
Appearing in IEEE International Conference on Field-Programmable Technology (FPT 2020), December 9–11, 2020

Fast Linking of Separately-Compiled FPGA Blocks
without a NoC

Yuanlong Xiao, Syed Tousif Ahmed, and André DeHon
Dept. of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA

Email: ylxiao@seas.upenn.edu, stahmed@seas.upenn.edu, andre@ieee.org

Abstract—Dedicated point-to-point wires (DW) can be used in
place of a Packet-Switched Networks-on-a-Chip (PSNoC) for fast
linking of separately-compiled FPGA blocks, providing higher
bandwidth and performance with less area overhead without
increasing compile time. Previous work showed that separate
compilation of FPGA modules using a pre-compiled FPGA
overlay could reduce the long FPGA compile time by defining
and separately mapping small partially reconfigurable blocks
(Processing Elements) and using a fixed PSNoC to connect them
together. Nonetheless, the lightweight PSNoC cannot meet the
high data transmission requirements for some critical links, lim-
iting overall performance. We demonstrate that DWs, where the
producer ports and consumer ports are directly connected instead
of sharing limited-throughput, packet-switched connections, can
provide us with high throughput between Processing Elements
(PEs) while preserving the fast compile time; the DWs also reside
on partially reconfigurable blocks and can be compiled along with
the reconfigurable PEs simultaneously on the cloud. Adjacent
pages can be connected by fast links with low latency. Mapping
Rosetta Benchmarks, we show that the application-customized
direct networks can offer 1.5–10× performance gain and 47–86%
interface area overhead savings compared to previous work with
PSNoCs.

Index Terms—FPGA, packet-switched, direct wire, nearest-
neighbor, overlay, compile time, divide-and-conquer

I. INTRODUCTION

The huge resource flexibility and energy efficiency of
FPGAs provide new opportunities for not only compute-
bounded computation, but also a large class of memory-
bounded applications [1]. Instead of spending months to years
on architecture design and tape-out verification, FPGAs supply
the designers with instant implementation by only download-
ing bitstreams into an FPGAs within minutes. With mature
High-Level Synthesis (HLS) front-end technology, FPGA-
based applications can be developed in high-level program
language like C/C++, OpenCL or Python, leading to higher
coding productivity. However, the back-end tools lag behind
these versatile front-end tools. Compiling the design into
bitstreams often takes hours. HLS and logic synthesis can
be run in separate threads independently on different blocks,
but placement and routing exploits limited parallelism with
commodity EDA tools. This means we cannot make full
use of the abundant cloud computing resources to accelerate
the placement and routing directly. This long compile time
limits the efficiency for initial debugging and incremental
refinements, which eventually prevents more developers from
embracing FPGAs.

Park [2] proposes to decompose large designs into small,
separate units, and uses Packet-Switched Network-on-a-Chip
(PSNoC) to connect them together. These units can be com-
piled in parallel, and only a specific unit needs to be re-
compiled when changes are made to it. Xiao [3] evaluates
this method with concrete instances, and develops a tool
called PRFlow. By mapping the Rosetta Benchmarks [4] to
the XCZU9EG (ZCU102) [5], Xiao shows the compilation
time can be reduced from hours to 12 minutes. However,
the performance is often much lower than the monolithic
SDSoC implementation, and the worst-case benchmark is 12.5
times slower than the SDSoC version. While the pre-compiled
PSNoC can perform quick initial implementation, the limited
bandwidth between separately-compiled blocks can greatly
harm the performance. We propose: it is not necessary to
sacrifice a significant amount of the raw FPGA bandwidth
(performance) to achieve shorter compile times.

In this paper, we investigate using direct, pipelined wires
to replace PSNoCs. Instead of sharing only one physical port
into PSNoCs, different blocks can be directly connected by
dedicated physical links. With dedicated interconnect, the user
throughput can be improved from 9.6 Gbps per module [3] to
97.2 Gbps. By using Relay Stations [6], [7], the stream links
can be pipelined to guarantee timing closure. By making the
network blocks reconfigurable, the dedicated interconnection
can be compiled in parallel with the user logic, which adds
no extra compile time compared to Xiao [3] and Park’s [2]
work. The simple network reduces interconnect latency and
overhead.

We make the following key contributions:
• Characterize the routing capability in regions of the

FPGA and relate it to packet-switched NoC bandwidth
(Sec. III-D)

• Demonstrate the potential of direct-wire switchbox rout-
ing to reduce compilation time compared to monolithic
design mapping without sacrificing performance (Sec. V)

• Show potential to unify logic and switching partial re-
configuration regions (Sec. IV)

II. BACKGROUND

A. Accelerating FPGA Compile Time

Previous work that investigates reducing compile time can
be found in [2], [3], [8]–[12]. Lavin [8] uses RapidSmith [13]
to reduce compile time by saving implementation (synthesis,

© 2020 IEEE

http://www.icfpt.org/

placement, and route) data in the form of hard macros, and
connecting these macros together by a design stitcher. How-
ever, HMFlow only links up pre-compiled hard macros and
requires a final linking phase that still takes time. Moreover,
the essential intermediate Xilinx-generated files, like XDL
(Xilinx Design Language) files and NCD (Netlist Circuit
Description) files, are no longer supported by Vivado, which
makes HMFlow unusable for devices after 7-Series. Rapid-
Wright [14] updates RapidSmith to support Vivado designs,
but only provides a low-level interface to customize Vivado
checkpoints and build special-purpose placement and rout-
ing tools. It is a potentially useful backend to build upon,
but does not, itself, support general, automated compilation
acceleration. Just In Time (JIT) compilation [10] provides
the users with Domain Specific Language (DSL) to develop
FPGAs, which can link the design patterns with pre-compiled
bitstreams at runtime. The overlay, on top of the FPGAs,
connects all the reconfigurable tiles similar to the switchboxes,
but it only routes word-wide data. Like HMFlow, JIT can
only speed up certain design patterns (Innner Product, Matrix
Multiply, Correlation) where the overlay blocks have been
pre-designed and does not consider incremental hardware
refinements. Seiba [11] provided an FPGA overlay consisting
of HLS generated circuits, an execution manager, and soft-
processor function unit. The execution manager can move
some functionality from HLS-generated RTL circuits to the
soft-processor incrementally without hardware recompilation.
Seiba is a complementary technique and does not support
parallel acceleration of the native FPGA compiles; it cannot
evaluate the hardware accelerators performance without re-
generating the whole overlay, which is essential for incre-
mental FPGA development within a short edit-compile-debug
cycle.

