
Appearing inIEEE Symposium on Field-Programmable Custom Computing Machines(FCCM 2002), April 22–24, 2002

Hardware-Assisted Fast Routing

André DeHon Randy Huang John Wawrzynek
andre@cs.caltech.edu rhuang@cs.berkeley.edu johnw@cs.berkeley.edu
Dept. of CS, 256-80 UC Berkeley UC Berkeley

California Institute of Technology Soda Hall #1776 Soda Hall #1776
Pasadena, CA 91125 Berkeley, CA 94720 Berkeley, CA 94720

Abstract

To fully realize the benefits of partial and rapid recon-
figuration of field-programmable devices, we often need
to dynamically schedule computing tasks and generate
instance-specific configurations—new graphs which must
be routed during program execution. Consequently, route
time can be a significant overhead cost reducing the
achievable net benefits of dynamic configuration genera-
tion. By adding hardware to accelerate routing, we show
that it is possible to compute routes in one thousandth the
time of a traditional, software router and achieve routes
that are within 5% of the state-of-the-art offline routing al-
gorithms for a sample set of application netlists and within
25% for a set of difficult synthetic benchmarks. We further
outline how strategic use of parallelism can allow the total
route time to scale substantially less than linearly in graph
size. We detail the source of the benefits in our approach
and survey a range of options for hardware assistance that
vary from a speedup of over 10× with modest hardware
overhead to speedups in excess of 1000×.

1 Introduction

Several researchers have attempted to reduce the time
taken to route a design by tuning software search algo-
rithms or attacking the problem with multiple processors.
They were, at best, able to achieve route times on the or-
der of seconds (See Section3). While these improvements
are impressive and interesting for fast turn-around in the
edit-compile-debug cycle and rapid prototyping, they still
represent billions of cycles and are not sufficient to make
runtime routing viable in typical circumstances where it
might benefit dynamic spatial computations.

With a modest amount of support hardware added to the
routing network, the network itself can assist in the search
for free routing paths. At the core of our solution, we use
this augmented network to find all available paths between
a source-sink pair in time proportional to the distance of the
route using a parallel, hardware search. Using this hard-
ware assisted technique, the time for the search task can
be reduced a thousand fold over the software version. Ad-

ditionally, by using pipelining even the distance term need
not limit the rate of route completion. This suggests a large
family of possible hardware-software routing solutions and
raises a host of questions, which we begin to address in this
paper.
• How fast can we make routing?
• What area overhead must we pay to achieve various lev-

els of hardware acceleration?
• What quality, if any, must we sacrifice to enable efficient

hardware routing?
• How do these solutions scale with larger designs and

systems?
In this paper, we outline the basic hardware solution

(Section5 and 6) and quantify where time goes in the
router, how our solution reduces routing time, and what
quality must we tradeoff to enable this solution (Section7).
Before expanding on these details, we review the relevance
of this problem to this community (Section2), the prior
work on software solutions (Section3), and relevant net-
work and router background (Section4).

2 Motivation

To take fullest advantage of reconfigurable, spatial com-
puting platforms, we want to specialize the instantaneous
computation to both the problem being solved and the
available resources in the platform. Both of these may be
late boundquantities. That is, for portability, the exact set
of resources available on the platform may not be known
until the program begins to run, and the characteristics of
a particular problem are not known until the program sees
the problem. In cases such as these the time required to
partition, place, and route the design onto the platform is
part of the critical runtime of the application, not part of
a pre-runtime compilation process. As such, any runtime
taken to solve these tasks diminishes the potential accel-
eration offered by the spatial computing platform and nar-
rows the domain of application where the reconfigurable
platform or the specialized solution is superior to the more
conventional alternatives.

Our goal in this respect is to understand how far we can

c© 2002 IEEE 1

http://www.fccm.org/
http://www.cs.caltech.edu/~andre/
http://www.cs.berkeley.edu/~rhuang
http://www.cs.berkeley.edu/~johnw

compact the time required for routing of general-purpose
computational graphs (i.e. without exploiting task-specific
route structure). As noted, the minimum routing time will
set a limit on how far we can reduce the runtime overhead
we need to exploit specialized instances, dynamic resource
requirements, and dynamic resource availability. Here,
we focus entirely on routing and leave partitioning and
placement as separate issues. Fast software partitioning is
treated in part in our recent paper on quasistatic scheduling
[1]. Callahan demonstrates one approach to fast, 1-D, dat-
apath placement [2]. Sankar and Rose demonstrate a more
general approach to fast placement [3].

SCORE and Runtime Mapping We have been develop-
ing SCORE, a stream-based compute model which virtu-
alizes reconfigurable computing resources (compute, stor-
age, and communication) by dividing a computation up
into fixed-size “pages” and time-multiplexing the virtual
pages on available physical hardware [4]. SCORE’s goal
is to serve as an abstract interface level, like an ABI or API
in conventional programmable processors, that abstracts
the detailed hardware implementation, including the num-
ber and kinds of resources, from the application and pro-
grammer. This allows SCORE designs to migrate auto-
matically to newer, larger hardware platforms and exploit
the additional resources. A key consequence of this ab-
straction is that the compiler does not know how big the
SCORE platform will be. Consequently, the SCORE run-
time must manage mapping the abstract SCORE graph
onto the available physical hardware, time-multiplexing
the large SCORE graph on smaller hardware as necessary.

Consequently, the SCORE runtime must perform rout-
ing no sooner than application load time, and potentially as
frequently as every reconfiguration in the time-multiplexed
execution. Therefore, route time will reduce the raw per-
formance potential of a SCORE application. If routing
takes more time than a typical time slice, a route will have
to be amortized across multiple time-slices to be viable.

