA approach to bitstream construction is
to split the FPGA routing resources into two sets–a base set

for normal routing and a reserved set to use for repairs. A
normal Pathfinder [25] route is used within the base set to
produce a base route. Every net in the application netlist
has a route within the base resources, and the base resources
for a net are reserved exclusively for that net. Alternate
routes for each 2-point net are then identified from reserved
resources and the unused base resources. These alterna-
tives are allocated non-exclusively. Since most 2-point nets
will use their base route, the alternatives will only be lightly
used. Identifying multiple alternative routes for each 2-point
net deals both with the cases where other nets do use re-
sources that conflict with some alternative routes and the
cases where the alternatives themselves are unusable.

The key goal of Rubin’s CYA alternative generation was
to maximize diversity in order to minimize the chance that
the alternative set would be unable to provide a defect-free
path [28]. For timing-repair, we also care about the delay
of the routes. Consequently, we tuned the cost function
to prioritize alternative path generation by path delay with
care to avoid duplicate paths.

4. ARCHITECTURE
As noted, CYA bitstream generation splits the channels in

the architecture into two domains: base tracks and reserved
spare tracks that are only available to alternative routes.
Channels are interconnected via a modified Wilton S-box
[24]. Fig. 1a represents a traditional Wilton S-box in a seg-
ment length 1 architecture. Tracks and connections entirely
in the base domain are shown in black. Blue identifies the
spare domain. A significant fraction of the connections is
depicted in red, indicating cross-domain connections. These
pose two problems: First, the spare tracks are reserved dur-
ing base routing, so tracks that attempt to cross the bound-
ary become dead-ends. Second, although base tracks are not
reserved during alternative generation, they are often occu-
pied, meaning these cross-domain connections also result in
blocked paths for the alternatives. Fig. 2 illustrates how
these dead-ends (red connections) increase the delay from
a CLB to different channels. We eliminated the dead-ends
by modifying the Wilton S-box such that base tracks never
cross over to reserved tracks and vice versa. The modified
S-box (Fig. 1b) can be regarded as two separate Wilton S-
boxes, one of which switches among the base tracks, and the
other among reserved tracks.

We also split the C-boxes so that extra CLB pins are con-
nected only to spare tracks, and base CLB pins to base
tracks. This saves area by omitting switches that would
almost never be used. A drawback is that base tracks can-
not be utilized by alternatives, even in situations where not
all base tracks are occupied. The population of switches
connecting spare tracks to extra CLB pins is controlled by
FCin,extra and FCout,extra . Their counterparts FCin and
FCout are limited to the base tracks and regular CLB pins.

When Rubin used CYA for defect-tolerance, he only ad-
dressed the presence of spare paths. Considering delay and
energy, a good alternative should also maintain or reduce
delay. Even before considering variation, delay depends on
the number of segments that a path traverses, the segment
lengths, the fan-in of S-box multiplexers and CLB input
pins. Sparse C-box population results in segments that are
not connected to all CLB outputs and inputs, and segment
staggering means that not all tracks can get from the source
to destination using the same number of segments in a path.

Spare
tracks

Base tracks

(a) Original Wilton S-Box

Spare
tracks

Base tracks

(b) Modified Wilton S-Box
Blue links show Reserved Tracks; Red links show
switch connections that become unusable when we par-
tition Base and Reserved Tracks.

Figure 1: S-Box Optimized for Reserved Tracks

2

2
2

3

3
3

CLB 3

3
3

4

4
4

4

4
4

5

5
53

33

2

3

2

3

4

4

5

5

644

1

3

2

3

(a) No dead-ends

2

2
2

4

3
3

CLB 3

3
3

4

4
5

4

4
4

5

5
53

33

2

3

2

3

5

4

5

5

644

1

4

4

3

(b) With dead-ends
Red numbers in the (b) figure highlight delays that
are larger than in the (a) figure due to the dead-end
connections highlighted with red circles.

Figure 2: Effect of Dead-Ends in S-Box on Delay

To guarantee that the architecture will have good timing
alternatives for every 2-point net, we derived a formula relat-
ing the number of distinct good timing alternatives, Nalts,
of a 2-point net to the spare architectural resources:

Nalts =

⌊
Os

4

⌋
bTracks/outputc bInputs/trackc (1)

Here, Os
4

is the number of extra CLB output pins per CLB
side. These pins are only available for alternative routes.
The formula guarantees that there will at least Nalts con-
nections from every CLB to a spare track that connects to
the destination at the optimal stagger offset. The formula
considers alternatives different as long as at least one section
of the path (CLB pin or track) differs. The number of spare
tracks connected to an output is

Tracks/output = min

(
Round

(
FCout,extra

Ws

2

)
,

⌊
Ws

2Lseg

⌋)
,

where Ws
2

is the number of spare tracks in one direction.
The min operator limits Tracks/output to the number of
output multiplexers in a channel. The inputs per track is

Inputs/track =

⌊
Is
4

⌋
Tracks/input

Ws
2

(2)

with Is as number of extra CLB input pins. Switches con-
necting to these pins are equally distributed among the tracks,
so we computed Inputs/track by dividing the number of

Table 1: Fast Alternatives Architectures Parameters

Guaranteed fast alternatives 1 2

Regular input pins 27 27
Regular output pins 8 8
FCin 0.15 0.15
FCout 0.2 0.3
Segment length 4 4
Extra input pins (Is) 16 16
Extra output pins (Os) 4 8
FCin,extra 0.25 0.25
FCout,extra 0.1 0.1
Spare tracks (Ws) 16 16