B. NoC Overlayed on FPGAs

With the advent of FPGAs with high-density and regular
reconfigurable gates, researchers have explored NoC design
on top of commercial FPGAs. As interconnect wires can be
shared by different PEs, the NoC can reduce the number of
dedicated wires required and save area. By pipelining and
clocking the linking wires independently of the PEs, PEs can
be isolated within certain areas, increasing the frequency and
throughput of the communication links. When the throughput
between different PEs is low compared to the PE’s operating
cycle, different PEs can share the limited bandwidth, and a
PSNoC can allocate the bandwidth dynamically to where it is
needed. Compared to dedicating wires to links that are idle, it
might provide higher bandwidth to the active links when they
need it. A variety of PSNoCs are designed on FPGAs. The
CMU CONNECT [15] can automatically generate the RTL
code for NoCs for synthesis. It can achieve comparable or
better performance than the publicly available RTL-level NoC
code [16], with only one-half FPGA resources, or provide 3–
4× performance gain under the same area cost. The Penn split-
merge design showed how to pipeline the switches to achieve
higher bandwidth [17]. However, they did not consider the

floorplan, which can in turn affect the PE implementations.
Packet-Switched and Time-Multiplexed networks are explored
in [18], giving us some guidance on how to make best use
of different networks. These Packet-Switched NoCs spend
considerable resources on packet buffers. Recently proposed
bufferless, deflection-routed NoCs are more compact without
sacrificing performance [19], [20] and variants support contin-
ued operation during partial reconfiguration [21].

C. Logic Emulators

Logic emulators [22], [23] previously solved the problem
of decomposing large designs into separate components and
linking them together with overlay partial crossbars [22] or
statically time-multiplexed networks [23]. However these logic
emulators did not achieve the fast compiles that we achieve
and sacrificed one to two orders of magnitude of raw FPGA
performance, while this work show how to maintain most of
the FPGA performance while keeping 10–18 minute compile
times.

D. Partial Reconfiguration

Partial Reconfiguration (PR) is an FPGA technology that
allows only parts of the FPGA design to be reconfigured while
keeping other parts untouched [24]. With this feature, the pre-
defined parts can even be reconfigured during runtime, while
the other parts can run as normal. As the partial bitstream
is smaller than the complete one, it is often used to reduce
the reconfiguration time. The standard procedures for Xilinx
PR are to pre-define the reconfigurable parts as pblocks and
define the unchanged parts as static region. PR is widely
used in reducing area [25], [26], [27], decreasing bitstream
loading time, and reducing the compilation time [2], [3]. PR
has also been used to configure a 928×928 crossbar in [28].
Our approach operates at a lower level than [28], constructing
only dedicated paths directly on the FPGA fabric instead of
paying the higher cost of generating a complete crossbar.

E. Latency-Insensitive Dataflow Model

We target designs developed for the streaming computing
model [7], [29]–[31]. The whole design is decomposed into
individual operators that are connected together by latency-
insensitive stream links [32]. The streaming link adds ready
and valid control signals to the raw data. When the valid
and ready are both asserted, the data are transmitted from
the producer to the consumer. As the directions of valid and
ready are different, we use Relay Station [6], [33] to pipeline
the stream links.

F. Fast Mapping with PRFlow

We build upon the work of Park and Xiao [2], [3]. PRFlow
is a tool developed to accelerate the FPGA compile time with
Partial Reconfiguration (PR) technique. They propose to divide
one FPGA chip into separate, small partial reconfigurable
blocks, called leaves or pages. These pages are connected by a
fixed, packet-switched network. The deflection-routed, packet-
switched, Butterfly Fat Tree (BFT) [34] network is adopted,

PR

Leaf 2

Leaf 0

(ARM)

PR

Leaf 3

Leaf 1

(DMA)

PR

Leaf 6

PR

Leaf 4

PR

Leaf 7

PR

Leaf 5

F
IF

O
_

0

F
IF

O
_

6

F
IF

O
_

0

F
IF

O
_

6

... ...

Leaf_dstPort_dstData

...

Port_dst Data

...

Port_dst Data Port_dst Data

User Logic (Operator)

Splitter

Multiplexer

BFT vldvld

BFT Clock

Boundary

User Clock

Boundary L
ea

f
In

te
rf

a
ce

L
ea

f
B

lo
ck

d
a
ta

v
a
li

d

re
a
d

y

Leaf_dst Leaf_dst

Fig. 1: BFT NoC and Leaf Interface

as it is a lightweight PSNoC for modern FPGA architectures
[20]. The applications can be developed in the form of small
latency-insensitive operators, connected by stream links, as
described in Sec. II-E. The operators can be mapped and
compiled to PR blocks in parallel on the cloud, with a mapping
time around 12 minutes, while never needing to compile
the complete design together. As long as the packet-switch
network is placed and routed, we only need to configure the
source and destination registers inside each page to link the
pages together.

III. IDEA

In this section, we first identify two problems with the
PSNoC overlay: Bandwidth Waste in PRFlow and Interface
Sharing Logic area overhead. Next, we characterize the routing
capability in FPGAs. With that background, we introduce and
elaborate our direct wire idea and its supporting techniques
(relay stations, partition pins). Finally, we discuss exploiting
nearest-neighbor links to further utilize the on-chip bandwidth
and reduce latency.

A. Problem: Bandwidth Waste in PRFlow

Similar to most of the PSNoCs, in Xiao’s overlay, each
PE has a uniform interface [3]. On the BFT side, only one
pair of physical 32-bits IO buses, are implemented, which
can save resources, but degrade the performance due to 9.6
Gbps (300MHz × 32bits) throughput between pages and BFT.
This partly explains how some benchmark implementations
lose performance compared to the monolithic mapping (See
Tab. V). For the Rosetta optical flow benchmark (Figs. 2
and 3), some pages require multiple cycles to send and receive
data, but only require one cycle to process data.

B. Profile IO Throughput

We can profile the read/write operations for all the pages
for each benchmark. As the overall performance is determined
by the maximum computing cycles or maximum IO operation
cycles, we normalize the computing cycles and IO cycles as
below.

