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Abstract—Fine-grained dataflow streaming between parallel
compute operators provides both a simple form of concurrency
and high performance operation. These streams are regularly
used to support concurrency within HLS computations on the
FPGA. We provide a compatible stream API and implementation
that allows FPGA operators to interoperate with operators
implemented on the embedded, hardcore processors on SoC
FPGAs. With our stream interface, individual operators can be
written in C and compiled to either the embedded core or the
FPGA from a single source file, and neither FPGA-mapped nor
processor-mapped operators need to know whether the other
side of the stream is implemented on an embedded core or on
the FPGA. This capability also eases processor integration for
debugging and development. Our streams support over 100 MB/s
per core between the ARM A53 cores on the Zynq UltraScale+
and the FPGA fabric even when all four A53 cores concurrently
share a single AXI channel.

I. INTRODUCTION

Latency-insensitive dataflow streaming interfaces allow a
producer and consumer to operate concurrently. They integrate
synchronization and tolerate variable timing in the producer
and consumer [1]. These are heavily used within High-Level
Synthesis (HLS), both explicitly using hls::stream in
Vivado HLS and implicitly using DATAFLOW pragmas to
stream between functions and loops. We also use them when
communicating with IP cores and some softcore processors
(e.g., microBlaze) [2]. They provide a way to connect and
coordinate concurrently operating components on our FPGAs.

Unfortunately, we do not have an out-of-the-box solution to
provide stream connections between our embedded, hardcore
processors on our System-on-a-Chip (SoC) FPGAs and our
streaming FPGA blocks. If we did, we could use the streams
to link an embedded processor into the computational dataflow
in the place of an FPGA block. We could also compile C-
based operators to either the embedded ARM cores or to the
FPGA fabric from the same source code. This is useful for
development, where we may work out functionality of the
operator with fast compiles to the processor before migrating
the operator to the FPGA. It is also useful for debugging,
where we might move a faulty operator to the processor for
testing and to provide greater visibility into application data.

To address this need, we develop stream support for the
embedded, hardcore processors. This includes a compatible
stream definition that we can swap in for hls::stream
when the operator C-code is compiled to the ARM core and
an efficient implementation that bridges streams across AXI

channels between the ARM core and FPGA when producer
and consumer are implemented on different targets.

We make the following contributions:
• Characterize raw communication paths between embed-

ded processors cores and the FPGA fabric on an Ultra-
Scale+ Zynq SoC (Sec. V-A)

• Introduce ps::stream API for embedded-processor-
mapped operators

• Provide associated FPGA interface logic to implement a
source-sink agnostic, latency-insensitive communication
link between operators when one operator resides on an
embedded core and the other resides on the FPGA fabric
(Sec. III)

• Characterize the performance of the API implementation
on an UltraScale+ Zynq SoC (Sec. V)

We provide an open-source release for our ps::stream
implementations: https://github.com/icgrp/estream4fccm2021

II. BACKGROUND

A. Heterogeneous SoCs

Today’s System-on-a-Chip (SoC) FPGAs embed hardcore
processors along with a traditional FPGA fabric, including
Xilinx Zynq, Intel Arria and MicroSemi PolarFire. These
include high-speed AXI channels to connect the processor
cores and the FPGA fabric.

We demonstrate this work on the Zynq UltraScale+ MPSoC
[3]. This includes 4×A53 64b ARM core and 2×R5 32b “Real
Time” ARM cores. The MPSoC Zynq includes an explicitly
managed scratchpad On-Chip Memory (OCM) as well as a
cache-hierarchy with L1 and L2 caches for the A53 processors.
Nine AXI master channels and 3 AXI slave channels provide
interconnect to the FPGA fabric, with 3 master channels
providing I/O coherence and one providing full coherence
with the A53 processor hierarchy. Each AXI channel is 128b
wide and can operate up to 333 MHz, providing a peak
bandwidth 333×128b = 5.3 GB/s each direction. Xilinx calls
the traditional FPGA fabric, the Programmable Logic (PL)
portion of the MPSoC, and the processor cores and peripherals,
the Programmable System (PS).

B. Processor Integration and Task Migration

A smoother continuum of processor integration with FPGA
computations and the migration of computational elements
between the processor and the FPGA has long been the goal
for FCCMs. Keller makes the case for integrating processors
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into the FPGA design to replace low throughput tasks or
when the processors have favorable features [4], [5]. To
ease design, many developers recommend a software-first
methodology including GRVI-PHALANX [6], [7] and Soft
Vector Processors [8]. Seiba supports sequential migration
of functionality back to a processor for debugging [9]. We
help further enable this vision by (1) providing the ability
to compile code from a single source to either an embedded
processor or the FPGA fabric, (2) supporting concurrent
dataflow operation of processors and FPGA logic, and (3)
providing high throughput communication between concurrent
operations through streaming.