Overhead Area Sparing (% base) 20.8 21.7

a
lu

4

a
p
e
x
2

a
p
e
x
4

b
ig

k
e
y

c
lm

a

d
e
s

d
if
fe

q

d
s
ip

e
lli

p
ti
c

e
x
1
0
1
0

e
x
5
p

fr
is

c

m
is

e
x
3

p
d
c

s
2
9
8

s
3
8
4
1
7

s
3
8
5
8
4
.1

s
e
q

s
p
la

ts
e
n
g

C
ri

ti
c
a
l
p
a
th

 d
e
la

y
 (

n
s
)

0
2

4
6

8
1
0

1
2

a
lu

4

a
p
e
x
2

a
p
e
x
4

b
ig

k
e
y

c
lm

a

d
e
s

d
if
fe

q

d
s
ip

e
lli

p
ti
c

e
x
1
0
1
0

e
x
5
p

fr
is

c

m
is

e
x
3

p
d
c

s
2
9
8

s
3
8
4
1
7

s
3
8
5
8
4
.1

s
e
q

s
p
la

ts
e
n
g

C
ri

ti
c
a
l
p
a
th

 d
e
la

y
 (

n
s
)

0
2

4
6

8
1
0

1
2

Spares

0 1 2

Architecture

Original Revised

Figure 3: Architecture and Spare Provisioning Im-
pact for Full-Path Pathfinder Selection at Vdd =
0.60V, 64 Alternatives

switches by the number of tracks in one direction. The num-
ber of tracks per input is provided by

Tracks/input = Round

(
FCin,extra

Ws

2

)
. (3)

To guarantee that alternatives can use segments with the
same length, we modified the S-box connectivity at the edge
of the FPGA, and we restricted the number of reserved
tracks to multiples of 2Lseg. We also ensure that the fan-
in of multiplexers in the reserved domain is never higher
than the fan-in in the base domain. Tab. 1 summarizes the
architecture parameters selected for our experiments.

Fig. 3 shows the impact of the switchbox rewiring and
spare allocation on the Pathfinder Selection algorithm. For
the same resources (1 guaranteed fast alternative), the split-
domain Wilton increases the potential gains from repair by
45% and reduces minimum channel width 10%. Using one
guaranteed alternative saves 50% (geomean) delay, and a
second provides marginal additional benefit.

5. MAPPING ALGORITHMS
In this section, we describe the algorithms that we char-

acterize. Tab. 2 summarizes the key characteristics of the
algorithms to highlight their differences.

5.1 OMFA
As a baseline, One-Mapping-Fits-All (OMFA) is the stan-

dard component-independent mapping. Working on nomi-

nal delay estimates for routing resources, VPR-Pathfinder
routing [25, 23] is performed once, and the same mapping
of nets to resources is used for all chips. The only time re-
quired to map a design with OMFA is the load time, which
is configuration bandwidth dominated.

Tomfa = Nbits × Tbit (4)

We use Nbits estimates from [28], using VPR to supply detail
switch counts, and take Tbit =1b/ns after the Virtex-5 [34].

5.2 Full Knowledge
For the highest-quality mapping, we perform a normal

VPR-Pathfinder-style placement and routing based on a rout-
ing graph where the delay over every link in the network
is set to match the specific FPGA component. We assume
CTC-style measurement of basic resources to obtain the link
delays. Resources are decomposed into Discrete Units of
Knowledge or DUKs from [14]. Pathfinder routing [25] is
already designed to find shortest paths in this routing graph
with irregular, heterogeneous delays, and techniques from
[26] allow us to represent per-switch delays in VPR [23].

Full Knowledge routing requires a processor capable of
running a full Pathfinder router to produce the component-
specific bitstream. In typical operation, we imagine this
would be performed once, before the FPGA platform is de-
ployed. The bitstream would then be stored in configuration
ROM or flash memory on the FPGA platform.

To estimate Full Knowledge mapping time, we include
both the time to run VPR routing on the component de-
lays, Tvpr, and the time to measure all the paths, Ndukpaths,
necessary to compute all DUKs in the FPGA.

Tfull = Tvpr + Tdmeas ×Ndukpaths (5)

We estimate the number of DUKs and paths based on [13]:

Ndukpaths = 2 ·Nsegments · (2Lseg + 1) + (6)(
1 +Nch · Fcout · Lseg · Fcin ·

Nins

2

)
5K ·Nluts ·Nouts

We estimate Tdmeas as 2 seconds, based on observations that
4 DUKs can be measured on average per configuration in less
than 8 seconds. We expect these numbers are conservative
and could be significantly reduced with appropriate tuning.
From prior work (e.g., [12]), we know algorithm runtime and
testing are the dominant time components. We keep the
models simple for illustration, omitting lower-order contrib-
utors such as load and reconfiguration time for algorithms
with large testing and algorithm time.

5.3 CYA Defect-Only
CYA performs greedy, load-time selection among the al-

ternatives. We adapt CYA for timing optimization by test-
ing each 2-point net alternative, not just for functionality,
but also for operation at a specified delay. We use a CTC
measurement technique like the one from Wong or Gojman
[33, 14] to test if a path will run at a specified delay. Load-
time selection simply tests for a performance threshold and
takes the first alternative that meets the specified perfor-
mance; it does not characterize the performance of alterna-
tives or try to select the highest-performance alternative.