NormComputeCycles =
ComputeCycles

Max{AllComputeCycles}
(1)

Unpack

Gradient

xyz

Gradient

Weight y1

Gradient

Weight y2

Gradient

Weight y3

Gradient

Weight x1

Gradient

Weight x2

Gradient

Weight x3

Outer

product1

Tensor

Weight y1

Tensor

Weight x1

Flow

Calc1

0

1

2

0

0

0

0

0

0

0

Outer

product2

Tensor

Weight y2
Tensor

Weight x2

Flow

Calc2

Output

Merge

32bits / pixel

144bits / pixel

0 0

0 0
1

0
1
2

0

0
1
2

00
1

0

00

0 0

0

0

0
1

0
1

0
1

0
1

0

0

0
1

0

1

Fig. 2: Optical Flow Dataflow Graph

Optical Flow Operation Profile

g
_
x
y
z

g
_
w

_
y
1

g
w

_
y
2

g
_
w

_
y
3

g
_
w

_
x
1

g
_
w

_
x
2

g
_
w

_
x
3

o
_
p
1

o
_
p
2

t_
w

_
y
1

t_
w

_
y
2

t_
w

_
x
1

t_
w

_
x
2

f_
c

1

f_
c_

2

o
u
t

0

1

2

3

4

5

O
p
er

at
io

n
s

C
y
cl

es

10
6

Input_PSNoC

Output_PSNoC

Input_DW

Output_DW

Computing

Fig. 3: Optical Flow IO Profile

NormIoCycles =
Max{InputCycles,OutputCycles}

Max{AllComputeCycles}
(2)

We plot the ratio between NormComputeCycles and
NormIoCycles for all the operators in our benchmark set
in Fig. 4. The black line means that the IO operation cycles
equal the maximum computing cycles. If the ratio points are
below the black line, the IO operations cycles will not affect
the overall performance, as the application is still compute-
bound. When the points are above the black line, and their
X-axis values are far smaller than 1.0, it means the computing
cycles are small, but the high IO operating cycles significantly
limit the performance, like the face detection and spam filter
benchmarks. We should also address those benchmarks that
have high ratio values, like the optical flow. However, we can
see most of the IO-compute ratios are around or below 1.0 in
Fig. 5, which means only a limited number of links in each
application need high bandwidth interconnections.

C. Problem: Interface Sharing Logic

Similar to the TCP/IP protocol, data is transmitted through
a PSNoC in packets. Extra acknowledgment logic must be
added to producers and consumers to support a windowed
acknowledgment discipline [35] to guarantee that the input
FIFO has enough space to accept data from the PSNoC. Since

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

N
o
rm

al
iz

ed
 I

O
 C

y
cl

es
IO and Compute Operation Profile

rendeirng

dg_reg

optical_flow

bnn

spam_filter

face_detection

Fig. 4: IO Profile for all Benchmarks

0 5 10 15

NormIoCycles/NormComputeCycles

rendering

dg_reg

optical_flow

bnn

spam_filter

face_detection

IO and Compute Operation Ratio Distribution

Fig. 5: IO Compute Ratio for all Benchmarks

data transmissions in deflection-routed PSNoCs are out-of-
order, special order label headers are added into each packets,
which also increase the wire overhead. Xiao [3] uses a 48b
flit to send 32b of data, consuming one-third of the PSNoC
leaf bandwidth on header overhead. The resource consumption
of PSNoC leaf interface is shown in Tab. I. The output ports
have dedicated FIFOs and multiplexers, meaning designs will
consume resources proportional to the number of output ports.
The input ports only need to connect the input data to the
corresponding port according to the headers. The total logic
LUT count overhead of leaf interface is 577–2821, occupying
10%–56% of the 5,000–6,000 LUT Pages used by Xiao [3]
according to the number of ports (Tab. I).

Since the PSNoC designs are often limited by page through-
put as noted above, Xiao [3] runs the PSNoC at a higher
frequency than the leaves to maximize bandwidth. This re-
quires an asynchronous FIFO in the leaf interface to cross
between the network and leaf clock boundaries. Unfortunately,
the asynchronous FIFO adds 7 cycles of latency to both the

TABLE I: PSNoC Leaf Interface Resource Consumption

IO Number Sub-module LUT FF BRAM18

1
in ports 121 196 5
out ports 172 224 1

control logic 284 318 0

3
in ports 363 588 15
out ports 557 672 3

control logic 442 424 0

5
in ports 595 980 25
out ports 944 1120 5

control logic 538 518 0

7
in ports 833 1372 35
out ports 1436 1568 7

control logic 552 613 0

connection to and from the network, meaning every link in
the design has at least 14 cycles of added latency compared to
the monolithic design. While the added latency is not an issue
for feed-forward pipelines, it can have a significant impact on
performance in the case where there are cyclic dependencies
in the flow graph.

D. Opportunity: FPGA Wire Density

Our basic idea is to use direct-wire interconnect to replace
packet-switched networks. From Section III-A and III-B, we
know the bandwidth between the PSNoC and the pages is
the bottleneck. While we could increase the PSNoC data
width, it will also increase the overall PSNoC area overhead
linearly. To decrease the data transmission cycles in Fig. 3,
we need to increase the PSNoC datawidth by 9× to meet
the throughput requirements for the 8 blue links in Fig. 2.
We propose to customize the datawidth for only those 8 blue
links. The dedicated wires directly connect the producer ports
and consumer ports together; since the ports do not need to be
serialized onto the PSNoC, it maximizes the throughput. The
raw metal wires in modern, island-style FPGAs are abundant,
suggesting we can support many connections without networks
to share wires [36]. For example, there are around 104 wires
in the horizontal directions and 200 wires in the vertical
directions for each Configurable Logic Blocks (CLBs) in Zynq
UltraScale+ series chips [37]. As the height of each page is
60 CLBs, there are 60×200=12,000 wires available to route
data out of the page. Since the direct-wire topology is simple,
we expect the EDA tools can easily route the interconnections
by using more of those raw metal wires inside FPGAs. As the
network and the user logic can all be defined as reconfigurable
blocks, they can be compiled in parallel.

We do expect we will need to use the raw wires sparsely for
the designs to be routable. To explore how many raw wires we
can use in FPGAs, we conduct a routing capacity exploration.
We incrementally increase the stream ports between network
blocks and page blocks to explore how many wires can be
used between these two (vertically across 60 CLBs). We also
use the same method to explore the routing capability between
network blocks. In Tab. II, we report a coarse-grained, design-
space exploration on datawidth, W, and frequency, F. Our
optimization object is the product of W and F, which can
offer us the highest throughput. From Tab. II, we can see the

TABLE II: Static Timing Analysis Slack for 60 CLB Boundary

W
F(MHz) 100 200 250 300 400

32 3.761 0.861 X X X
64 1.187 0.284 0.287 X -0.853
96 3.151 0.438 -0.764 X X

128 X X X 0.021 -1.009
160 3.292 0.536 X X -0.905
192 3.262 X X X X
224 X X X -0.01 X
256 X 0.431 0.071 0.002 X
288 3.262 X X 0.009 X

Numbers in cells represent the slack; slack less than zero fail to meet the
timing target. X means the routing cannot be completed.

maximum on-chip throughput is 86.4 Gbps (288×300MHz)—
9× higher than the peak bandwidth available in the PSNoC.