The use of fixed-size compute pages connected by
multi-bit buses reduces the size of the runtime placement
and routing problem by a constant factor. This has the
effect of simplifying the routing task, but does not make
it trivial or address long-term scaling. As we will see in
Section8, the multi-bit buses and larger grained pages al-
low us to amortize the hardware overheads associated with
hardware-assisted routing, making their cost quite small
for the typical SCORE case. Our current impression is
that a compute page should be a few 100’s (perhaps small
1000’s) of bit-level operators (e.g. 4-LUTs or adder-bits)
and buses will be 4–16 bits wide.

Nature of the Problem The work required to find routes
is, at least, linear in the number of two-point net connec-
tions, and is likely to scale faster than linearly if we wish
to achieve equivalent levels of route quality. In separate

experiments, we found that if we limited the number of
route searches (but not the work done per route search) to
a constant multiple of the number of nets, the resulting,
pathfinder route quality decreased with increasing network
size, suggesting that the number of route trials required to
find an equivalently good solution certainly increases faster
than linearly in network size. Additionally, the work per
route trial increases with larger networks, due both to the
increased path lengths and the increased number of poten-
tial paths to search.

3 Prior Work

Chan and Schlag attacked the problem of FPGA rout-
ing times with both coarse-grained parallelism and FPGA-
accelerator assistance. They were able to show a little over
a 3× speedup in route time using 4 uniprocessor worksta-
tions [5], and delay-driven routing acceleration of a little
over 2–4× speedup using 5 processors [6].

Swartz, Betz, and Rose employ depth-first search and
focussed target selection to tune a pathfinder-based router
to decrease route time in low-stress routes (those where the
router is allowed to use more channels than those required
by the channel minimizing pathfinder). They show that
this combination leads to a router which requires roughly
1.1 ms per LUT/FF pair using a 300 MHz Sparcstation [7].
Normalizing for hardware technology, this means roughly
300,000 cycles per LUT/FF pair, or, assuming an average
of 4 input nets per LUT-FF, about 75,000 cycles to route
each two-point net.

Tessier used domain negotiation and A∗ search to tune
a pathfinder-based router for fast routing. He showed that
domain negotiation and depth-first search allowed him to
achieve similar reductions [8]. For the fastest, low-stress
cases his router was able to route roughly one 4-LUT/FF
every 1.4–4 ms running on a 140MHz Ultrasparc [9]. This
achieves 200,000-500,000 cycles per 4-LUT placing it in
the same ballpark as the Swartz depth first router.

Fast, greedy, maze routing in Lola achieves roughly 3–
7 ms per net running on a 166MHz Pentium PC [10]. This
corresponds to roughly 500,000 cycles per net.

Here we see the state-of-the-art in fast, software-based
routers achieves roughly 75–100,000 cycles per net. Our
own fast router achieves a similar result of roughly 95,000
cycles per net. Given the variations in machine architecture
and increasing relative memory costs, cycles are a crude
comparison metric for comparison. Nonetheless, this es-
tablishes a consistent base range for our detailed hardware-
software comparison.

4 Background and Definitions

HSRA We build on the linear switch population HSRA
[11] (See Figure1). A key feature of this network is that
the number of switches in each hierarchical switchbox is

2

PP

PP

PP

PP

PP

PP

PP

PP

Figure 1: HSRA Network Topology
P’s represent the network endpoints (e.g. LUTs or
SCORE Compute Pages). The circles and ovals are
switchpoints (See Figure2 for details); X’s show the
connection-box switches. Network shown has 3 base
channels.

linear in the number of wires in the switchbox and the total
number of switches in the network is linear in the number
of endpoints.

This network has an important property which is not
shared by Manhattan arrays: There is a unique set of
switchboxes between any source and sink. Consequently,
global routing is trivial (there is only the one solution),
making detail routing our only concern. For our hardware-
assisted router, this also means there is a unique “least
common ancestor” or “crossover” switchbox between any
source and sink. We use this localization to detect route
success, or failure, locally in the crossover switchbox. Fur-
ther, once we select a particular wire (switch) in a crossover
switchbox, the path from the crossover to the source and
sink, including the set of switches and wires in the path, is
completely unique; this property simplifies path identifica-
tion and allocation.

Pathfinder Pathfinder is the dominant approach to
FPGA-routing currently in use in the academic commu-
nity and heavily used in industry as well. It forms the ba-
sis of the previous, software-based, attempts to accelerate
routing (Section3). Starting from the base Pathfinder algo-
rithm [12], we implemented our own version for the HSRA
[11]. We believe our implementation is very close in spirit
to the original. The basic algorithm is as follows:
1. Create a fixed ordering of all nets in the design.
2. While there are unrouted nets and we have not exceeded

the maximum number of route trials:
a. for each net in the original fixed ordering
• if net is unrouted (no path or shares paths)

Config
 Bit

Config
 Bit

Config
 Bit

Config
 Bit

Config
 Bit

Config
 Bit

Config
 Bit

Config
 Bit

T-switch π-switch

Figure 2: HSRA Switchpoints
(pass transistor switch implementation)

Config
 Bit

Config
 Bit

Config
 Bit

valid_path

left

parent

right

Figure 3: HSRA T-Switch with Path-SearchOR

Theπ-switchpoint can be augmented in a similar man-
ner. This logical augmentation can be easily adapted for
rebuffered and clocked switchpoints as well.

• Perform aroute trial≡ rip up the congested net
and reroute

b. update history cost for each congested net

5 Basic Solution

The key idea in our hardware-assisted router is to use
the network structure itself to support the parallel route
search and to keep track of the state of the network.

To find an available route in the HSRA network, we typ-
ically start at the source and the sink node and trace free
(least cost) paths from the source and sink to the crossover
switchbox. If the search from the source and the search
from the sink meet on one (or more) wires at the crossover
switchbox, we have found a viable route path. We can then
allocate the path (one of the paths) to this source-sink pair.

A pair of typical HSRA switchpoints is shown in Fig-
ure2. The switches allow us to make connections as appro-
priate, connecting the children for crossover connections,
or connecting the appropriate child to the parent for up and
down connections.