III. GOALS AND REQUIREMENTS

To make migration easy, we develop streams with function-
ally identical behavior regardless of where the source and sink
lies. The code should work if we have an ARM core on the
PS sending data to FPGA logic on the PL, PL sending to PS,
PL sending to PL, or PS sending to PS. To move an operator
from one side to the other, we would like to make minimal
to no changes in the source code. We settle on changing only
definitions in a header (.h) file that could be replaced by using
a different set of includes (e.g., different -I include paths) for
PS-targeted operators and PL-targeted operators. Of course,
we also want high performance out of the streams, sacrificing
no performance for the PL↔PL connections and achieving
high enough bandwidth from the PS↔PL connections that the
stream is not the bottleneck on performance.

To support our ease of conversion goals, we design a
ps::stream stream interface for the software side that
is compatible with the Vivado hls::stream interface
[10]. This way, PL↔PL connections can continue to use
hls::stream, and operators can use the same read and
write operations regardless of whether we actually instan-
tiate hls::stream or our own ps::stream. We pro-
vide abstraction macros for stream declaration (STREAM),
and stream read (STREAM READ) and write operations
(STREAM WRITE), so the operator code does not need
to change when migrated between hardware and software.
STREAM declaration takes an argument indicating the width
of data used with the stream. As with hls::stream, simple
read and write operations are blocking, providing a latency-
insensitive interface.

Standard DMA operations take tens of thousands of cycles
to setup. They can be efficient when moving large blocks
of data. They are not efficient when operators work on
just a few data items at a time. For purely feed-forward
operator graphs, large-scale batching of operations is viable,
but introduces the need to identify the size of the data block
being transferred, which is not compatible with the existing,
simple hls::stream interface. For operator graphs with
cycles, the latency around the cycle may be a bottleneck
for performance; batching will prevent dataflow parallelism
and reduce throughput. DMA requires the inclusion of mm2s
and/or s2mm blocks on the FPGA that require a couple of

thousands LUTs each and AXI interface logic the requires
about four thousands LUTs, for a total around 8K LUTs.

IV. BASIC STREAM DESIGN

On the software side, the ps::stream implements a FIFO
in shared memory that can be accessed by the processor cores
and the PL. We use memory (main memory, on-chip memory)
accessible to the processor cores to take advantage of the low
latency and high throughput provide for the cores to access on-
chip memory (both the OCM (On-Chip Memory) and caches
local to the PS). We use a standard ring-buffer FIFO design
with head and tail pointers also maintained in shared memory.
Since we use these PS-accessible on-chip memories, the PL
must use a master AXI port to access the shared pointers and
data. PS↔PS streams reduce to a shared-memory FIFO and
do not consume bandwidth on AXI ports.

Placing the head and tail pointers in shared memory has the
disadvantage that, in the worst-case, on every FIFO operation,
there is a need to read one pointer (tail to make sure there
is data to read on a read, head to make make sure there is
space to write on a write) and write another (update head on
a read, update tail on a write). In the simplest case this cuts
the raw bandwidth in the direction of the stream flow in half.
One advantage of this design is that the pointers do not need
to be read for every write or read operation for the typical
case—only when their previous values might indicate a full
or empty FIFO—reducing the throughput impact compared to
the worst-case scenario. For example, if the producer reads
a tail pointer that is already 16 ahead of the head pointer, it
knows it can perform 15 writes before it needs to read the tail
pointer again.

We also explored the alternative of using data-presence bits.
While the data-presence bits worked well on the PL side where
we could use the extra parity bits to add data presence onto
a 32b or 64b word without requiring extra BRAMs, the fact
that the processors only see data in fixed chunks and the AXI
channels move 128b-wide data made the data-presence scheme
inefficient for PS-side interactions.

A. Shared Memory Requirements

It is worthwhile to note that this scheme does not need the
full capabilities of symmetric shared memory. In particular:

• The head pointer is exclusively written by the consumer.
• The tail pointer is exclusively written by the producer.
• Data in the stream is exclusively written by the producer.
• Data in the stream is exclusively read by the consumer.

This means that:
• There is nothing that must be written by both sides.
• The producer can keep a local copy of the tail pointer, and

the consumer can keep a local copy of the head pointer;
they do not need to prepared for anyone else to change
the values, nor do they need to share their updates.