The simplest load-time selection is a defect-only case where
the timing test is set to some large threshold value (e.g.,
10 ns). Defect-only CYA tests at this large threshold value

Table 2: Key Algorithm Characteristics
Measure Base Alter- Greedy? Delay State

Algorithm When How What Rsrv nates Type Bytes

Full Knowledge Mfg. CTC All DUKs N N/A No Static 100M
Pathfinder Repair Load CTC Paths + Repair DUKs Y Route No Static 10M

Pathfinder Selection Load Binary CTC Paths + Repair Paths Y Precomp. No Static 10M
Incr. CYA Operation DDFFL Delay at LUT (MD) Y Precomp. By Slack Observ. 1M

CYA Slack-Budget Load Binary CTC Paths Y Precomp. By Net Static 10
CYA Defect-Only Load Binary CTC Paths Y Precomp. By Net Static 10

OMFA Never N/A N/A N N/A N/A Static 10

to filter out resources that are slow enough to be consid-
ered defective. Tab. 2 marks algorithms that only use CTC
measurements to decide whether a path meets a threshold
as “Binary CTC” to distinguish them from cases where the
algorithm uses a series of CTC measurements to estimate
the delay of a path or resource.

The Defect-Only CYA load time is dominated by testing
alternatives for the threshold cutoff, Tthresh:

Tdefect−CY A = Natry ×Ntmeas × Tthresh (7)

Natry is the total number of alternatives tried during the
load. Threshold measurement count, Ntmeas, is set to 1000.

5.4 CYA Slack-Budget
A more sophisticated option tests each path against a re-

quired time (RT). We could set the required time to the
nominal delay for the path for each 2-point net. However,
we can achieve the nominal delay for the circuit even when
off-critical path 2-point net links do not make their nominal
delay. That is, there is slack on these paths, and we can allow
2-point nets to use some of that slack. As a result, we bud-
get the slack along the 2-point nets in a path from inputs to
outputs. For this work, we use a very simple slack-budgeting
scheme where each 2-point net in a path gets its delay-
proportional share of the total path slack (Slack(2pti) =

Slack(Path(i))× Delay(2pti)
Delay(CriticalPath)−Slack(Path(i))

). Each 2-

point net may be part of multiple paths that have differing
initial slack, which results in unclaimed path slack after this
formula is applied. Therefore, we distribute slack by repeat-
edly applying this formula until all the residual slacks are
negligible or entirely distributed. More sophisticated slack-
budgeting schemes are known in the literature (e.g., [11]),
but we leave those for future work. Finally, we scale the
delay budgets to match the timing target for each load, re-
sulting in a required time:
RTi = DelayTarget

Delay(CriticalPath)
× (Delay(2pti) + Slack(2pti)).

Slack-Budget CYA performs a binary search to determine
the minimum DelayTarget achievable.

Slack-Budget CYA loading is the same as Defect-Only
CYA, except that it uses the per-net timing target delay,
Ttarg, determined from slack budgeting. For simplicity in
estimation, we conservatively use the target circuit delay:

Tsbudget−CY A = Natry ×Ncmeas ×DelayTarget (8)

Natry includes all alternatives tried across all delay targets
in the binary search.

5.5 Incremental CYA
The CYA Slack-Budget greedy selection of the first“good-

enough” alternative may not allocate fast resources where

they are most needed. In the Incremental CYA algorithm,
we postpone delay measurement and circuit customization
to runtime, where they are performed in parallel with the
main circuit operation. This effectively reduces the initial
preparation time to the time needed for the defect CYA al-
gorithm. Furthermore, testing is performed in the final envi-
ronment with the full circuit configured, meaning tempera-
ture and activity effects are included in the characterization.
During operation the algorithm performs measurements to
locate the slowest resource and replaces the slowest path
with an unused and non-conflicting CYA alternative path.
As customization takes place incrementally, a circuit can
already take advantage of delay improvements before the al-
gorithm completes. Since repairs are made in order of need,
the slowest paths get the first chance to select from available
alternatives, providing a form of list scheduling [15]. Com-
putations that can tolerate variable delay, such as best-effort
and streaming dataflow computation, can start performing
useful work immediately during this initial tuning phase.
Tasks with real-time requirements may not meet their full-
speed operation goals until a number of repairs have oc-
curred. As we show in Sec. 7, timing repair can typically be
achieved in tens of seconds.

Our algorithm is an adaptation of COSMIC TRIP [12],
which was originally devised to deal with circuit slowdown
caused by aging. As in COSMIC TRIP, we assume an FPGA
equipped with Difference Detectors with First-Fail Latches
(DDFFL) [20] connected to every LUT output to establish
whether signals attain their final value at a time instant
that precedes the end of the clock period by a configurable
amount of time. The time between the start of the clock
period and the latest arrival time for errorless operation is
called the maximum delay MDi of a LUT i. From the MDi

estimates, the algorithm computes the relative lateness, RLi

of every LUT. RLi indicates the additional time that a LUT
needs to produce an output value compared to its prede-
cessors and its nominal delay. The LUT with the relative
lateness that most exceeds its slack is selected for repair.

In COSMIC TRIP, the slack, Slacki, was derived from
the MDi estimates before the circuit was affected by aging.
When incremental repair is applied to reduce a timing mar-
gin, there is no equivalent to delays before aging to use as
basis of the slack computation. Therefore, the search algo-
rithm must be revised to accommodate variation. We con-
strain the slowest-LUT search to the critical path because
any delay improvement in the remaining circuitry will not
affect the minimum clock period of the circuit as a whole.
We identify the critical-path LUTs by determining the LUTs
that minimize the slack computed from the current timing
errors. Every repair potentially affects the trajectory of the

critical path, so we incrementally recompute the slack during
every search, increasing the per-repair costs over COSMIC
TRIP. When a LUT has been repaired, we must update the
MDi’s and Slacki’s in the network. However, only the MDi

intervals of the repaired LUT and its recursive fanout cone
need to be reset and remeasured. We can reuse the MDi’s
outside of the cone, reducing the time to updated the MDi

estimates compared to the initial estimation.
The incremental repair algorithm has much higher com-

plexity than the CYA loader and requires megabytes of mem-
ory. We imagine it running on an attached processor such as
the embedded ARM core on modern Zynq and Arria SoCs.

