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ABSTRACT
FPGA place and route is time consuming, often serving as
the major obstacle inhibiting a fast edit-compile-test loop in
prototyping and development and the major obstacle pre-
venting late-bound hardware and design mapping for recon-
figurable systems. Previous work showed that hardware-
assisted routing can accelerate fanout-free routing on Fat-
Trees by three orders of magnitude with modest modifica-
tions to the network itself. In this paper, we show how
these techniques can be applied to any FPGA and how they
can be implemented on top of LUT networks in cases where
modification of the FPGA itself is not justified. We fur-
ther show how to accommodate fanout and how to achieve
comparable route quality to software-based methods. For
a tree network, we estimate an FPGA implementation of
our routing logic could route the Toronto Place and Route
Benchmarks at least two orders of magnitude faster than a
software Pathfinder while achieving within 3% of the aggre-
gate quality. Preliminary results on small mesh benchmarks
achieve within one track of vpr -fast.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; J.6 [Computer-Aided Engineer-
ing]: Computer-Aided Design; C.3 [Special-Purpose and
Application-Based Systems]; C.4 [Performance of Sys-
tems]: Design Studies

General Terms
Algorithms, Performance, Design, Experimentation
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1. INTRODUCTION
The promise of FPGAs has always been rapid-turn around

for testing and implementation of new ideas. Unfortunately,
FPGA place and route times are now often measured in
hours; this slows development and reduces the advantages
of a device which can be customized in seconds. It is the soft-
ware mapping time, not the device programming time, that
often determines how rapidly these devices can be “Field-
Programmed.”

Driven by Moore’s law semiconductor scaling, we continue
to get larger FPGAs, making them suitable for a larger class
of applications. However, FPGAs are getting larger faster
than conventional computers are getting faster [1]. In addi-
tion, with typically superlinear computational requirements
for routing, FPGA route time is only increasing as we move
into the future.

Can large FPGAs be routed in less than a second? less
than a millisecond?

As an alternate to riding the conventional processor curve,
we suggest a routing scheme that allows us to ride the FPGA
technology curve itself. That is, we use collections of FP-
GAs, potentially in the same technology as the target FPGA,
to route an FPGA. This has two benefits:
1. The parallel, spatial FPGA routing scheme is already sub-

stantially faster than software routing.
2. Since these FPGAs ride the same technology curve, we

get more FPGA parallelism at exactly the same rate we
have larger devices to route.

Depending on the interconnect growth requirements (Rent’s
Rule), the routing time may still slow down with larger de-
signs, but the time requirements can grow sublinearly.

In previous work [9], we showed that we could augment
a Fat-Tree-style network with additional hardware so the
device itself could support routing. Routing fanout-free
designs, we were able to show three orders of magnitude
speedup over state-of-the-art software approaches while sac-
rificing less than 25% of the quality of the best software
approach.

In this paper, we show how we can adapt this solution
style so that it has much broader applicability. Our new
contributions include:
• Introducing alternative schemes for congestion manage-

ment which use randomness to avoid Pathfinder’s history
state. (Section 4)



• Demonstrating that these schemes are highly suitable for
spatial hardware implementation and that they achieve
comparable quality to the software Pathfinder solution.
(Section 4)
• Showing how the hardware designs can accommodate graphs

with fanout (hypergraphs). (Section 5)
• Benchmarking the resulting, hardware-based routes against

the standard FPGA place and route benchmark suite from
Toronto. (Section 5)
• Showing how these ideas can be adapted for more tra-

ditional, mesh-based FPGA routing networks; this adap-
tation suggests sufficient building block techniques to al-
low this technique to be applied to any network topology.
(Section 6)
• Showing how the structure for this router can be mapped

into FPGA LUTs so that a large collection of FPGAs
could be used to perform the routing of single FPGA.
(Section 7)

2. PRIOR WORK
Software Several serious attempts have been made to
improve the performance of software-based FPGA routers,
including Swartz, Betz, and Rose [15] and Tessier [16]. Both
efforts showed similar results, achieving faster routing when
allowed to trade quality for time. Greedy, maze routing in
Lola is also optimized for router speed at the expense of
quality [10], and it achieves similar performance results. In
our previous paper, we digested the results from these fast
techniques and concluded that they require roughly 75,000-
100,000 processor cycles per two-point net.
Multiprocessor Chan and Schlag used a small number
of processors (4–5) with modest FPGA-assist to improve
FPGA routing times. They were able to show a little over
a 2–4× speedup in route time [6] [7].
Hardware Routers In the early 80’s, a number of re-
searchers looked at building systolic array hardware to im-
plement Lee’s Maze routing algorithm [12] including [5] (also
knows as Pathfinder) [11] [14] [18]. Our router approach is
similar in spirit to these routers. We adapt the connectiv-
ity from a simple grid to FPGA switching networks, and
we develop schemes for fanout, congestion negotiation, and
victimization which go beyond simple least-cost path search.