Now, consider adding a logicalOR between the two
children channels and placing the result on the associated
parent channel (See Figure3). With this addition, we can
perform aroute trial roughly as follows:
1. Set all endpoints (e.g.LUTs or SCORE compute pages)

to drive zeros into all unused input and output connec-

3

tion to the network and all allocated source lines (leave
allocated sink lines undriven as they will be driven by
their associated sources).

2. For the designated source-sink pair which we are cur-
rently trying to route, drive a one into each unused
(available) network connection.

3. Wait for the driven ones to propagate through the net-
work to the unique crossover switchbox.

4. At the crossover switchbox, scan for a switchpoint
which receives a one on both of its sibling sides; only
this source-sink pair is driving ones, so a matched pair
of ones indicates a complete path from both the source
and the sink.

5. Allocate the unique path associated with one such
matched pair; this means we go ahead and set the
switches accordingly to connect this path. Note that this
means this path will have zeros driven into it in the future
and will not be considered in subsequent route searches.

Figure4 shows an example of this route search. We now
perform this search and allocation route trial successively
for every network connection in the design.

The prospect for acceleration here is simple. In the tra-
ditional, software route search, each route trial takes sev-
eral tens of thousands of cycles (e.g.see Table5) to walk a
network data structure and to explore all the possible paths
between source and sink until a free (or inexpensive) path
is found. In this hardware case, we use the network itself
to explore all paths simultaneously. It does so quickly be-
cause all the switched paths are instantiated in hardware
and directly connected by wires. It takes only the signal
propagation delay across the wires and switches to trace
back all possible paths. If the subsequent allocation can be
performed cheaply in place, this turns the whole task from
several tens of thousands of cycles into a just a few cycles.

6 Details

To obtain a complete scheme we will need to fill in a
few of the details left open in the sketch above. In this sec-
tion we will address these details and offer some sufficient
solutions. Here, we need to answer:
• how to select among available paths?
• what to do when no routes are found?
• how to perform allocation and victimization?

A key issue with respect to the traditional, software
pathfinder is history and costs. In the simple scheme above,
we only have binary costs—either a path is free or it is not.
Pathfinder allows nets to share paths and uses congestion
and historical congestion to bias the cost of paths. We will
either have to use a simpler scheme, perhaps at a cost in
route quality, or we will have to complicate our hardware
scheme further to approximate the history and congestion
information used by pathfinder.

Which Path? In the simple form above, we found a set
of paths and needed to select one of them. If they are all
truly free, we can certainly allocate any one of them. Even
in a software pathfinder, we often have this situation where
there are a number of equal cost paths to select among.
We can select deterministicly from them with some fixed
priority scheme, or we can select randomly among them.

For the cases where we have less than complete history
information, at least, we use random selection to increase
path exploration. This way, multiple route attempts will
tend to place a net on different, available paths, allowing us
to stochastically explore the alternatives. A bad or limiting
path selection on one route attempt will be unlikely to be
repeated on a subsequent trial.

No Path? The bigger question is what do we do when
there is no path available. Pathfinder allows the new path
to share resources with the least congested existing path.
There are some ways to begin to approximate this, but it
certainly increases the state and complexity of mechanism
required to support it.

A simpler case, more amenable to tight-hardware im-
plementation, is to rip-up conflicting routes in order to ex-
pose an available path. This raises the question of which
routes to victimize. Here, with a slight amount of addi-
tional complexity, we could identify the path that would
disturb the least existing switched connections. Such a se-
lection would be roughly equivalent to selecting the path
with least congestion, ignoring any history information.

An even simpler case is to, again, select randomly
among all possible paths. If the conflicting paths have al-
ternatives, then they can be rerouted. Here, the fact that
path selection is stochastic is especially important. As
routes accumulate, we will bias the probability distribution
function of routes with choice away from the paths which
are needed most heavily for difficult connections.

Random Path Selection We can perform random path
selection economically in the switchbox by using a pseudo-
random number generator (PRNG) and a cyclic segmented
parallel prefix (CSPP) circuit [13]. The PRNG indicates
which crossover switch is preferred for allocation. We
mask out those which are not selected, and use the CSPP
circuit to identify the first circuit candidate switchpoint
identified by the path search. The CSPP circuit allows us to
identify the path inO(log(W)) time, whereW is the num-
ber of switchpoints in the switchbox.W grows asO(Np)
(1.0 > p > 0.5; p is the exponent in Rent’s Rule which can
be used to characterize the growth rate of bisection band-
width in the HSRA [11]), so the depth of the CSPP circuit
grows only asO(log(N)). Our experimental results using
this PRNG-CSPP random number generation scheme are
statistically indistinguishable from results generated using
a pure random number generation.

4

0
00X

1

0XX

2
01X

3

XXX

4
10X

5

1XX

6
11X

7

out

in

11X01X

Figure 4: Route Search
Shown here is the result of a path search for a route from node 4 to node 2. The light (yellow), thick
lines show pre-existing routes. The dark (red), thick lines show the paths driven to ones by the source
and sink and propagated via the upOR logic. At the crossover switchbox (labelled XXX), there is
only a single switch which has a one arriving from both sides. We allocate the path that is joined
by this switch. Note that there is a single, unique path from the source (node 4) to the sink (node 2)
through this switch.

Hardware Allocation We can build a route allocation
mechanism into the network with only a single extraAND

gate for each switch, an “allocate” pull up at the crossover,
and a binary tree to identify the global route path. The
global route path binary tree looks just like theOR-up logic
in the T-switches, except that it has no configuration bits;
since this is a binary tree, the global-route tree has only a
single T-switch in each switchbox and is, therefore, only a
small additional cost on top of the large number of switch-
points and wires already in each switchbox. At the leaves,
this tree, which is separate from the normal routing paths,
is also driven by the source and sink participating in the
route search. Once the path search has found a possi-
ble path, we stop driving the normal network paths and
drive an “allocate” request, a one, back down the selected
path to perform the allocation. Each switch which receives
this one performs the actual allocation on the appropriate
parent-child link, propagating the allocation, in turn, down
to that child; the global-route tree shows the switchpoint
which child connection to allocate (See Figure5).