E. Direct Wiring

In Fig. 1, we could see all the user IOs share one BFT
IO bus pair. For the direct wires, we connect the ports
directly with dedicated pipeline stream wires. For example,
to map the dataflow graph in Fig. 6a to our DW overlay in
Fig. 6b, all 4 of the links out of operator a get their own,
dedicated wires as they would in the monolithic compilation
case instead of sharing one physical port in PSNoC. The pages
and switchboxes are all defined as reconfigurable pblocks.
We can define the connections in the direct-wire switchboxes
automatically based on the connectivity of the design. We use
our own Python scripts to generate switchbox Verilog files
according to the connection needs of a particular application.
To guarantee timing closure, we add relay stations (Sec. II-E)
in each switch modules. The direct wires can also ensure in-
order data transmission without extra flow control logic.

F. Partition Pins

While we can support additional input and output wires to
pages as identified in Tab. II, they do have a cost. Vivado
demands the allocation of partition pins for each IO from the
PR regions. With default Vivado placement, these partition
pins can reduce routability and render BRAMs and DSPs in
the region unusable.

This has some consequence on the selection of page regions.
It is best to avoid placing DSP and BRAM columns directly
on the edge of the page facing the switchbox. Columns of
CLBs at the edge will provide more partition pin locations
that are less likely to interfere with BRAM and DSP use.

In the case of DSPs/BRAMs, when partition pins are
placed in CLB blocks immediately adjacent to DSP/BRAM
blocks, they can block the cascade connections between
DSPs/BRAMs making the DSPs/BRAMs unusable for typical
configurations with cascade connection. We can reduce this
effect by synthesizing DSP blocks without cascades (synthesis
option: -cascade_dsp tree), but this likely comes at
the cost of increasing latency for the computation. BRAM
cascades can be tuned by specifying the cascade height at
the RTL level (property: CASCADE HEIGHT), but cannot
be completely disabled.

a

b1

b2
c1

c2

e
DMA_in DMA_out

(a)

AXI_DMA

PAGE

Page_X0Y3

Page_X0Y4

Page_X0Y5

Page_X1Y6Page_X0Y6 Page_X2Y6

Page_X3Y3

(c1)

Page_X3Y4

(c2)

Page_X3Y5

Page_X3Y6

Page_X2Y0

(a)

Page_X3Y0

(b1)

 Page_X3Y1

(b2)

Page_X3Y2

(e)

Empty

Switch Box

Empty

User Logic

DMA

Mapped

User Logic

Mapped

Switch Box

Relay

Station

(b)

Fig. 6: (a) Application Dataflow Graph. (b) Mapping Appli-
cation to Direct-Wire Architecture

In the worst-case, effective page capacity must be rechar-
acterized as a function of the allocated partition pins.

G. Relay Station and Interface

The PSNoC of Xiao adds flow control logic to prevent
packet loss when operators cannot keep up with data and uses
addresses in flits to tolerate packet reordering (Sec. III-C).
This further forces the interface to be instantiated in pairs. Our
dedicated interconnect constructs real paths between different
ports. It needs more resources when mores links need to be
implemented, but it can eliminate the flow control interface.
The network overhead for PSNoC is fixed for each page at
around 500 LUTs. For the DW, the wires are determined by
different applications. Assuming we use all the pages, and all
the link need 3 relay stations, the equivalent overhead can
afford 8 32-bits direct links ((2×500 LUTs per interface)/(40
LUTs/relay-station×3 relay-stations)) between two pages. By
using a simple interface with an asynchronous FIFO to replace
the PSNoC flow control leaf interface, the interface overhead
per link can be reduced from 576 LUTs and 738 FFs to
310 LUTs and 422 FFs. Since we do not need to run the
network at a different clock frequency from the leaf pages,
we can use a simple interface with synchronous FIFOs to
replace the PSNoC flow control leaf interface, reducing the
interface overhead to only 184 LUTs and 154 FFs per link
and also decreasing the latency from 14 cycles (7×2) to 4
cycles (2×2). We can use a single FIFO on one end, cutting
the resource overhead in half and reducing the added latency
to 2 cycles.

From Fig. 7, LUT consumption for both the packet switch-
ing and direct wires increase linearly with the IO number.

0 2 4 6 8

IO Pairs Number

0

1000

2000

3000
L

U
T

s
C

o
n

su
m

p
ti

o
n

Interface Area: PS vs. DW

Packet-Switched

Direct Wires

Fig. 7: Interface LUT Consumption Comparisons

TABLE III: Direct Wires Overhead

Datawidth LUT FF BRAM18
Relay Station 32 40 73 0

Async Interface 32 155 211 1
Sync Interface 32 92 77 1

We can see the direct wires can save 54–68% LUT overhead
compared to the packet-switched network depending on the
number of IOs, and it can offer exclusive throughput for each
port.

H. Nearest-Neighbor Interconnect

Replacing the PSNoC with DW, we can fully utilize the
raw wires between switchboxes and pages, but this only
leverages the bandwidth on one edge—the edge adjacent to the
switchbox. It does not exploit the other 3 edges of each page.
The DW links need to go up to one switchbox before arriving
at the destination pages, which still adds additional latency
even when the two connected pages are physically adjacent to
each other. To address the bandwidth and latency issue above,
we can also add direct interconnect between adjacent pages,
which can help not only further improve the throughput, but
also reduce the latency between pages. In Fig. 6b, we can
see page X3Y1 has one boundary adjacent to switchbox, and
2 boundaries with page X3Y2 and page X3Y0. We can add
short, neighbor interconnect as the yellow arrows show. For
example, in Fig. 6, more links (a→b1, b2→e, c1→e) can be
mapped by nearest-neighbor interconnects. This can further
increase the throughput on top of the maximum throughput we
explore in Section III-D. Additionally, these quick interconnect
links can transmit data with short latency.

IV. UNIVERSAL PAGES

Once we accept that we are potentially remapping both the
leaf compute pages and the switchbox partial reconfigurable
pblocks (Sec. III-D), it becomes enticing to consider if we can
unify the two kinds of separately-compiled, partial reconfig-
uration regions into a single, fungible resource. That is, can
we divide the chip up into a number of “pages” and then
populate those pages with logic, interconnect, or even some
combination between them?