For Incremental CYA, we first run defect-only CYA, and
then perform incremental repair attempts during operation.

Tincr−CY A = Tdefect−CY A + Tincr (9)

The incremental repairs require both algorithm time to com-
pute the next measurement or repair attempt and opera-
tional cycles during which the DDFFL collects samples.

Tincr = Tincr−select +Ntot−eval−cyc × Tcycle (10)

However, the circuit may be performing useful work during
the algorithm time and the computation, just not at the
final rate of operation. An alternate indication of the cost
of the algorithm is the lost time compared to running at the
final operating speed.

T ′incr =

(
Tincr−select

Tcycle
+Ntot−eval−cyc

)
× (Tcycle − Tfinal−cycle) (11)

5.5.1 Observed and Worst-Case Delays
Conventional vendor CAD maps designs for worst-case de-

lays with large margins. Component-specific mapping can
map to the specific delays of a particular chip. However,
the worst-case delays calculated with static timing analysis
may still be larger than the delay paths typically seen in the
chip. This may be in part due to false paths in the netlist
graph that are not sensitizible [10, Ch. 8] or due to real
paths that are, nonetheless, activated very rarely [27]. VPR
timing estimates do not eliminate false paths, and even the
best false-path estimates are necessarily conservative.

One fundamental difference of Incremental CYA is that
it actively optimizes observed delays rather than worst-case
delays. A path that is never sensitized does not contribute
to the delay (MD) and lateness (RL) calculations. This can
allow Incremental CYA to operate faster than a static timing
analysis might predict. It also means that Incremental CYA
will not repair a path before it is sensitized; consequently, it
will never spend resources repairing a false path.

5.6 Pathfinder Repair
To make loading simple and fast, CYA makes several

simplifications relative to a Full Knowledge route. Most
notably, it splits base and reserved tracks, it uses a lim-
ited number of full LUT-to-LUT paths, and it performs
alternative selection in a greedy fashion rather than us-
ing Pathfinder-style negotiated congestion. To characterize
the effects of these limitations, we create two intermediates
points between Full Knowledge routing and CYA. These al-
gorithms can be viewed as limit studies providing insight
into how much quality we are compromising by each of the
individual simplifications.

In Pathfinder Repair, we look specifically at the impact of
the base and reserved track split where we only reroute nets
that fail to meet their timing, and we reroute these using
only the routing resources available to CYA—the reserved
tracks. The entire design is routed using the base resources
with their nominal delay, just as for a CYA design. How-
ever, rather than pre-computing alternatives, the algorithm
performs full-knowledge characterization of the reserved re-
sources, and full Pathfinder negotiated-congestion routing
for the two-point nets whose base routes do not meet the
timing target. We implement this modification inside VPR
by identifying only the failed two-point nets as the logical
graph to route and marking only the reserved resources as
available for routing. As a result, the Pathfinder Repair
route has the highest quality possible for a design with the
base/reserved track split. It sacrifices quality by not ripping
up good routes in the base to reuse their resources, but, as a
result, it saves time by only performing component-specific
routing on nets that fail to meet timing in the base route.

Pathfinder Repair will require a processor and memory
with the full capabilities to represent the detail FPGA rout-
ing graph for the reserved tracks and run full VPR-style
routing. It must also be able to perform DUK measurements
and DUK computations for the reserved track resources.

Pathfinder Repair requires DUK measurement time, re-
pair time, Tvpr−repair, and time to measure each 2-point
net to see if it meets its required timing target:

Tpath−repair = Tvpr−repair + Tdmeas ×Ndukpaths

+N2pt ×Ncmeas × Tcycle (12)

Ndukpaths here uses Eq. 6 with Nch = Ws, since Pathfinder
Repair only needs to characterize the reserved resources.
Since repair time only needs to route the failing nets on the
smaller set of reserved tracks, routing time is lower than Full
Knowledge routing (Tvpr−repair < Tvpr). We set Ncmeas to
215 to match the Full Knowledge measurements.

5.7 Pathfinder Selection
Pathfinder Selection is designed as a mid-point between

Pathfinder Repair and CYA to characterize the impact of us-
ing a limited set of LUT-to-LUT paths rather than perform-
ing full-knowledge route selection. That is, a key simplifica-
tion in CYA is that it keeps only a small number of LUT-
to-LUT path alternatives rather than performing a search
on the route resource graph to explore available paths. This
is what allows the CYA loader to be simple and avoid rep-
resenting the route graph. CYA also allocates these LUT-
to-LUT paths in a greedy manner; this also simplifies state
and decision making. Pathfinder Selection keeps the limited
LUT-to-LUT paths used by CYA, but performs Pathfinder-
style negotiated congestion among the nets that fail to meet
timing in the base route and their alternative paths in order
to perform the repair. Compared to Pathfinder Repair, this
characterizes the impact of only using a limited number of
LUT-to-LUT paths. Compared to CYA, this characterizes
the impact of greedy route selection. Pathfinder Selection is
implemented in a modified VPR Pathfinder router where we
restrict path expansion for a net to the set of precomputed
alternatives that meet its slack budget target. As with CYA
and Pathfinder Repair, we limit the set of 2-point nets to
route to the set that fails to meet timing in the base route.