Note that if we simply tried to allocate from the top
without the global-route tree, the switchpoint would not
know which child connection to make; the global-route
tree provides this information. A similar problem occurs if
we try to allocate from the bottom; without additional in-
formation, it is not clear which of the two up connections in
aπ-switchpoint the route should allocate. This binary tree

is only used during routing, so could be shared with other
control functions that are only needed during operation.

Hardware Victimization When there are no free routes
found, we need to deallocate (victimize) existing routes in
order to make a new route. Complete logic to support this
in hardware is shown in Figure6. The logic needs to iden-
tify the intersecting paths and propagate the fact that the
path is a victim to all switchpoints along the path before
actually clearing the switchpoints. All together, this takes
3 crossover-to-leaf trips in network to clear routes plus a
4th trip to perform the new allocation.

We also need to know which routes were victimized.
At the end of the victim propagation, the sink will know,
by the position of the input, which source it lost. If the
sink knows which source is associated with this input, that
is enough information for it to inform the route controller
which source-sink pair(s) has been ripped up and needs
to be re-routed. It is possible that many paths are victim-
ized during a single deallocation. A binary collection tree
would allow us to identify all victim paths in at most a
number of cycles:log(N)+number of victims.

Software Allocation and Victimization A more modest
solution, both in hardware cost and performance potential,
is to perform only the path search in hardware (Figure3)
and perform all record keeping in software. With no allo-
cation or deallocation logic, we will need configuration bit

5

Config
 Bit

Config
 Bit

Config
 Bit

set set

global_route_left global_route_right

set
valid_path

allocate_phase

/allocate_this_path

parent

rightleft

Figure 5: HSRA T-Switch with Allocation Logic
Allocate logic added to pass-transistor T-Switchpoint:
At the termination of path search, we do 3 things in se-
quence: (1) deassert the source and sink drive, but leave
the global route tree driven, (2) assert allocatephase
to enable allocation, and (3) assert allocatethis path
to drive a one into the selected path at the crossover
switchbox. Primed in this manner, the single path se-
lected at the crossover is allocated along successively
stages all the way down to the source and sink.

addressability to set and clear configuration bits as routes
are allocated and victimized.

The software bookkeeping needs a table to track switch
usage. This table is indexed by switchpoint identification
and contains:
1. switchpoint identification for the left child switch of this

switchpoint
2. switchpoint identification for the right child switch of

this switchpoint
3. the net that is using this switchpoint (if used)
4. switchpoint identification for the crossover switch for

the route through this switchpoint when in use
This tables isO(N) in size and is potentially accessed
quite irregularly. It is unlikely this table will be cacheable,
making each table reference moderately expensive.

Route search is initiated as before using theOR-up logic.
When we find an available route, the controlling proces-
sor queries the crossover switchbox to discover which path
was selected. The processor then walks the switchpoint
table, starting at the crossover switchpoint, and stores the
net identification and crossover switchpoint in each switch-
point along the path. As each switchpoint is visited, the
processor also issue a command to the network to allocate
the appropriate switch bit.

When it is necessary to victimize paths, we perform the
route victimization in software. Once we pick a target path,
we:

Config
 Bit

set

valid_path

allocate_phase

Config
 Bit

Config
 Bit

set set

global_route_left global_route_right

clr clr

victim
 latch

/allocate_this_path

victim_search

victim_path

clear_victim

drop
victim_ident

rightleft

parent

victim=parent*victim_ident*config_left
 |parent*victim_ident*config_right
 |parent*drop_bit

Figure 6: HSRA T-Switch with Victimiztion Logic
Victimization logic added to pass-transistor T-
Switchpoint: When we must steal a path in use, we do
the following: (1) assert victimident and drive a one
into the selected path at the crossover switchbox; this
sets the victim latch everywhere the new path intersects
an old path. (2) propagate the vicitm information
up to the top of the victimized routes by asserting
victim search; (3) drive a one onto the victim paths
from the crossover and assert dropbit to mark all
affected paths; (4) assert drop to clear the old paths;
(5) poll the leaves to discover victims; (6) perform a
normal allocation of the now cleared path.

1. walk the switchpoint table starting at the victim
crossover switchpoint

2. for each switch visited we need to:
• find out if a net already occupies that segment
• if a net occupies the segment,

1. add that net to the list of unrouted nets
2. lookup the switchpoint which is the root of the ex-

isting net connection
3. for each switchpoint belonging to this net
• issue a command to the network to clear the

switch bit
• clear the net from the wire segment’s entry in the

segment table

After deallocating the victim paths, we can proceed with
allocation.

In the allocate phase the processor reads2 log2(N)
switchpoint entries from the switchpoint table. While each
entry in the table will likely fit nicely in a cache line, ac-

6

cess to the switchpoint table will almost certainly generate
a cache miss and have to be satisfied from main memory.
Therefore, we expect to pay a single main-memory ref-
erence time (Tm) for each of the2 log2(N) lookups, fol-
lowed by 1–3 cache reference times (Tc) when we read
more than one word from a switchpoint entry. There are
2 log2(N) writes to set bits in the array (Ta) and2 log2(N)
writes to the wire segment table. These writes are to items
which are likely to be in the same cache line and are poten-
tially pipelineable using a write buffer (Twb). Therefore,
allocate is likely to take:

Tallocate = Tm + 2 log2(N) (Tm + 2Twb + Ta) (1)