• It is functionally acceptable for updates to the head
(tail) pointer to be delayed before seen by the producer
(consumer), as long as it occurs after the data has been
read (written).
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– The data operation most complete before the associated
head or tail pointer update, which we assure with the
data synchronization barrier (dsb) instruction.

– This also allows the producer or consumer to write a
collection of data and perform a single update to the
head or tail pointer, reducing the number of update
writes and, thereby, reducing overhead throughput.

• There are no other ordering requirements; there are no
ordering requirement among different streams.

Among other things, this means we are not forced to use the
ACE (AXI Coherence Extension) AXI channel for commu-
nication. The UltraScale+ Zynq ACP (Accelerator Coherence
Port) and HPC (High Performance Coherence) ports provide
adequate functionality in outer-shareable mode to share data
in the L2 cache.

V. IMPLEMENTATION

Our experiments use the Ultra96-v2 board with an Ultra-
Scale+ Zynq XCZU3EG FPGA. The Stream IP block that
bridges across the PS→PL interface is written in C and
compiled with VivadoHLS. We use Xilinx Vivado 2018.3
including the associated VivadoHLS and SDK.

A. Raw Memory Performance

We have a variety of options for how we implement the
PS↔PL communication. In particular, we have a choice of
which memories to use (OCM, L2-caches, DRAM) and which
master AXI ports to use. First, we characterize the peak,
raw read and write performance to each of the memories
through each class of AXI port as shown in Tab. I. Working
on bare-metal designs, we perform a tight loop of read (or
write) operations at the maximum datawidth allowed (32b for
R5, 64b for A53, 128b for PL fabric) with the PL running
at 300 MHz. When used, L2 is set to outer-shareable mode.
We use ARM cycle counters to measure the read, write, or
transfer time for batches of 1,000,000 64b words unless noted
otherwise. Tab. I shows the PS can get high bandwidth from
the L2 cache (620 MB/s write) and has an odd asymmetry
between the OCM read and write bandwidth (83 MB/s read vs.
625 MB/s write). The PL achieves high bandwidth accessing
the L2 over the ACP port (710 MB/s write), but also has decent
bandwidth accessing the OCM over an HP port (440 MB/s
write).

Even in a tight loop the PS ARM core must issue 7
instructions per read or write operation. As a result, many of
the PS-side interactions are bound by processor issue cycles
not by memory bandwidth. We can reduce the loop overhead
by unrolling the communication loops. We can alternately use
the vector operations on the A53 NEON units to issue 128b-
wide read and write operations from the processor. Tab. I
also shows the impact of these optimizations on raw memory
bandwidth. This shows that the PS bandwidth in the simple
tight loop test was limited by instruction issue (620 MB/s
write) and that bottleneck can be overcome by unrolling
to achieve bandwidth into the GB/s (5 GB/s write). Vector
operations moving 128b data to and from the L2 cache recover

TABLE I
PEAK RAW READ AND WRITE BANDWIDTH

Results in MB/s
Case DRAM OCM L2

Unit (PL AXI) r w r w r w
PS: A53 64b 23 18 83 625 720 620
PS: A53 unroll 64b 67 260 91 4900 3750 5000
PS: A53 vector 128b 140 94 180 2100 2900 2100
PS: R5 32b — — 77 55 — —
PS: R5 unroll 32b — — 120 80 — —
PL HP 128b 460 470 550 440 — —
PL HPC 128b 220 380 270 250 200 380
PL ACP 128b 310 280 — — 810 710

PL running at 300 MHz. Unroll cases shown for an unroll factor of 32.
Measured for transfer of 1,000,000 words.

some of the lost bandwidth (2.1 GB/s write) and exceeds the
bandwidth achieved by the PL.

The R5 cannot access the APU’s L2, so we must use
the OCM when connecting streams to the R5 processors
when they communicate with A53 cores or the PL. The
unrolled write operations provide a large throughput gain for
the A53 cores accessing the OCM, but the read bandwidth
remains largely unchanged. Unrolling improves the bandwidth
for the R5 access as well, but the impact is not as large,
and the read bandwidth gain is more significant than write.
A53 vector operations double the read bandwidth. The A53
results suggests the OCM read operations are limited by the
architecture and not by inefficient instruction issue.

B. Full Stream Links

The throughput of a stream will depend on both the
throughput of the producer and the consumer and include
additional head and tail maintenance overhead as previously
noted. Tab. II shows the peak unidirectional stream throughput
for each of the cases using buffers of length 512 64b words.
Here, we perform a tight loop of stream operations using 128b
NEON vector operations (A53) or 32b operations (R5). We
see the ACP port sharing data in L2 is the fastest at 360
and 460 MB/s; this is a little over half the raw bandwidth
(810 MB/s read, 710 MB/s write, Tab. I) available between the
PL and the L2 cache.