Pathfinder Selection has the same processor and mem-
ory needs as Pathfinder Repair since it must represent the

individual routing resources to detect conflicts. Pathfinder
Selection does not need to measure or compute DUKs since
it operates entirely on LUT-to-LUT paths.

Pathfinder Selection replaces the runtime of full VPR with
the runtime of Pathfinder negotiation on precomputed alter-
natives paths, Tvpr−select, and DUK characterization with
2-point alternative target delay filtering.

Tpath−select = Tvpr−select +N2pt ×Ncmeas × Ttarg

+N2pt ×Nalt ×Ncmeas × Ttarg (13)

6. METHODOLOGY
We compare the various algorithms on the Toronto 20

benchmark [5] set. We use VPR 5.0.2 [23] for placement and
extend it with timing-target routing [29]. Our target archi-
tecture is an Island-style architecture [6] with 6-input LUTs
(K = 6) and 8 base LUTs per cluster (N = 8) and a segment
length of 4 using the split Wilton switchbox (Sec. 4), mak-
ing it similar to the Stratix-IV [21]. Routes are performed
with a base track allocation set at the minimum number of
routing channels for the design. We add sparing to guar-
antee at least one alternative as fast as the base routes (i.e.,
16 spare inputs, 4 spare outputs, Ws =16 reserved tracks,
with FCout,extra =0.20 and FCin,extra =0.15) as described
in Sec. 4. Except for the OMFA and Full Knowledge map-
ping, all cases use separated base and reserved tracks. Full
knowledge mapping performs its single route on the full set
of base and reserved resources.

We use a 22-nm CMOS process modeled by the Predic-
tive Technology Model (PTM) [35] with a typical operating
Vdd =0.8V and Gaussian distributed threshold voltage with
µVth=400mV, σVth=36mV. We construct an FPGA “chip”
by independently sampling each transistor’s threshold volt-
age from this distribution and use the same set of 20 “chips”
across all 7 algorithms. For most results, rather than pre-
senting the characteristics of individuals, we present the 95%
yield point—the delay or energy achieved by the second
slowest or second highest energy chip in the batch of 20.

For Full Knowledge mapping and repair, routing starts
with a complete delay map for the resources in the network.
For load-time CYA, we simulate the CYA loader algorithm.
For iterative repair CYA, we simulate both the DDFFL data
collection and the repair algorithm.

The algorithm time for mapping can be directly converted
to energy assuming constant operating power for the map-
ping processor during the computation.

Ealg = Talg × Pproc (14)

We run our algorithms on a laptop-class Intel Core i7-5600U
processor at 2.6 GHz, monitor power consumption with Pow-
erTop, and estimate Pproc ≈0.19 W. To run the full set of
experiments, we also run jobs on a cluster of 2.7 GHz Intel
Xeon processors and scale the runtime to match the laptop-
class processor used for timing and power estimates.

7. EXPERIMENTS
Fig. 4 shows an illustrative Incremental CYA repair se-

quence using the des benchmark. We use boxplots to char-
acterize the distribution of the 20 chips, the thick line marks
the median and the box captures the two quartiles on either
side of the median, with the circles denoting the outliers. Be-
fore repair, the design has a large range of potential delays,

●

●

●

●
● ●

●
● ●

● ● ● ●

0 8 16 24 32 40 48 56 64 72 80 88 96

2
e

−
0

9
4

e
−

0
9

6
e

−
0

9

Repairs

C
ri

ti
c
a

l
p

a
th

 d
e

la
y
 (

s
)

For each repair point, a boxplot characterizes the delay
achieved for the set of 20 “chips” used in the experi-
ment. Circles represent the outlier data points.

Figure 4: Incremental CYA Delay vs. Repairs for
des for One Fast Alternative Sparing at Vdd =0.60V,
64 Alternatives

0.3 0.4 0.5 0.6 0.7 0.8

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

3
5

0

Vdd (V)

C
ri

ti
c
a

l
p

a
th

 d
e

la
y
 (

n
s
)

●
● ● ● ●

● OMFA

CYA (defect−only)

CYA (slack−budget)

Incr. CYA (observed)

Pathfinder Selection

Pathfinder Repair

Full−Knowledge

Figure 7: Delay vs. Voltage for des with One Fast
Alternative Sparing, 64 Alternatives

spread over 5 ns, depending on how the randomly sampled
slow resources happen to align with the critical path. If we
had to guarantee 95% yield, we would be forced to treat
this design as operating at 4.5 ns. However, after the first
few repairs, the median drops below 2 ns and the worst-case
chip is under 2.3 ns. As repairs continue, the distribution
tightens. By 100 repairs, the delay is 1.4 ns, and the entire
spread in the distribution is less than 0.13 ns. These 100
repairs occur over a period of one second.

Fig. 5 shows how Incremental CYA makes use of alterna-
tives. We see the largest gains come from having one fast
alternative, with some additional gains going to 4 alterna-
tives. Only a couple of designs show additional improvement
with 16 alternatives, and the 64 alternatives provides no sig-
nificant gains. The guarantee of only one or a few fast al-
ternatives coupled with the cost function prioritization that
makes sure the most promising alternatives are selected first,
and hence kept in the smaller alternative sets, means that
the algorithm can generally satisfy the design without going
very deep into the alternative set.