3. BACKGROUND
HSRA Our tree work builds on the linear switch pop-
ulation HSRA [17] (See Figure 1). A key feature of this
network is that the number of switches in each hierarchical
switchbox is linear in the number of wires in the switchbox
and the total number of switches in the network is linear in
the number of endpoints.

This network has an important property which is not
shared by Manhattan arrays: There is a unique set of switch-
boxes between any source and sink. Consequently, global
routing is trivial (there is only the one solution), making
detail routing our only concern. For our hardware-assisted
router, this also means there is a unique “least common an-
cestor” or “crossover” switchbox between any source and
sink. We use this localization to detect route success, or
failure, locally in the crossover switchbox. Further, once we
select a particular wire (switch) in a crossover switchbox,
the path from the crossover to the source and sink, includ-
ing the set of switches and wires in the path, is completely
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Figure 1: HSRA Network Topology
P’s represent the network endpoints (e.g. LUTs).
The circles and ovals are switchpoints; X’s show the
connection-box switches. Network shown has 3 base
channels.

unique; this property simplifies path identification and allo-
cation. Developing a scheme for path identification is one
of the key additions we make to support non-tree networks
(Section 6).
Pathfinder Pathfinder is the dominant approach to
FPGA-routing currently in use in the academic community
and heavily used in industry as well. It forms the basis of
most of the previous, software-based, attempts to accelerate
routing (Section 2). Starting from the base Pathfinder algo-
rithm [13], we implemented our own version for the HSRA
[17]. We believe our implementation is very close in spirit
to the original. The basic algorithm is as follows:
1. Create a fixed ordering of all nets in the design.
2. While there are unrouted nets and we have not exceeded

the maximum number of route trials:
a. for each net in the original fixed ordering
• if net is unrouted (no path or shares paths)
• Perform a route trial ≡ rip up the congested net

and reroute
b. update history cost for each congested net

Basic Spatial-Router Scheme The key idea in our
FPGA-assisted router is to use the network structure itself
(or an analog built on top of a set of FPGAs) to support
the parallel route search and to keep track of the state of
the network.

To find an available route in the HSRA network, we start
at the source and the sink node and trace free (least cost)
paths from the source and sink to the crossover switchbox. If
the search from the source and the search from the sink meet
on one (or more) wires at the crossover switchbox, we have
found a viable route path. We can then allocate the path
(one of the paths) to this source-sink pair. The scheme is
similar for non-tree networks, except that we start our route
search only at the source and watch for search completion
at the sink.

At the simplest conceptual level, we add a logical or be-
tween the two children channels of each uplink switch in
the HSRA and place the or result on the associated parent
channel (See Figure 2). With this addition, we perform a
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Figure 2: HSRA T-Switch with Path-Search or

route trial roughly as follows:
1. Set all endpoints (e.g. LUTs) to drive zeros into all un-

used input and output connection to the network and all
allocated source lines (leave allocated sink lines undriven
as they will be driven by their associated sources).

2. For the designated source-sink pair which we are currently
trying to route, drive a one into each unused (available)
network connection.

3. Wait for the driven ones to propagate through the network
to the unique crossover switchbox; since all the endpoints
are driven and all tree switches drive some value upward
during this phase (See Figure 2), there are no floating
lines in the network.

4. At the crossover switchbox, scan for a switchpoint which
receives a one on both of its sibling sides; only this source-
sink pair is driving ones, so a matched pair of ones indi-
cates a complete path from both the source and the sink.

5. Allocate the unique path associated with one such matched
pair; this means we go ahead and set the switches accord-
ingly to connect this path. Note that this means this path
will have zeros driven into it in the future and will not be
considered in subsequent route searches.

Figure 3 shows an example of this route search. To route the
whole design, we simply perform this search and allocation
route trial successively for every connection in the design.