A. Idea

Starting from our nearest-neighbor tree design, we could
imagine decomposing each of our switchboxes into smaller

ARM

DMA

Page 2

Page 3 Page 15

Page 16

Page 17

Page 18

Page 19

Page 14

Page 12

Page 11

Page 4

Page 7

Page 31 Page 27 Page 23

SWB 2a

SWB 2b

SWB 2c

SWB 2d

SWB 1a

SWB 1b

SWB 1c

SWB 1d

Page 13

Page 8

Page 5

Page 6 Page 10

Page 9

Page 20Page 24Page 28

Page 30

Page 29

Page 26

Page 25

Page 22

Page 21

SWB 0a

SWB 3a

SWB 3b

SWB 3c

SWB 3d

SWB 0b

SWB 0c

SWB 0d

SWB Ta SWB Tb SWB Tc SWB Td SWB Te SWB Tf

Fig. 8: Decomposed Switchboxes toward Universal Pages
(compare to Fig. 9)

switchbox pages (Fig. 8). This would create even smaller
routing tasks for each of the smaller switchboxes, potentially
accelerating their mapping time. In the simplest case, we use
this just as before with more decomposition; we map each
switchbox page with the necessary direct-wire linkage required
to connect the design. However, we could also choose to
reallocate one of the switchbox pages to a compute page. For
example, in a design that admits to more nearest-neighbor
connections, we could “borrow” switchbox page SWB 2d
as a compute page that primarily communicated by nearest-
neighbor connections to compute page 23 and 19. Alternately,
in a design that required more routing, we could reallocate
page 25 to serve as an extra switchbox page. Generalizing,
universal pages allow us to tune the compute and switchbox
page ratio. We were motivated, in part, to explore this universal
page design due to challenges of developing a single overlay
that worked well across a set of benchmarks. The ability to
customize interconnect allocation eased the overlay design.

We could go one step further and “share” a uniform page
between logic and switching. In the simplest case, we might
put a small compute operator in with a switchbox that is not
heavily congested. Switchbox page SWB 2d might easily hold
some small combining logic, such as a reduce operation that
we see in several designs.

B. Prior Work

The idea of merging interconnect and logic is not new and
dates back, at least, to channelless or Sea-of-Gates gate arrays.
The NYU UltraComputer pushed the idea of integrating logic
into the communication network [38]. In the FPGA field,
Triptych [39], and to some extent, cellular arrays like CAL
[40], which later became the Xilinx 6200 [41], embraced
the strategy. More recently, this has been explored in the
Amorphous FPGA [42] and Liquid Silicon [43].

C. Costs

This does require the addition of more partition pins at
the sub-switchbox or universal page boundaries, which impact

routing and logic usability as seen in Sec. III-F. If fully
embraced, it means any pages shared between interconnect and
switching may need to be recompiled as interconnect changes.
This still admits parallelism, but may increase the number of
pages that must be recompiled when the design changes.

V. DEMONSTRATION

A. Methodology

To evaluate the impact of our ideas, we realize our DW
interconnect and nearest-neighbor links on top of PRFlow [3].
We use Vivado and SDSoC 2018.2 as the EDA tool and map
Rosetta benchmarks [4] to the UltraScale+ Zynq XCZU9EG
(274,080 LUTs, 548160 Flip-Flops, 1824 18Kb BRAMs, and
quad ARM Cortex-A53 CPU). We perform the compilation
on the Google Cloud. Each compute node is equipped with 4
dual-thread, 2.8 GHz Intel Xeon Cascade Lake processors and
64GB RAM; Vivado runs with 8 threads.

B. Benchmark Refinement

Following Xiao [3], we also use Rosetta Benchmark
source (https://github.com/cornell-zhang/rosetta, commit ID
6bc38c0), but we further refine the benchmarks and apply the
revisions to both the PSNoC and DW implementations.

1) 3D Rendering: We reduce the total pages from 12 to 6
by merging some small pages.

2) Digit Recognition: We keep the hamming distance cal-
culation operators unchanged, but split the final sorter into 20
decomposed operators. Instead of transmitting the final 120
minimum distance candidates into a central, final sorter, we
arrange for the 20 decomposed operators to perform a systolic
minimum reduce, with each operator taking the minimum of
its own candidates and the minimum candidates passed from
its neighbor.

3) SPAM Filter: No changes are made for this benchmark.
4) Optical Flow: As we use DW, the input and output data

do not need to queue up and share the physical BFT ports,
meaning the initiation interval (II) can be restored to one (same
as SDSoC version).

5) Binarized Neural Network (BNN): Following Xiao, we
also store all the BNN parameters on the on-chip-BRAM, but
we resize the BRAM size according to our different page size
and decrease the number of pages from 29 to 18.

6) Face Detection: To fit the 5K page-size, Xiao [3]
decomposed the integral images and line buffers into 5 parts,
and replace the unroll pragma with pipeline pragma. This is
reasonable as the PSNoC cannot supply enough bandwidth
between pages, but we restore the unroll pragma, since the
DWs and nearest-neighbor wires can provide enough inter-
page bandwidth.

C. PSNoC

The PSNoC overlay is shown in Fig. 9. We divide the
packet-switched network into 5 blocks, and distribute the
switches into different blocks. All the switchbox blocks are
defined as reconfigurable.

SwitchBoxTop

Page 27

Page 26

Page 25

Page 24

Page 31

Page 30

Page 29

Page 28

SwitchBox3
Page 19

Page 18

Page 17

Page 16

Page 23

Page 22

Page 21

Page 20

SwitchBox2

Page 7

Page 6

Page 5

Page 4

Page 3

Page 2

DMA

ARM SwitchBox0

Page 15

Page 14

Page 13

Page 12

Page 11

Page 10

Page 9

Page 8
SwitchBox1

Fig. 9: PSNoC Overlay Floorplan

D. Universal Overlay Design

We organize our overlay with universal pages as shown in
Fig. 11. The white boxes are nominal user logic pages, and
the blue boxes are the nominal switchbox pages. As shown
in Fig. 11b, only adjacent pages have interconnection wires,
unifying the direct wires (black) and the nearest-neighbor
wires (yellow). We have 14 pure user pages, but when more
pages are needed, we can also put some operators into switch
box pages. For example, for face detection, we also map the
user logic into the blue switch pages along with the connection
wires. The biggest challenge is to choose the proper number
of wires to allocate between different user/switch pages. We
run all the benchmarks, get the minimum used wires numbers
for each benchmark, and use a superset of all the wiring
requirements, so that this one-size-fits-all overlay can map all
the benchmarks. To make the overlay more generic, we set
the minimum number of wires to 130 in order to get at least
97.24 Gbps throughput for each page (130 × 187MHz × 4
edges). The detailed information for the overlay is shown in
Fig. 11a. The page sizes are identical within a vertical column.