Fig. 6 shows how the algorithms compare. Two designs
(clma, ex1010) do not achieve 95% yield at 0.6V for OMFA.

a
lu

4

a
p
e
x
2

a
p
e
x
4

b
ig

k
e
y

c
lm

a

d
e
s

d
if
fe

q

d
s
ip

e
lli

p
ti
c

e
x
1
0
1
0

e
x
5
p

fr
is

c

m
is

e
x
3

p
d
c

s
2
9
8

s
3
8
4
1
7

s
3
8
5
8
4
.1

s
e
q

s
p
la

ts
e
n
g

C
ri

ti
c
a
l
p
a
th

 d
e
la

y
 (

n
s
)

0
2

4
6

8
1
0

1
2

Alternatives

0

1

4

16

64

Figure 5: Delay vs. Alternatives for Incremental CYA with One Fast Alternative Sparing at Vdd = 0.60V

a
lu

4

a
p
e
x
2

a
p
e
x
4

b
ig

k
e
y

c
lm

a

d
e
s

d
if
fe

q

d
s
ip

e
lli

p
ti
c

e
x
1
0
1
0

e
x
5
p

fr
is

c

m
is

e
x
3

p
d
c

s
2
9
8

s
3
8
4
1
7

s
3
8
5
8
4
.1

s
e
q

s
p
la

ts
e
n
g

C
ri

ti
c
a
l
p
a
th

 d
e
la

y
 (

n
s
)

0
5

1
0

1
5

Algorithm

OMFA

CYA (defect−only)

CYA (slack−budget)

Incr. CYA (worst case)

Incr. CYA (observed)

Pathfinder Selection

Pathfinder Repair

Full−Knowledge

Figure 6: Delay for All Algorithms for One Fast Alternative Sparing at Vdd = 0.60V and 64 Alternatives

1 2 5 10 20 50 100 200

0
1

2
3

4

Critical path delay (ns)

E
n

e
rg

y
 (

p
J
)

●

●
●

●

●

● OMFA

CYA (defect−only)

CYA (slack−budget)

Incr. CYA (observed)

Pathfinder Selection

Pathfinder Repair

Full−Knowledge

Figure 8: Energy vs. Delay for des with One Fast
Alternative Sparing, 64 Alternatives

Slack-budget CYA is always able to improve over OMFA,
with the improvement often being substantial. For a few
designs, the worst-case, Incremental CYA shows little or no
improvement over the defect-CYA that is run as a prefix to
the incremental improvement. Nonetheless, the observed de-
lay for Incremental CYA always achieves delays below Slack-
budget CYA, showing that the incremental repair is effective
in practice. Pathfinder Selection is only slightly better than
Slack-budget CYA, suggesting that the greedy path selection
in CYA has a modest effect on solution quality. Pathfinder
Selection can be worse than observed delays for Incremen-
tal CYA since it is optimizing for static timing analysis.
Full Knowledge achieves the lowest delays, as expected, but

clearly shows that the slack-budget and Incremental CYA
are closer to it than to the OMFA delays. Pathfinder Re-
pair is only moderately worse than Full Knowledge, sug-
gesting that algorithms do not sacrifice much quality for the
simplification of only repairing slow paths. The larger gap
between Pathfinder Selection and Pathfinder Repair, more
evident in Fig. 9 and 10, shows that the limited set of full-
path alternatives does have a quality impact. This suggests
that additional tuning to generate a better or larger set of
alternatives might be able to improve CYA quality.

As we lower the voltage, the delay increases and variation
has a larger impact on chip delay. Fig. 7 shows how the
algorithms stack up on delay for specific voltages. OMFA
cannot guarantee 95% operational yield below 0.60 V, while
Full Knowledge and Pathfinder Repair can scale down to
0.30 V. Various CYA alternatives and Pathfinder Selection
can scale to 0.40 V. At 0.80 V the delay improvement among
algorithms is small and undifferentiated. As voltage drops,
we see larger separation among the algorithms.

Up to the point where leakage dominates, the lower volt-
age of operation turns into reduced energy (see Fig. 8).
Component-specific repair allows the design to operate to
and past the minimum energy point. The ability to re-
duce the delay at lower voltages, reduces the leakage penalty,
allowing the component-specific repairs to shift the energy
minimum down to lower energy points at greater delays.

In Figs. 9 and 10, we plot the quality resulting from the
algorithms against the time required for mapping and load-
ing. Raw bitstream loads can occur in hundredths of a
second, while Full Knowledge mappings take 107–108 sec-
onds. Defect-only, Slack-budget, and Incremental CYA map

1e−03 1e+00 1e+03 1e+06

0
.2

0
.4

0
.6

0
.8

1
.0

Time (s)

T
F

u
ll_

k
n

o
w

le
d
g

e
T

A
lg

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● OMFA

CYA (defect−only)

CYA (slack−budget)

Incr. CYA (observed)

Pathfinder Selection

Pathfinder Repair

Full−Knowledge

Figure 9: Delay vs. Mapping Time with One Fast
Alternative Sparing at Vdd = 0.60V, 64 Alternatives

1e−03 1e+00 1e+03 1e+06

1
.0

1
.2

1
.4

1
.6

1
.8

2
.0

2
.2

2
.4

Time (s)

N
o

rm
a

liz
e

d
 e

n
e

rg
y ●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

● OMFA

CYA (defect−only)

CYA (slack−budget)

Incr. CYA (observed)

Pathfinder Selection

Pathfinder Repair

Full−Knowledge

Figure 10: Energy vs. Mapping Time with One Fast
Alternative Sparing, 64 Alternatives

in 1–10 seconds. Incremental CYA delay results are within
0.16

1.0−0.29
≈23%, and energy results within 0.44

2.02−1
≈43% of the

Full Knowledge mapping.
Tab. 3 summarizes how the algorithms fare when we use

them to minimize energy while achieving a delay only 20%
larger than the nominal delay. Knowledge mapping schemes
spend their dominant time characterizing the chip. Tab. 3
separates measurement time from mapping time, so we can
also reason about their delay to get the design running on
the FPGA assuming we already have a delay map. Fur-
thermore, we expect the characterization times can be re-
duced by tuning, including simply running fewer measure-
ment samples, perhaps at the expense of less accurate char-
acterization. From the breakdowns in the table, we can see
that the mapping time alone can cost two orders of magni-
tude more time than the CYA algorithms.