The prospect for acceleration here is simple. In the tra-
ditional, software route search, each route trial takes sev-
eral tens of thousands of cycles (See [9]) to walk a network
data structure and to explore all the possible paths between
source and sink until a free (or inexpensive) path is found.
In this hardware case, we use the network itself to explore
all paths simultaneously. It does so quickly because all the
switched paths are instantiated in hardware and directly
connected by wires. It takes only the signal propagation
delay across the wires and switches to trace back all pos-
sible paths. If the subsequent allocation can be performed
cheaply in place, this turns the whole task from several tens
of thousands of cycles into a just a few cycles.

The basic outline sketched here obviously leaves a number
of issues open. For the fanout-free case, many of these are
detailed in [9]. In the next sections, we address detailed
solutions to accommodate fanout and to achieve high quality
routes.

4. HIGH QUALITY ROUTING
In this section, we describe several strategies we use to

improve the hardware-assisted router quality as measured
by the number of tracks needed in the base channel to route
a netlist. We start with a description based on fanout-free

tree routing. In later sections, we carry these strategies
forward to hypergraphs and mesh routing.

Once we have performed a route search for a net, we need a
method to select among multiple available paths, or if there
is no available path, a way to “free” or victimize a path to
route the current net. In our previous work, we described a
simple scheme to address these concerns, as well as circuit
details on how to perform route search, allocation and vic-
timization in hardware. The simple scheme we proposed is
to select a path randomly from multiple free paths if they
exist or from all possible paths if they do not.

The main advantage of the random scheme is that it is
inexpensive to implement in hardware. However, selecting
a victim randomly sometimes produces bad choices, leading
the router away from a valid solution or at least causing the
router more time to converge. We hypothesize that using
some information to bias the selection process will improve
the quality of the router and help the router converge more
quickly. This leads to several interesting questions:
• What is the right criterion to use in victim selection?
• Does this scheme reduce the number of channels needed

to route a netlist?
• How do we implement such scheme in hardware?

4.1 Trading Speed for Quality
Because we use randomness in our algorithm, we get a

different result every time. As we noted in our previous
work [9], one strategy to improve quality is to leverage the
speed improvement gain with hardware assistance and try
multiple route starts so that we explore different parts of
the route space.

In Table 1, we show the probability distribution function
of the random algorithm routing our synthetic benchmarks.
We generate a set of difficult synthetic benchmarks to ensure
our solution performs reasonably with larger and harder de-
signs; these benchmarks make sure to maximally fill many
switchboxes according to the switchbox population, assur-
ing that we can differentiate the effects of route quality and
limited population switchboxes. We scale the synthetic net-
work size from 8 to 4,096 and, for each size, we generate 100
netlists which stay unchanged throughout our experiments.

In the table, we show the minimum tracks (Wmin) achieved
from routing each netlist 100 times, the probability distri-
bution of the 10,000 routing tries for each array size, the
average, and the expected number of routing tries before
achieving Wmin. We see that it is possible to achieve Wmin

or Wmin + 1 quality within four routing starts. There-
fore picking-the-best-of-multiple-starts strategy provides an
improvement in routing quality at a slight cost in routing
speed.

4.2 Count Congestion
Intuitively, we might expect that the best path to select is

the one that does the least damage to existing routes. One
way to measure this is to count the number of switches which
any new, candidate route shares with existing routes. Dur-
ing a route search, if a switch is occupied, we will increase the
cost of the route by one. This strategy is analogous to the
Pathfinder algorithm without history (history = 1). At the
crossover switchbox, we will select a free path (cost = zero)
if possible or select among the paths least congested.
Comparison We compare the count congestion heuristic
with the random heuristic, using the synthetic benchmark
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Figure 3: Route Search
Shown here is the result of a path search for a route from node 4 to node 2. The light (yellow),
thick lines show pre-existing routes. The dark (red), thick lines show the paths driven to ones
by the source and sink and propagated via the up or logic. At the crossover switchbox (labelled
XXX), there is only a single switch which has a one arriving from both sides. We allocate the
path that is joined by this switch. Note that there is a single, unique path from the source (node
4) to the sink (node 2) through this switch.