E. Application Mapping to Universal Overlay

We assign the stream operators to different pages according
to the page size. We need to put operators with high data
transmission requirements in adjacent pages to take advantage
of the higher bandwidth and lower latency of nearest-neighbor
links. In Fig. 10, we can map rendering and spam filter
easily, but we need to borrow logic from switch boxes to map
complex examples like face detection, BNN, digit recognition,
and optical flow.

F. Performance

By mapping the Rosetta Benchmarks [4], we tabulate the
main performance benefits in Table V. The second column is
the SDSoC runtime. By using Vivado+SDK, we can customize
the DMA engine, and the third column lists the performance
with our customized DMA engine. The PS and DW use
the same customized DMA engines. We rerun the refined

TABLE IV: Application Resources

Benchmark Resource Mono. PS Direct Wire (our work)
(no BFT) User Leaf Interface Route Total User LI Route Total

Rendering LUTs 12750 6162 5084 50400 61646 6365 1854 78905 87124
BRAMs 97 78 60 288 426 78 16 458 552

DSPs 0 0 0 516 516 0 0 816 816
Digit Reg LUTs 32556 37229 6266 50400 93895 33586 3262 70648 107496

BRAMs 384 320 120 288 728 320 80 384 784
DSPs 0 0 0 516 516 0 0 816 816

Spam Filter LUTs 12931 6498 20220 50400 77118 6974 5514 77366 89854
BRAMs 136 108 252 288 648 108 54 465 628

DSPs 224 256 0 516 772 256 0 816 1072
Optical Flow LUTs 79146 22114 12287 50400 84801 22056 3851 71052 96959

BRAMs 186 84 138 288 510 84 58 461 693
DSPs 252 280 0 516 798 282 0 682 964

BNN LUTs 46165 10143 19878 50400 80421 8812 2664 74331 85807
BRAMs 1198 933 228 288 1449 920 24 312 1256

DSPs 3 6 0 516 522 3 0 814 817
Face Detection LUTs 55849 97477 20876 50400 168753 110618 6170 39662 158450

BRAMs 211 159 276 288 723 192 80 379 661
DSPs 78 102 0 516 618 144 0 686 830

(d) Spam Filter (d) Optical Flow (f) Face Detection

(c) BNN(a) Rendering

A
X

I

P
A

G
E

Mapped

User Page

Mapped

Mixed Page

Pure Switch

Box Page

Empty User

Page

(b) Digit Recognition

A
X

I

P
A

G
E

A
X

I

P
A

G
E

A
X

I

P
A

G
E

A
X

I

P
A

G
E

A
X

I

P
A

G
E

Fig. 10: Rosetta Benchmark Page Assignment

TABLE V: Application Performance

Benchmark SDSoC Mono. PS DW (our work)
(no BFT) with NN

Rendering 1.5 1.4 1.2 1.3
Digit Reg 6.9 5.0 10.8 5.4

Spam Filter 28.2 22.4 48.9 32.2
Optical Flow 3.5 2.1 25.8 2.6

BNN 5.3 3.6 17.4 22.4
Face Detection 18.2 24.3 101.0 33.1

Results are throughput in time (ms) per frame or input.

benchmarks (Sec. V-B) from Xiao [3], and list the results
in column four; these are typically higher performance than
[3]. From the fifth column, we can see the DW interconnect
can greatly improve over the PS case performance by 1.2–
12×. For the optical flow, we only increase the bandwidth
for the critical links (discussed in Section III-D), but we can
increase the performance by 12×. For the face detection, we
can improve the performance by 3×.

As shown in Fig. 4, the BNN is compute limited rather than
IO limited; consequently, it is not improved simply by the
move to DW. The monolithic design exploits some optimizing
pragmas that the current decomposition is not able to exploit
due to page resource restrictions. The additional IO bandwidth

from DW will permit different decompositions that may admit
further optimization that can be explored in future work.

G. Parallel Compile Time
As we define the switchboxes as reconfigurable, all the

pages and switchboxes can be compiled in parallel on the
cloud. The compile time for all the benchmarks are shown in
Table VI. We can see the DW page compile time is a slightly
longer than PS case, but still around 10–18 minutes. This is
possibly because more partition pins are added between the
pages and the connection boxes, which increase the routing
difficulties. Nevertheless, we see the switchboxes’ compile
times are less than the page compile times. This means we
can customize the interconnect without degrading the short
compile time, as long as there are pages that also need to be
recompiled. There are no switchbox (SWB) times for digit
recognition, since all the page are feed-forward with systolic,
nearest-neighbor connections.

TABLE VI: Application Mapping Time

Benchmark SDSoC Mono. PS Direct Wire
(no BFT) Leaves Leaves SWB

Rendering 1711 1495 606 737 603
Digit Reg 2569 2104 610 735 0

Spam Filter 1930 1780 568 695 593
Optical Flow 2997 2792 679 886 685

BNN 12001 11089 1004 1082 611
Face Detection 4136 2981 825 1089 606

H. Resource Overhead
In Tab. IV, we tabulate the resource overhead for our DW

designs, in comparison with the PSNoC. We can see that our
leaf interface overhead reduced by 47%–86% compared to
the PSNoC. Initially, routing overhead is the total size of 8
switchbox pages. As user logic can also borrow the switchbox
resource as hybrid pages, we reduce the initial overhead by the
resource borrowed by user logic. We can see face detection’s
routing overhead is small, since it is able to borrow more
resource from the switchbox pages.