8. DISCUSSION
Slack-budget CYA gets half-way to the delay benefits of

full-knowledge mapping, with under ten seconds of measure-
ment and mapping time. At the expense of more sophis-
ticated on-chip measurement and algorithms, Incremental
CYA maps just as fast and closes over half of the remain-
ing gap. These show that it is possible to achieve much of

Table 3: Quality vs. Mapping Costs with One Fast
Alternative Sparing Targeting 1.2 · Delaynominal

Algorithm TFK/ E/ Tmeas Talg Ecust

Talg EFK (s) (s) (J)

OMFA 0.98 1.4 0.0 0.0045 0.00086
CYA (def. only) 0.98 1.4 0.021 0.0 0.021
CYA (Sl. budg.) 1.02 1.3 0.063 0.0 0.057

Incr. CYA 1.01 1.1 0.050 0.84 0.18
Pathfinder Sel. 1.02 1.3 14 13 15

Pathfinder Rep. 1.03 1.0 1.4 · 106 125 4.6 · 105

Full Knowledge 1.00 1.0 3.4 · 107 396 1.6 · 107

geomean aggregates

the potential benefits of component-specific with lightweight
schemes that run quickly.

Note that the Incremental CYA achieves break-even en-
ergy within 20 minutes of operation. As we see in Tab. 3,
customization for Incremental CYA costs around 0.18 J and
typically reduces it by 0.3EFK . Assuming that a clock cycle
using the Full Knowledge algorithm costs around 1.1 pJ, the
savings would be around 0.33 pJ, meaning the cost of cus-
tomization is repaid after 5.5×1011 operations, or, assuming
a 2 ns typical cycle time, around 1090 seconds (18 minutes).

Only Incremental CYA fully deals with in-system timing
variation and aging. As such, the gap between Incremental
CYA and a margined Full Knowledge is likely to be smaller
in practice than illustrated here. Alternately, using Incre-
mentally CYA on top of a Full Knowledge routed base route
could achieve the high quality of Full Knowledge without
needing additional margins.

9. CONCLUSION
Component-specific mitigation of delay variation can be

quite tractable. While Full Knowledge characterization and
mapping can take megaseconds (days), Slack-budget CYA
typically achieves over 50% of the potential delay recovery
and over 50% of the potential energy recovery, with under
twenty seconds of load-time mapping. Incremental CYA re-
quires similar tuning time and achieves comparable energy
recovery (57% average) while achieving over 70% (77% aver-
age) of the delay recovery. With these lightweight schemes,
energy break-even occurs in hours.

Acknowledgements
H. Giesen was supported by the Leggett Family Fellowship.
This research was funded in part by DARPA/CMO contract
HR0011-13-C-0005. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not reflect the official policy or position
of the Department of Defense or the U.S. Government.

10. REFERENCES
[1] A. Asenov. Random dopant induced threshold voltage

lowering and fluctuations in sub-0.1µm MOSFET’s: A
3-D “atomistic” simulation study. IEEE Trans.
Electron Devices, 45(12):2505–2513, December 1998.

[2] A. Asenov. Intrinsic threshold voltage fluctuations in
decanano MOSFETs due to local oxide thickness
variation. IEEE Trans. Electron Devices,
49(1):112–119, January 2002.

[3] A. Asenov, S. Kaya, and A. R. Brown. Intrinsic
parameter fluctuations in decananometer MOSFETs
introduced by gate line edge roughness. IEEE Trans.
Electron Devices, 50(5):1254–1260, May 2003.

[4] K. Bernstein, D. J. Frank, A. E. Gattiker,
W. Haensch, B. L. Ji, S. R. Nassif, E. J. Nowak, D. J.
Pearson, and N. J. Rohrer. High-performance CMOS
variability in the 65-nm regime and beyond. IBM J.
Res. and Dev., 50(4/5):433–449, July/September 2006.

[5] V. Betz and J. Rose. FPGA Place-and-Route
Challenge. <http://www.eecg.toronto.edu/˜vaughn/
challenge/challenge.html>, 1999.

[6] V. Betz, J. Rose, and A. Marquardt. Architecture and
CAD for Deep-Submicron FPGAs. Kluwer Academic
Publishers, Norwell, Massachusetts, 02061 USA, 1999.

[7] D. Bol, R. Ambroise, D. Flandre, and J.-D. Legat.
Interests and limitations of technology scaling for
subthreshold logic. IEEE Trans. VLSI Syst.,
17(10):1508–1519, 2009.

[8] C. T. Chow, L. S. M. Tsui, P. H. W. Leong, W. Luk,
and S. J. E. Wilton. Dynamic voltage scaling for
commercial FPGAs. In ICFPT, pages 173–180, 2005.

[9] W. B. Culbertson, R. Amerson, R. Carter, P. Kuekes,
and G. Snider. Defect tolerance on the TERAMAC
custom computer. In FCCM, pages 116–123, April
1997.

[10] S. Devadas, A. Ghosh, and K. Keutzer. Logic
Synthesis. McGraw-Hill, New York, 1994.