Random Count Congestion
size Wmin P (Wmin) P (Wmin + 1) avg E(Wmin) P (Wmin) P (Wmin + 1) avg E(Wmin)

8 5 0.966 0.034 5.03 1.0 0.543 0.443 5.47 1.8
16 5 0.273 0.723 5.73 3.7 0.177 0.740 5.91 5.6
32 6 0.505 0.495 6.50 2.0 0.391 0.576 6.64 2.6
64 6 0.000 1.000 7.00 ∞ 0.086 0.690 7.14 12
128 7 0.441 0.560 7.56 2.3 0.382 0.586 7.65 2.6
256 7 0.000 1.000 8.00 ∞ 0.068 0.748 8.12 15
512 7 0.000 0.999 8.00 ∞ 0.002 0.484 8.52 500
1024 8 0.005 0.995 9.00 190 0.124 0.810 8.94 8.1
2048 8 0.000 1.000 9.00 ∞ 0.010 0.743 9.24 100
4096 9 1.000 0.000 9.00 1.0 0.418 0.568 9.60 2.4

Table 1: Probability Distribution Function for the Random and Count Congestion Algorithms
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Figure 4: Count Congestion vs. Random Heuristics
Quality is measured by the number of base channel needed
to route a netlist, so smaller is better. Array size is the
number of LUTs in the array. In our synthetic benchmark,
the larger the array, the larger the netlists.

described earlier. We route each netlist 100 times and collect
the statistics, shown in Table 1. At first glance, if we just
look at the average results, we would conclude that counting
congestion is a wasted effort. Across all array sizes, random
heuristic on average does better than the count congestion
heuristic. However, from Table 1, we observe that count
congestion heuristic can achieve smaller Wmin’s and has a
higher probability of achieving a better quality route than
the random heuristic. This suggests that combining count
congestion with the multiple-starts strategy has a chance to
improve the quality of the random router.

In Figure 4, we see the combined strategy of multiple-
starts and count congestion pays off. Across all array sizes,
the combined strategy has improved routing quality by as
much as one track! The random heuristic, however, does
not benefit as much when combined with multiple starts.
Implementation Count congestion heuristic would not
be useful if we were not able to implement it in hardware
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Figure 5: HSRA T-Switch with Congestion Delay
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Figure 6: Route search with count net heuristic

efficiently. Fortunately, there is a simple and elegant imple-
mentation. If the switch is occupied, we will delay the search
signal by one cycle and the first search signal to arrive at
the crossover switchbox is the path least congested.
Approximation This scheme does not compute con-
gestion as a sum of the congestion from the source and the
sink, which would require an adder at every switch. Instead,
we approximate the summation by computing the maximum
congestion from the source and the sink. This approxima-
tion reduces the required adder into a single and-gate.

The additional hardware cost is minimal: for every switch,
we add a flip flop, a multiplexor and a 3-input or-gate as
shown in Figure 5. The decision to delay the search signal is
strictly local by looking at the configuration bits of a switch.
As a result this implementation will easily scale as the array
size grows.

4.3 Count Net
Instead of counting congestion, another strategy we con-

sider to bias the victim selection is to count the number of
nets that would be victimized if a path were selected. In
Figure 6, we show one wire channel of a size-sixteen (p = 0)
tree. Wire segments of the same color are occupied by the
same net; unoccupied wire segments have black color. Sup-
pose we were to perform a route search from node 1 to node
9 (shown in green dotted line). Count congestion will return
a congestion cost of three while count net will return a cost
of one since there is only one net occupying the path. The
count net scheme directly reflects the number of existing
nets affected by this path and, consequently, the amount of
re-routing work that has to be done if a path were chosen
to be ripped-up.
Comparison In Figure 7, we plot quality vs. array size
for both count cost (congestion and net) strategies combined
with multiple starts (best of 20). We include results from
Pathfinder as a base-line comparison. For the Pathfinder
heuristic, we route each of the 100 netlists once and then
average the results for each array size.
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Figure 7: Count cost vs. Pathfinder comparison
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Figure 8: HSRA T-Switch with Count Net Approx-
imation Delay

We see that count net heuristic does better than count
congestion heuristic across all array size. In fact, for larger
array sizes, we see that count net heuristic (yellow) has
closed the gap between the count congestion algorithm (dark
blue) and the Pathfinder algorithm (light blue). For smaller
array size, count cost (congestion and net) does better than
the Pathfinder heuristic because it gets “lucky”, exploring
route sets which Pathfinder does not; while Pathfinder ex-
plores all individual routes, it does not explore all aggregate
combinations.
Approximation Although we are encouraged by the
fact that a random heuristic can approach the Pathfinder
algorithm in routing quality, count net heuristic is costly to
implement in hardware; it requires we store a net ID and
perform a comparison at every switch.