An allocated route could, worst-case, theoretically con-
flict with 2 log2(N) different routes. Unrouting each of
these requires2 log2(N) memory reads and configuration
writes. In the worst-case, then, victimization requires
O(log2(N)) reads to the wire segment table, most of which
will probably incur main-memory reference latency. More
typically, we expect a small number of associated victims.
Assuming an average number of victimsV , and noting that
deallocating a victim requires essentially the same opera-
tions as allocating a path, the deallocation takes roughly:

Tvictim = 2 log2(N)Tm + V · Tallocate (2)

Let us assumeTc = Twb = Ta = 1 cycle. If we assume
Tm = 50 cycles, a 16K-node network takes:Tallocate =
50 + 2 · 14 (53) ≈ 1500 cycles. From our experiments,
typical values ofV are between 3 and 4 for large networks,
so we will assumeV = 4 here, giving: Tvictim = 2 ·
14 · 50 + 4 · 1500 ≈ 7500 cycles. Maintaining these data
structures in memory clearly becomes the dominant time
cost if we go with this hybrid hardware-software scheme.
For a modern, large-scale, FPGA, we would likely use on-
chip memory such as the embedded DRAM block designed
for SCORE/HSRA [14]. Random access in this memory
takes 14 logic cycles (Tm = 14) makingTallocate ≈ 500
cycles andTvictim ≈ 2500 cycles.

Parallelism Only the searches to the same top, crossover
switchboxes need to be sequentialized. A path search in
the left half of a network can proceed completely in paral-
lel with a path in the right half of a network. In general, if
the least common ancestors of the nets’ source-sink pairs
are in different subtrees, the search can proceed in parallel.
This means, we can search sequentially for paths which
crossover in the topmost switchbox then search in parallel
for the paths which crossover in its immediate left and right
switchbox. This parallel decomposition continues in turn.
As a result, the ultimate sequentiallization in this scheme is
the sum of the maximum number of paths crossing over at
each switchbox level rather than the total number of nets.
For a typical network or design with1.0 > p > 0.5, this

Applications Pages Array size Page size IOs

MPEG Enc. 92 128 512 18
JPEG Enc. 13 16 512 16
JPEG Dec. 12 16 512 16

Wavelet Enc. 30 32 64 6

Table 1: SCORE Benchmark Implementation Details

means the sequentiallization goes asNp rather thanN . Ul-
timately, of course, we will saturate the processor’s time to
give attention to starting and completing routes. For large
designs, we might consider allocating a control processor
to subtrees at some level(s). For large designs, there are
many other good reasons to consider this in the SCORE
case, at least. Consequently, it is possible for the entire
route time to scale only asO(Np).

7 Results and Quantification

7.1 Benchmarks

To quantify the routing quality we tradeoff for sim-
plicity and speed, we compare the random path selection
algorithm with the traditional pathfinder algorithm using
two distinct benchmark sets: a collection of multimedia
SCORE benchmarks and a set of difficult synthetic bench-
mark.

SCORE Benchmark This benchmark set includes four
applications: an MPEG encoder, a JPEG encoder, a JPEG
decoder, and a wavelet-based image encoder. Design infor-
mation is summarized in Table1. Placement is performed
by the SCORE scheduler [1], and the same placement is
used for all routing experiments.

Synthetic Benchmark Although it is important to have
netlists from real applications, the SCORE netlists are
moderately small and are likely to be moderately easy to
route. To make sure our solution performs reasonably with
larger and harder designs, we augment the SCORE bench-
marks with a set of difficult synthetic benchmarks; these
benchmarks make sure to maximally fill many switchboxes
according to the switchbox population, assuring that we
can differentiate the effects of route quality and limited
population switchboxes. We scale the synthetic network
size from 8 to 16,384 and, for each size, we generate 100
netlists which stay unchanged throughout our experiments.

7.2 Testing Environment

Our software router is written in C and compiled with
the GNU C Compiler (version 2.95.2) using-O3 option.
Benchmarks are run on 500MHz Pentium3-based system
running Linux 2.2.12 with 100MHz system bus and vari-
able amount of main memory (from 256MB to 1.5GB). We
use the 64b TSC (Time Stamp Counter) timer on the pro-
cessor to measure running time of the program in cycles.
In general, since we are performing graph traversals on a

7

large data structure, most memory accesses will be cache
misses. However, we make sure our entire data structure
will fit in the main memory, so that we are not measuring
performance derated by virtual memory thrashing.

7.3 Algorithm Comparison

For the SCORE benchmark, we route each netlist with
the base channel capacity set to the number of IOs per page
and increment the base channel capacity until a valid route
is found. Table4 summarizes the results and they are fairly
encouraging. Compared to the pathfinder results, the ran-
dom algorithm is at most 5% worse in quality. In fact, for
the wavelet application, we achieve identical route quality
in a similar amount of time. The random software algo-
rithm may take more route trials than the Pathfinder algo-
rithm to achieve comparable quality since it does not have
the benefit of costs and history to speed convergence.

For the synthetic benchmark, we perform similar exper-
iments. We route the 100 netlists for each array size; for
each netlist, we increment the base channel capacity until
a valid route is found. Average results are summarized in
Table5.
• The random algorithm is at most 25% worse in route

quality than the pathfinder algorithm for the largest net-
works shown here.

• The two algorithms implemented in software use ap-
proximately the same amount of time. This is important
because it shows any improvement in speedup comes
strictly from hardware assistance and not from the sim-
plifications to data structure and decision making inher-
ent in the random path selection.

• For our implementation of the pathfinder algorithm, the
number of cycles/net is comparable with previous work.

7.4 Is This the Best We Can Do?

In this section, we evaluate two potential strategies to
improve the quality of the random algorithm.

Route Trial Multiplier In the previous experiment, we
stop the router after the number of route trial has reached
RTmax = |nets|×RTmpy and re-start the router with an in-
crement in the base channel capacity. One way to improve
route quality is to raise the amount of route time allowed
by increasingRTmpy.