[11] S. Ghiasi, E. Bozorgzadeh, S. Choudhuri, and
M. Sarrafzadeh. A unified theory of timing budget
management. In ICCAD, pages 653–659, 2004.

[12] H. Giesen, B. Gojman, R. Rubin, and A. DeHon.
Continuous online self-monitoring introspection
circuitry for timing repair by incremental
partial-reconfiguration (COSMIC TRIP). In FCCM,
pages 111–118, 2016.

[13] B. Gojman and A. DeHon. GROK-INT: Generating
real on-chip knowledge for interconnect delays using
timing extraction. In FCCM, pages 88–95, 2014.

[14] B. Gojman, S. Nalmela, N. Mehta, N. Howarth, and
A. DeHon. GROK-LAB: Generating real on-chip
knowledge for intra-cluster delays using timing
extraction. ACM Tr. Reconfig. Tech. and Sys.,
7(4):5:1–5:23, Dec. 2014.

[15] R. Graham. Bounds on multiprocessor timing
anomalies. SIAM J. Appl. Math, 7:416–429, 1969.

[16] C. He, M. F. Jacome, and G. de Veciana. A
reconfiguration-based defect-tolerant design paradigm
for nanotechnologies. IEEE Design and Test of
Computers, 22(4):316–326, July-August 2005.

[17] D. L. How and S. Atsatt. Sectors: Divide conquer and
softwarization in the design and validation of the
Stratix 10 FPGA. In FCCM, pages 119–126, May
2016.

[18] K. J. Kuhn. Reducing variation in advanced logic
technologies: Approaches to process and design for
manufacturability of nanoscale cmos. In IEDM, pages
471–474, 2007.

[19] J. Lach, W. H. Mangione-Smith, and M. Potkonjak.
Low overhead fault-tolerant FPGA systems. IEEE
Trans. VLSI Syst., 6(2):212–221, June 1998.

[20] J. M. Levine, E. Stott, G. A. Constantinides, and
P. Y. Cheung. Online measurement of timing in
circuits: for health monitoring and dynamic voltage &
frequency scaling. In FCCM, pages 109–116, 2012.

[21] D. Lewis, E. Ahmed, D. Cashman, T. Vanderhoek,
C. Lane, A. Lee, and P. Pan. Architectural
enhancements in Stratix-III and Stratix-IV. In FPGA,
pages 33–42, 2009.

[22] T. A. Linscott, B. Gojman, R. Rubin, and A. DeHon.
Pitfalls and tradeoffs in simultaneous, on-chip FPGA
delay measurement. In FPGA, pages 100–104,
February 2016.

[23] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye,
W. M. Fang, and J. Rose. VPR 5.0: FPGA CAD and
architecture exploration tools with single-driver
routing, heterogeneity and process scaling. In FPGA,
pages 133–142, 2009.

[24] M. I. Masud and S. Wilton. A new switch block for
segmented FPGAs. In FPL, pages 274–281, 1999.

[25] L. McMurchie and C. Ebeling. PathFinder: A
Negotiation-Based Performance-Driven Router for
FPGAs. In FPGA, pages 111–117, 1995.

[26] N. Mehta, R. Rubin, and A. DeHon. Limit Study of
Energy & Delay Benefits of Component-Specific
Routing. In FPGA, pages 97–106, 2012.

[27] K. Minkovich and J. Cong. Mapping for better than
worst-case delays in LUT-based FPGA designs. In
FPGA, pages 56–64, 2008.

[28] R. Rubin and A. DeHon.
Choose-Your-Own-Adventure Routing: Lightweight
Load-Time Defect Avoidance. ACM Tr. Reconfig.
Tech. and Sys., 4(4), December 2011.

[29] R. Rubin and A. DeHon. Timing-Driven Pathfinder
Pathology and Remediation: Quantifying and
Reducing Delay Noise in VPR-Pathfinder. In FPGA,
pages 173–176, 2011.

[30] P. Sedcole and P. Y. K. Cheung. Parametric yield
modeling and simulations of FPGA circuits
considering within-die delay variations. ACM Tr.
Reconfig. Tech. and Sys., 1(2), June 2008.

[31] E. A. Stott, J. S. J. Wong, P. Sedcole, and P. Y. K.
Cheung. Degradation in FPGAs: measurement and
modelling. In FPGA, page 229, 2010.

[32] T. Tuan, A. Lesea, C. Kingsley, and S. Trimberger.
Analysis of within-die process variation in 65nm
FPGAs. In ISQED, pages 1–5, March 2011.

[33] J. S. Wong, P. Sedcole, and P. Y. K. Cheung.
Self-measurement of combinatorial circuit delays in
FPGAs. ACM Tr. Reconfig. Tech. and Sys., 2(2):1–22,
June 2009.

[34] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124.
Virtex-5 FPGA Configuration User Guide, September
2008. UG191 <http:
//www.xilinx.com/bvdocs/userguides/ug191.pdf>.

[35] W. Zhao and Y. Cao. New generation of predictive
technology model for sub-45 nm early design
exploration. IEEE Trans. Electron Dev.,
53(11):2816–2823, 2006.

[36] K. M. Zick and J. P. Hayes. On-line sensing for
healthier FPGA systems. In FPGA, pages 239–248,
2010.

Web links for this document: <http://ic.ese.upenn.edu/abstracts/dragon fpga2017.html>

http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.xilinx.com/bvdocs/userguides/ug191.pdf
http://www.xilinx.com/bvdocs/userguides/ug191.pdf
http://ic.ese.upenn.edu/abstracts/dragon_fpga2017.html