AXI_DMA

_PAGE

Page_X1Y3 Page_X0Y3

Page_X1Y4 Page_X0Y4

Page_X1Y5 Page_X0Y5

Page_X1Y6 Page_X0Y6

Page_X2Y3

Page_X2Y4

Page_X2Y5

Page_X2Y6

Page_X3Y3

Page_X3Y4

Page_X3Y5

Page_X3Y6

Page_X2Y0

Page_X2Y1

Page_X2Y2

Page_X3Y0

Page_X3Y1

Page_X3Y2

Switch Box

User Logic

DMA

LUT: 13,920

BRAM: 48

DSP: 144

LUT: 8,160

BRAM: 24

DSP: 72

LUT: 11,520

BRAM: 36

DSP: 120

LUT: 12,960

BRAM: 48

DSP: 96

130

164

164

260

166

130

130

200

167

130

164

294

424

324

164

324

130

130

1
6

4
2

6
0

1
3

2
1

3
0

1
6

4
1

3
0

1
3

0
1

3
0

1
3

0
1

3
4

1
3

0
1

3
1

1
6

2
1

3
0

1
3

0

130

(a)

AXI_DMA

_PAGE

Image_topSfilter4

Iamge_botSfilter3

Strong_mergeSfilter2

Sfilter1

Weak_merge

Weak_process3

Weak_process4

Sfilter0

Weak_req

Wfitler3

Wfilter4

Weak_process0

Weak_process1

Weak_process2

Wfilter0

Wfilter1

Wfilter2

Switch Box

User Logic

DMA

(b)

Fig. 11: (a) Overlay Floorplan. (b) Face Detection Mapping

VI. DISCUSSION AND FUTURE WORK

A. Fixed-Wiring Limitations

The pure DW gives up the complete virtualization of
communication provided by the PSNoC. That is, the DW
solution depends on designs not requiring more user ports
than the overlay (Sec. V-D) can support. One solution is to
serialize lower bandwidth ports (e.g., provide a logical 32b
port with an 8b physical, DW path) to fit within pre-defined
wiring constraints. Another is to consider a hybrid network
with a PSNoC for fallback after exhausting high-speed DW
capacity for the high throughput links.

When we encounter designs that require more ports than any
overlay can support, this suggest the need for a new overlay.
Given an iterative development style, we can fall back to the
PSNoC, and this new overlay can be generated to support
later revisions of the design. Ideally, custom overlay generation
would be automated, so that a new, suitable overlay would
become available in few hours.

B. Automatic Provisioning for Universal Overlay

As described, users can start with a default allocation of
switches (e.g., Fig. 8, 11) and standard placement of compute
pages and routing of switchbox pages will work. To embrace
the universal pages, automation would be useful to select the
allocation and placement of switchbox pages and automate the
sharing of pages among computation and interconnect.

VII. CONCLUSION

Separation compilation and linking of FPGA designs can
exploit parallelism to reduce mapping time without sacrificing
the high inter-module bandwidth and low latency available on
modern FPGAs. We show the inter-module linking problem
can also be decomposed and performed in parallel with leaf
page mapping. This linking can also be fast—comparable to
the mapping time of logic—while exploiting the high, native
FPGA wiring capacity. As a result, our fast mapped designs
approach or exceed the performance of monolithic design
mappings.

ACKNOWLEDGMENTS

This work is funded in part by a Google Faculty Re-
search Award and the Office of Naval Research under grant
N000141812557. Any opinions, findings, conclusions, or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of Google
or the Office of Naval Research. Xilinx donated Vivado tools
for use in this work.

REFERENCES

[1] Michael deLorimier, Nachiket Kapre, Nikil Mehta, Dominic Rizzo,
Ian Eslick, Raphael Rubin, Tomás E. Uribe, Thomas F. Knight, Jr.,
and André DeHon. GraphStep: A system architecture for sparse-
graph algorithms. In Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 143–151. IEEE,
2006.

[2] Dongjoon Park, Yuanlong Xiao, Nevo Magnezi, and André DeHon.
Case for fast FPGA compilation using partial reconfiguration. In
2018 28th International Conference on Field Programmable Logic and
Applications (FPL), pages 235–2353. IEEE, 2018.

[3] Yuanlong Xiao, Dongjoon Park, Andrew Butt, Hans Giesen, Zhaoyang
Han, Rui Ding, Nevo Magnezi, Raphael Rubin, and André DeHon. Re-
ducing FPGA compile time with separate compilation for FPGA build-
ing blocks. In 2019 International Conference on Field-Programmable
Technology (ICFPT), pages 153–161. IEEE, 2019.

[4] Yuan Zhou, Udit Gupta, Steve Dai, Ritchie Zhao, Nitish Srivastava,
Hanchen Jin, Joseph Featherston, Yi-Hsiang Lai, Gai Liu, Gustavo An-
garita Velasquez, Wenping Wang, and Zhiru Zhang. Rosetta: A real-
istic high-level synthesis benchmark suite for software programmable
FPGAs. In Proceedings of the International Symposium on Field-
Programmable Gate Arrays, pages 269–278, 2018.

[5] Xilinx. ZCU102 evaluation board. Accessed: 2019-06-12.
[6] Julien Boucaron, Anthony Coadou, and Robert De Simone. Latency-

insensitive design: retry relay-station and fusion shell. Electronic Notes
in Theoretical Computer Science, 245:23–33, 2009.

[7] Eylon Caspi. Design automation for streaming systems. Technical report,
University of California at Berkeley, Dept of Electrical Engineering and
Computer Science, 2005.

[8] Christopher Lavin, Marc Padilla, Jaren Lamprecht, Philip Lundrigan,
Brent Nelson, and Brad Hutchings. HMFlow: Accelerating FPGA
compilation with hard macros for rapid prototyping. In 2011 IEEE
19th Annual International Symposium on Field-Programmable Custom
Computing Machines, pages 117–124. IEEE, 2011.

[9] Christopher Lavin, Marc Padilla, Subhrashankha Ghosh, Brent Nelson,
Brad Hutchings, and Michael Wirthlin. Using hard macros to reduce
fpga compilation time. In 2010 International Conference on Field
Programmable Logic and Applications, pages 438–441. IEEE, 2010.

[10] Sen Ma, Zeyad Aklah, and David Andrews. Just in time assembly of
accelerators. In Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pages 173–178, 2016.

[11] David Wilson and Greg Stitt. Seiba: An FPGA overlay-based approach
to rapid application development. In 2019 International Conference on
ReConFigurable Computing and FPGAs (ReConFig), pages 1–8. IEEE,
2019.

[12] Al-Shahna Jamal, Jeffrey Goeders, and Steven J Wilton. An FPGA over-
lay architecture supporting rapid implementation of functional changes
during on-chip debug. In 2018 28th International Conference on Field
Programmable Logic and Applications (FPL), pages 403–4037. IEEE,
2018.

[13] Christopher Lavin, Marc Padilla, Jaren Lamprecht, Philip Lundrigan,
Brent Nelson, and Brad Hutchings. RapidSmith: Do-it-yourself CAD
tools for xilinx FPGAs. In Proceedings of International Workshop on
Field-Programmable Logic and Applications (FPL), September 2011.

[14] Chris Lavin and Alireza Kaviani. Rapidwright: Enabling custom crafted
implementations for FPGAs. In 2018 IEEE 26th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), pages 133–140. IEEE, 2018.