We perform the route trial multiplier experiments on
two array sizes, 1024 and 2048, and summarize the result
in Table2. It is clear from this data that very few netlists
converge after route trial multiplier of 2, perhaps because
the random path selection has guided the router into a lo-
cal minimum. This data suggests that increasingRTmpy

above 2 is largely futile.

Stop and Retry Because we are using a random algo-
rithm, we get a different result every time. Another strat-
egy to improve quality is to try multiple route starts so that

trial 1024 2048
mult. channels min max chan. min max

1 1190 11 14 1231 11 14
2–8 900 9 9 900 9 9
9 899 8 9 900 9 9
10 898 8 9 900 9 9

Table 2: Route Trial Multiplier Experiment

channels
size 8 9 10

512 72 28 0
1024, 2048, 4096 0 100 0

8192 0 65 35

Table 3: Sample Probability Density Function

we explore different parts of the route space. Based on the
results from the previous experiment, we route each start
for RTmpy = 2, then clear the network and make a fresh
routing start if we have not achieved satisfactory results.

We perform the stop-and-retry experiments by routing
each netlist 100 times to obtain a probability distribution
function (PDF) for each netlist from 512 to 8192 nodes. In
Table3, we show the PDF of a representative netlist for
each array size. From the data presented, it is clear that
we can use this strategy to get within one channel of the
pathfinder solution. The data suggests, on average, it takes
1.6 starts to achieve 9 channels for the 8192 node network.
With the hardware speedups we show in Tables6 and7,
we see we can afford a few restarts and still achieve three
orders of magnitude route time reduction.

7.5 Hardware Acceleration

The time to route a netlist with hardware assist is:

Tnetlist = NRT · (Tctrl + Tpath + Tcheck + Talloc)
+NRO · Tvictim

Of a given netlist,NRT is the total number of route trials
andNRO is the total number of ripouts. We measure these
two numbers from our software implementation of the ran-
dom algorithm and for each array size, we list the average
(across the 100 nets) in Table8. Tctrl is the number of cy-
cles to send a control signal. Control signals travel from
the root to the leaf nodes inO(log(N)) cycles.Tpath is the
number of cycles it takes to propagate a signal from the leaf
nodes to the crossover switch box.Tpath is net dependent
and bounded byO(log(N)). Tcheck is the time it takes to
generate a random number and check for available routes
at the crossover switch box and isO(log(N)). Talloc is the
number of cycles it takes to allocate a route. During the
allocation phase, we send the three control signals in se-
quence. These control signals can be pipelined, soTalloc

8

Pathfinder Software Random
Applications channels cycles/netlist cycles/net cycles/RT channels cycles/netlist cycle/net

MPEG Enc. 24 148266090 176087 110567 25 280362511 237283
JPEG Enc. 18 3646453 58813 21917 18 9196693 148333
JPEG Dec. 18 2910831 47718 17186 18 3251943 53310

Wavelet Enc. 8 2881255 46471 16118 8 2938845 47400

Table 4: SCORE Benchmark Results

netlist Pathfinder Software Random
size total channels average average average total channels average average

(nodes) chan. min max cycles/netlist cyc/net cyc/RT chan. min max cycles/netlist cyc/net

8 513 5 6 277401 18805 7209 502 5 6 129978 8779
16 585 5 7 688513 22958 10705 573 5 6 490791 16264
32 649 6 7 1767525 28755 12463 646 6 7 1446211 23552
64 691 6 7 2639439 21583 14252 700 7 7 4649098 37865

128 701 7 8 8707525 35618 19921 752 7 8 13831655 56837
256 712 7 8 35310749 72362 31206 800 8 8 31292686 64154
512 796 7 8 23592698 24127 17660 801 8 9 99440287 101422

1024 800 8 8 54085773 27681 20499 899 8 9 184577989 94488
2048 800 8 8 142989526 36544 24607 900 9 9 390927603 99908
4096 800 8 8 397137828 50741 32465 900 9 9 1349098041 172380
8192 800 8 8 1087326104 69457 41662 904 9 10 5035702952 121673

16384 800 8 8 2977991302 95185 56293 1000 10 10 5519778233 176429

Table 5: Software Comparison of the Pathfinder Algorithm vs. Random Route Selection

Pathfinder Software Allocation Base Overlap Parallel
average average average average average average average average average

size cycles/netlist cyc/netlist speedup cyc/netlist speedup cyc/netlist speedup cyc/netlist speedup

64 2639439 666338 4 7651 345 6115 432 3058 863
128 8707525 2011772 4 24737 352 19802 440 6601 1319
256 35310749 1454324 24 23415 1508 17871 1976 4468 7903
512 23592698 6988570 3 105959 223 82901 285 11843 1992
1024 54085773 3570559 15 79605 679 58235 929 7279 7430
2048 142989526 7888456 18 184251 776 134773 1061 9627 14854
4096 397137828 21491478 18 491797 808 363565 1092 21386 18570
8192 1087326104 96927040 11 2013247 540 1527775 712 52682 20639
16384 2977991302 50439784 59 1569221 1898 1116657 2667 31018 96008

Table 6: Hardware Acceleration for Synthetic Netlist

Pathfinder Software Allocation Base Overlap Parallel
Application cyc/netlist cyc/netlist spdup cyc/netlist spdup cyc/netlist spdup cyc/netlist spdup

MPEG Enc. 148266090 2507114 59 35618 4163 28026 5290 16986 8729
JPEG Enc. 3646453 373182 10 3755 971 3080 1184 2934 1243
JPEG Dec. 2910831 493084 6 4909 593 4104 709 2952 986

Wavelet Enc. 2881255 157006 18 2129 1353 1655 1741 1199 2403

Table 7: Hardware Acceleration for SCORE Netlist

9

Nodes Nets NRT NRO

64 122 256 57
128 244 705 187
256 487 693 75
512 979 2562 550
1024 1953 2137 62
2048 3912 4498 187
4096 7826 10686 835
8192 15654 37344 5982
16384 31301 32326 295

Table 8: Random Algorithm Statistics

equals one trip through the network plus a small constant
number of cycles to drain the pipeline.Tvictim is the num-
ber of cycles it takes to victimize a channel at the crossover
switch. During the steps of the victimization process, we
have to wait for one step to finish before we can start an-
other. Therefore,Tvictim includes four trips through the
network plus a constant.