C. Multiple Streams

We also have several choices when supporting multiple
PS↔PL streams. The simplest solution might be to use an
AXI channel for each such stream (Fig. 1(a)). However, the
FPGA has a limited number of AXI channels and only one
ACP AXI channel, which we found provided the highest
throughput for our streams (Tab. II). Furthermore, with our
peak streams running at 460 MB/s, no stream will saturate the
5.3 GB/s capacity of each AXI channel (Sec. II-A). We should
be able to share AXI channels without sacrificing performance.
Furthermore, since there are only four A53 cores, the largest
total bandwidth the processing cores can sustain is 1.8 GB/s.

Sharing a single AXI channel saves AXI channels, but
using a separate PL-side interface (IP Block) for each stream
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Fig. 1. Multiple PS↔PL Stream Options

TABLE II
PEAK UNIDIRECTIONAL STREAM THROUGHPUT

Results in MB/s
Units AXI OCM L2

1 2 1→2 2→1 1→2 2→1
PS:A53 PS:A53 110 435
PS:A53 PS:R5 39 29 — —
PS:R5 PS:R5 32 — —
PS:A53 PL HP 95 120 — —
PS:A53 PL HPC 95 120 73 130
PS:A53 PL ACP — — 460 360
R5 PL HP 34 41 —
R5 PL HPC 34 41 —

A53 cores use vector operations to transfer 128b data; buffers are sized to
hold 512 64b words. PL running at 300 MHz. Final 2 columns show Tightly-
Coupled Memory for R5 and L2 for A53 cores. Measured for transfer of
1,000,000 128b words.

(Fig. 1(b)) has a high LUT and BRAM cost per stream as
shown in Tab. III (PL IPs of 4). We see that each interface
costs around 3,500 LUTs for logic plus 3,000–4,000 LUTs to
add a port to an AXI crossbar.

Alternately, we develop a single PL-side interface that se-
rially processes data from each stream in round-robin fashion
(Fig. 1(c), PL IPs of 1 in Tab. III). Using the ACP AXI
channel, the single PL-side interface supports 4 PS→PL and
4 PL→PS streams at over 100 MB/s each with around 10K
LUTs, only about 1K LUTs more than the interface that
supported a single PS→PL and PL→PS stream, putting both
in about the same footprint as the minimal logic for a DMA
interface. Fig. 2 shows throughput as a function of transfer
length for this Fig. 1(c) ACP case supporting 4 streams each
direction. At these rates, the stream throughput is never the
bottleneck once the processor does any computation between
stream operations.

VI. CONCLUSIONS

By providing a ps::stream API and implementation that
is compatible and interchangeable with the hls::stream,
we can compile operators from a single source definition
to either an embedded processor or the logic fabric on an
SoC FPGA. Operators using the compatible stream interface
need not know whether the operators on the other side of
the interface is implemented on an embedded processor or
on the FPGA fabric. This allows the construction of dataflow

TABLE III
MULTIPLE STREAM IMPLEMENTATION OPTIONS

AXI PL Fig. Thrupt (MB/s) PL IP Resources PL AXI
Strms Chans. IPs PS→PL PL→PS LUTs RAMs LUTs

1 1 ACP 1 460 360 2,639 24 7,100
1 1 HP 1 95 120 3,353 24 7,000
4 4 HP 4 1(a) 95 120 13,432 96 19,000
4 1 HP 4 1(b) 95 120 13,432 96 16,000
4 1 HP 1 1(c) 95 96 3,604 28 7,100
4 1 ACP 4 1(b) 342 200 13,412 96 16,000
4 1 ACP 1 1(c) 170 120 3,604 28 7,100

In multiple stream cases, stream throughput in columns 5 and 6 is for each
stream. All data here for A53 cores using vector operations to transfer 128b
data using L2 cache for shared buffers. Buffers are sized to hold 512 64b
words. PL running at 300 MHz. RAM count is for 18Kb BRAM blocks.
Measured for transfer of 1,000,000 128b words.
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pipelines and graphs that mix embedded processors and FPGA
resources. It also eases the movement of operators between
the FPGA fabric and the embedded processors during devel-
opment and debug. The associated ps::stream IP block
bridges communication across an AXI channel, supporting
over 100 MB/s communication bandwidth simultaneously on
4 streams in each direction.
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