[15] Michael K Papamichael and James C Hoe. Connect: re-examining
conventional wisdom for designing NoCs in the context of FPGAs.
In Proceedings of the ACM/SIGDA international symposium on Field
Programmable Gate Arrays, pages 37–46, 2012.

[16] Stanford Concurrent VLSI Architecture Group. Open source Network-
on-Chip router RTL. https://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/
Resources/Router. Accessed: 2010-09-30.

[17] Yutian Huan and André DeHon. FPGA optimized packet-switched NoC
using split and merge primitives. In 2012 International Conference on
Field-Programmable Technology, pages 47–52. IEEE, 2012.

[18] Nachiket Kapre, Nikil Mehta, Michael Delorimier, Raphael Rubin,
Henry Barnor, Michael J Wilson, Michael Wrighton, and Andre DeHon.
Packet switched vs. time multiplexed FPGA overlay networks. In
2006 14th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, pages 205–216. IEEE, 2006.

[19] Nachiket Kapre and Jan Gray. Hoplite: A deflection-routed directional
torus NoC for FPGAs. ACM Transactions on Reconfigurable Technology
and Systems (TRETS), 10(2):1–24, 2017.

[20] Nachiket Kapre. Deflection-routed butterfly fat trees on FPGAs. In
2017 27th International Conference on Field Programmable Logic and
Applications (FPL), pages 1–8. IEEE, 2017.

[21] K. Vipin, J. Gray, and N. Kapre. Enabling partial reconfiguration and
low latency routing using segmented FPGA NoCs. In Proceedings
of the International Conference on Field-Programmable Logic and
Applications, pages 1–8, 2017.

[22] Joseph Varghese, Michael Butts, and Jon Batcheller. An efficient logic
emulation system. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 1(2):171–174, June 1993.

[23] J. Babb, R. Tessier, M. Dahl, S. Z. Hanono, D. M. Hoki, and A. Agarwal.
Logic emulation with virtual wires. IEEE Transactions on Computed-
Aided Design for Integrated Circuits and Systems, 16(6):609–626, Jun
1997.

[24] Xilinx. Vivado design suite user guide partial reconfiguration. Accessed:
2018-12-05.

[25] Michael J Wirthlin and Brad L Hutchings. Sequencing run-time
reconfigured hardware with software. In Proceedings of the 1996 ACM
fourth international symposium on Field-programmable gate arrays,
pages 122–128, 1996.

[26] Théodore Marescaux, Vincent Nollet, J-Y Mignolet, Andrei Bartic, Will
Moffat, Prabhat Avasare, Paul Coene, Diederik Verkest, Serge Vernalde,
and Rudy Lauwereins. Run-time support for heterogeneous multitasking
on reconfigurable socs. Integration, 38(1):107–130, 2004.

[27] Mateusz Majer, Jürgen Teich, Ali Ahmadinia, and Christophe Bobda.
The Erlangen Slot Machine: A dynamically reconfigurable FPGA-based
computer. The Journal of VLSI Signal Processing Systems for Signal,
Image, and Video Technology, 47(1):15–31, 2007.

[28] Steve Young, Peter Alfke, Colm Fewer, Scott McMillan, Brandon Blod-
get, and Delon Levi. A high i/o reconfigurable crossbar switch. In 11th
Annual IEEE Symposium on Field-Programmable Custom Computing
Machines, 2003. FCCM 2003., pages 3–10. IEEE, 2003.

[29] Kahn Gilles. The semantics of a simple language for parallel program-
ming. Information processing, 74:471–475, 1974.

[30] André DeHon, Yury Markovsky, Eylon Caspi, Michael Chu, Randy
Huang, Stylianos Perissakis, Laura Pozzi, Joseph Yeh, and John
Wawrzynek. Stream computations organized for reconfigurable exe-
cution. Journal of Microprocessors and Microsystems, 30(6):334–354,
September 2006.

[31] Michael Butts, Anthony Mark Jones, and Paul Wasson. A structural ob-
ject programming model, architecture, chip and tools for reconfigurable
computing. In Proceedings of the IEEE Workshop on FPGAs for Custom
Computing Machines, pages 55–64, April 2007.

[32] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli.
Theory of latency-insensitive design. IEEE Transactions on Computed-
Aided Design for Integrated Circuits and Systems, 20(9):1059–1076,
2001.

[33] Julien Boucaron, Jean-Vivien Millo, and Robert De Simone. Another
glance at relay stations in latency-insensitive designs. Electronic Notes
in Theoretical Computer Science, 146(2):41–59, 2006. Proceedings of
the Second Workshop on Globally Asynchronous, Locally Synchronous
Design (FMGALS 2005).

[34] Charles E Leiserson. Fat-trees: universal networks for hardware-efficient
supercomputing. IEEE transactions on Computers, 100(10):892–901,
1985.

[35] David Clark. Window and acknowledgement strategy in TCP. RFC
813, USC/ISI, Information Sciences Institute, University of Southern
California, 4676 Admiralty Way, Marina del Rey, California, 90291,
July 1982.

[36] M. Saldana, L. Shannon, J. S. Yue, S. Bian, J. Craig, and P. Chow.
Routability of network topologies in FPGAs. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 15(8):948–951, 2007.

[37] Xilinx. Zynq UltraScale+ MPSoC data sheet: Overview. Accessed:
2019-10-2.

[38] S. R. Dickey and R. Kenner. Combining switches for the nyu ultra-
computer. In Proceedings of The Fourth Symposium on the Frontiers of
Massively Parallel Computation, pages 521–523, 1992.

[39] Gaetano Borriello, Carl Ebeling, Scott Hauck, and Steven Burns. The
triptych fpga architecture. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 3(4):491–501, December 1995.

[40] Tom Kean and John Gray. Configurable hardware: Two case studies of
micro-grain computation. Journal of VLSI Signal Processing Systems
for Signals, Image and Video Technology, 2(1):9–16, 1990.

[41] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. XC6200 FPGA
Advanced Product Specification, version 1.0 edition, June 1996.

[42] Mingjie Lin. The amorphous FPGA architecture. In Proceedings of
the 16th International ACM/SIGDA Symposium on Field Programmable
Gate Arrays, pages 191––200, 2008.

[43] Yue Zha and Jing Li. Reconfigurable in-memory computing with
resistive memory crossbar. In Proceedings of the 35th International
Conference on Computer-Aided Design, pages 120:1–120:8, 2016.

Web link for this document: <http://ic.ese.upenn.edu/abstracts/dw fpt2020.html>

https://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/Resources/Router
https://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/Resources/Router
http://ic.ese.upenn.edu/abstracts/dw_fpt2020.html