Using array size of 4096 as an example,NRT = 10686
andNRO = 835. For convenience, we assume that we
pipeline every single level of the network hierarchy and
Tctrl = Tpath = log2(4096) = 12. For p = 0.5 and a
base channel capacity of 9, the top-level crossover switch
box has 576 possible routes. We further assume it takes
a single cycle to generate a random number and three cy-
cles to calculate 576b CSPP (Tcheck = 1 + 3 = 4 cy-
cles). Talloc = log2(4096) + 2 = 14 cycles. Tvictim =
4 · log2(4096) + 4 = 52 cycles. Putting it all together,
Tnetlist = 10686 · (12+12+4+14)+835 ·52 = 492232
cycles. Compared to the pathfinder result of 397,137,828
cycles to route netlists of size 4096, this is a speed up of
over 800. Table6 summarizes the average results for vari-
ous array sizes under the “Base” column.

Optimization: Overlap Netlist Routing A small im-
provement to the base hardware case can be made by over-
lapping independent operations. In the final phase of rout-
ing, we perform allocation; at the same time, we can start
issuing commands to route the next net. By the time the
routing commands arrive at the leaf nodes, the previous
net’s allocation step has completed. This optimization
eliminates theTctrl term from the equation. Using the pre-
vious example,Tnetlist = 10686·(12+4+14)+835·52 =
364000 cycles and we achieve a speed of over 1000.

Optimization: Parallelize Netlist Routing As de-
scribed in Section6, the achieveable speedup depends on
how much we have to sequentialize netlist routing; the ulti-
mate sequentialization is the sum of the maximum number
of paths crossing over at each switch box level. We sum-
marize sequentialization and potential speedup in Table9.

Software Allocation and Victimization Case As de-
scribed in Section6, if we assumeTm = 50 and use Equa-

average ultimate potential
Nodes Nets sequentialization speedup

64 122 61 2
128 244 82 3
256 487 122 4
512 979 139 7
1024 1953 244 8
2048 3912 279 14
4096 7826 460 17
8192 15654 540 29
16384 31301 869 36

Table 9: Speedup from Routing Nets in Parallel

tions1 and2 (using measuredV ’s from the actual netlists),
we see that we can achieve a speedup of 18 for our 4096
node netlists.

8 Hardware Costs

The software allocation and victimization scheme re-
quires only 3–4 gates per switchpoint (Figure3). This
should be compared to the three configuration bits and pass
transistors required for a minimum switchpoint implemen-
tation. The additional 3–4 gates are likely to be less than
half the size of the base switchpoint, suggesting, at most,
a 50% switch area penally for a bit-level network. These
connections are completely local; when switchpoints are
wire dominated the area for these additional gates may be
free. As we go to registered and buffered switchpoints (e.g.
[11]), the area for the base switch increases, making these
additional gates an even smaller marginal cost addition.

The full hardware scheme (Figure6) requires roughly
20 gates. Consequently, this additional logic is likely to
be 2.5× the size of the minimal, pass-gate switchpoint.
This size is probably untenable for bit-level networks.
For multi-bit networks, this area can be amortized across
the entire datapath. The inter-compute-page network in
SCORE architectures [4], for example, uses 4–16b datap-
aths. Amortized across a 16b datapath, even this full hard-
ware scheme adds about one gate per switchpoint, resulting
in only 10–20% area overhead in the worst case.

9 Summary

By adding a few gates to switchpoints, we are able to
use the network itself to perform the free path search in
parallel, completing a search in just tens of cycles. This
replaces a software operation which take tens of thousands
of cycles even in the fastest software routers. Accelerat-
ing only this portion of the task is sufficient to get greater
than an order of magnitude reduction in routing time. The
remaining software bottleneck becomes tracking the net-
work state. To address this problem, we can push the allo-
cation and victimization support into hardware. This gives

10

us a solution which is greater than three orders of magni-
tude faster than the original, fast software router. The full
hardware scheme we present requires roughly 20 gates per
switch and is likely to only be viable when this cost can be
amortized across a wider datapath, such as used in typical
SCORE networks. Achieving these speeds, we appear to
give up at most 5% in route quality on typical designs and
at most 25% on designs which are intentionally difficult to
route.

Future Work In this paper we only describe point-to-
point network connections. We have identified some pos-
sible extensions to support fanout and will explore those
further in future work.

Several convenient properties of the HSRA made it par-
ticularly easy to formulate this hardware-assisted search
for the HSRA, however, in principle this scheme can be ex-
tended to any kind of network. Notably, hardware-assisted
routing for mesh-based interconnection topologies appears
feasible but will require a few additional mechanisms.

Acknowledgments

Primary support for this project has come from the
Defense Advanced Research Projects Agency (DARPA)
contract DABT63-C-0048, with additional support from
the California MICRO Program, ST Microelectronics, and
Xilnix.

References

[1] Yury Markovskiy, Eylon Caspi, Randy Huang,
Joseph Yeh, Michael Chu, John Wawrzynek, and
André DeHon, “Analysis of QuasiStatic Schedul-
ing Techniques in a Virtualized Reconfigurable Ma-
chine,” in Proceedings of the International Sympo-
sium on Field Programmable Gate Arrays, February
2002, pp. 196–205.

[2] Timothy Callahan, Philip Chong, André DeHon, and
John Wawrzynek, “Fast Module Mapping and Place-
ment for Datapaths in FPGAs,” in Proceedings of
the International Symposium on Field Programmable
Gate Arrays, February 1998, pp. 123–132.

[3] Yaska Sankar and Jonathan Rose, “Trading Quality
for Compile Time: Ultra-Fast Placement for FPGAs,”
in Proceedings of the 1999 International Symposium
on Field-Programmable Gate Arrays (FPGA’99).
ACM/SIGDA, February 1999, pp. 157–166.

[4] Eylon Caspi, Michael Chu, Randy Huang, Nicholas
Weaver, Joseph Yeh, John Wawrzynek, and André
DeHon, “Stream Computations Organized for
Reconfigurable Execution (SCORE): Introduction
and Tutorial,” <http://www.cs.berkeley.
edu/projects/brass/documents/score_

tutorial.html >, short version appears in
FPL’2000 (LNCS 1896), 2000.

[5] Pak K. Chan and Martine D. F. Schlag, “Accelera-
tion of an FPGA Router,” in Proceedings of the IEEE
Symposium on FPGAs for Custom Computing Ma-
chines. IEEE, April 1997, pp. 175–181.

[6] Pak K. Chan and Martine D. F. Schlag, “New
Parallelization and Convergence Results for NC:
A Negotiation-Based FPGA Router,” inPro-
ceedings of the 2000 International Symposium
on Field-Programmable Gate Arrays (FPGA’00).
ACM/SIGDA, February 2000, pp. 165–174.

[7] Jordan S. Swarz, Vaughn Betz, and Jonathan Rose,
“A Fast Routability-Driven Router for FPGAs,” in
Proceedings of the 1998 International Symposium
on Field-Programmable Gate Arrays (FPGA’98).
ACM/SIGDA, February 1998, pp. 140–149.

[8] Russell Tessier, “Negotiated A* Routing for FP-
GAs,” in Proceedings of the 5th Canadian Workshop
on Field Programmable Devices, June 1998.

[9] Russell Tessier,Fast Place and Route Approaches for
FPGAs, Ph.D. thesis, MIT Dept. of EECS, February
1999.

[10] Stephan W. Gehring and Stefan H.-M. Ludwig, “Fast
Integrated Tools for Circuit Design with FPGAs,”
in Proceedings of the 1998 International Symposium
on Field-Programmable Gate Arrays (FPGA’98).
ACM/SIGDA, February 1998, pp. 133–139.

[11] William Tsu, Kip Macy, Atul Joshi, Randy Huang,
Norman Walker, Tony Tung, Omid Rowhani, Vargh-
ese George, John Wawrzynek, and André DeHon,
“HSRA: High-Speed, Hierarchical Synchronous Re-
configurable Array,” in Proceedings of the Interna-
tional Symposium on Field Programmable Gate Ar-
rays, February 1999, pp. 125–134.

[12] Larry McMurchie and Carl Ebling, “PathFinder:
A Negotiation-Based Performance-Driven Router for
FPGAs,” in Proceedings of the ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Ar-
rays. ACM, February 1995, pp. 111–117.

[13] Bradley C. Kuszmaul and Dana S. Henry, “Cyclic
Segmented Parallel Prefix,” UltraScalar Memo 1,
Yale, November 1998, <http://ee.yale.
edu/papers/usmemo1.ps.gz >.

[14] Stylianos Perissakis, Yangsung Joo, Jinhong Ahn,
André DeHon, and John Wawrzynek, “Embedded
DRAM for a Reconfigurable Array,” in Proceedings
of the 1999 Symposium on VLSI Circuits, June 1999.

Web links for this document:<http://www.cs.caltech.edu/research/ic/abstracts/fastroute_fccm2002.html >

http://brass.cs.berkeley.edu/documents/fpga02_sched.html
http://brass.cs.berkeley.edu/documents/fpga02_sched.html
http://brass.cs.berkeley.edu/documents/fpga02_sched.html
http://www.cs.berkeley.edu/projects/brass/documents/Gama.html
http://www.cs.berkeley.edu/projects/brass/documents/Gama.html
http://www.eecg.toronto.edu/~jayar/pubs/sankar/fpga99sankar.pdf
http://www.eecg.toronto.edu/~jayar/pubs/sankar/fpga99sankar.pdf
http://www.cs.berkeley.edu/projects/brass/documents/score_tutorial.html
http://www.cs.berkeley.edu/projects/brass/documents/score_tutorial.html
http://www.cs.berkeley.edu/projects/brass/documents/score_tutorial.html
http://www.cse.ucsc.edu/~pak/router.ps
http://www.cse.ucsc.edu/~pak/router.ps
http://www.eecg.toronto.edu/~vaughn/papers/fpga98.pdf
http://www.ecs.umass.edu/ece/tessier/fpd98.pdf
http://www.ecs.umass.edu/ece/tessier/fpd98.pdf
http://www.ecs.umass.edu/ece/tessier/tessier-phd.pdf
http://www.ecs.umass.edu/ece/tessier/tessier-phd.pdf
http://www.cs.berkeley.edu/projects/brass/documents/hsra_fpga99.html
http://www.cs.berkeley.edu/projects/brass/documents/hsra_fpga99.html
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://ee.yale.edu/papers/usmemo1.ps.gz
http://ee.yale.edu/papers/usmemo1.ps.gz
http://ee.yale.edu/papers/usmemo1.ps.gz
http://ee.yale.edu/papers/usmemo1.ps.gz
http://www.cs.berkeley.edu/projects/brass/documents/cmb_vlsi99.html
http://www.cs.berkeley.edu/projects/brass/documents/cmb_vlsi99.html
http://www.cs.caltech.edu/research/ic/abstracts/fastroute_fccm2002.html

	Introduction
	Motivation
	Prior Work
	Background and Definitions
	Basic Solution
	Details
	Results and Quantification
	Benchmarks
	Testing Environment
	Algorithm Comparison
	Is This the Best We Can Do?
	Hardware Acceleration

	Hardware Costs
	Summary
	References