An inexpensive method to approximate net count heuris-
tic is to observe that a search signal and a routed net can
‘interact” at only two switches (entering and existing) as
shown in Figure 6 (black circles). At those two switches,
the configuration of the switch will be different from the
search direction. With additional hardware support, if a
switch is occupied and has configuration different from the
search direction, we have encounter a new net and will delay
the search signal by one cycle. As we can see in Figure 8,
the count net approximation implementation requires four
additional gates.

Our measurement shows that this scheme will, on aver-
age, choose the same net as counting the exact number of
nets a path has to victimize 75% of the time. In Figure 7,
we see that although the count net approximation heuristic
does not approach the quality of count net heuristic, it is
consistently better than count congestion heuristic.



5. HYPERGRAPH SUPPORT
In this section, we extend the hardware-assisted algorithm

to route netlists with fanouts, describe the necessary modifi-
cation to the switch, and compare the quality and the rout-
ing speed to the Pathfinder algorithm using Toronto bench-
mark suite.
Routing nets with fanouts The basic ideas behind
our scheme is that we sequentially route each two-point net,
trying to re-use as much as possible from existing paths allo-
cated to this net. As a result, we avoid the over-constraint
and complexity of dealing with multiple sinks simultane-
ously.

To route nets with fanouts, we add a state bit at every
switch. This bit is set when we allocate the switch during
the current net search. This bit is cleared when we begin
to route a new net. We implement the following simple
scheme:
1. Order the destinations associated with a single source by

the path length. For a tree network, this is the same as
twice the height of the crossover switchbox.

2. For each destination
• From the sink, we send a search signal on all unused in-

puts and drive the global route signal. The global route
signal is a global binary tree that guides the allocation
process. From the crossover switch, during allocation,
we need to know which child connection to make to
reach the source or the sink; the global-route tree pro-
vides this information.
• From the source, we do nothing and do not drive the

global route signal.
• At a switch, we look at the global route signal to tell

us which direction is the sink side; the sink side will
have the global route signal driven. The state bit helps
us determine if the switch has been allocated during
the current net search and therefore can be a point of
fanout for the current fanout search. If the state bit is
set and the sink side is congestion free, we have found
an available path.
• Otherwise, drive ones into all available source paths and

allocate a new path, like a standard route search.
Although this scheme probably uses more resources than

optimal, it definitely uses fewer resources than treating each
source-sink connection as a separate net.
Approximation In the current count net approxima-
tion heuristic, a net with 1,000 fanouts will cost the same as
a net with no fanout; if a net with large fanouts is victimized,
a large number of two-point nets will be ripped out when
the large fanout net is re-routed, resulting in slower conver-
gence and worse routing quality. To deal with this problem,
we could count the number of fanouts that would be af-
fected and choose the path with the least fanouts. However,
implementing count fanout exactly in hardware appears pro-
hibitively expensive.

We can approximate the count fanout heuristic in a binary
fashion with a fanout lock. The idea is that we want to lock
down nets with large fanouts after they have been routed
and prevent them from being ripped-out. Effectively, this
scheme says the cost of a victimizing the high fanout net
is infinite so it should not be a victim candidate. Since we
order nets by decreasing fanout, high fanout nets will be
routed first before they have a chance to interfere with each
other. To implement fanout lock in hardware, we:
• Add a lock bit for every switch.

Design LUTs Fanout Lock (by # starts) Pathfnd
5 10 20 RT=50

alu4 1522 10.00 10.00 10.00 10
apex2 1878 10.59 10.35 10.12 11
apex4 1262 11.00 11.00 11.00 11
bigkey 1707 8.27 8.07 8.01 9
clma 8383 11.00 11.00 11.00 11
des 1591 10.00 10.00 10.00 9

diffeq 1497 9.96 9.92 9.84 8
dsip 1370 8.57 8.32 8.10 9

elliptic 8192 10.04 10.00 10.00 10
ex1010 4598 13.22 12.97 12.80 10
ex5p 1064 11.00 11.00 11.00 10
frisc 3556 10.82 10.67 10.45 10

misex3 1397 10.21 10.04 10.00 11
pdc 4575 12.01 12.00 12.00 12
s298 1931 9.49 9.24 9.06 9

s38417 6406 10.00 10.00 10.00 9
s38584.1 6446 9.00 9.00 9.00 9

seq 1750 10.05 10.00 10.00 11
spla 3690 12.57 12.33 12.11 12
tseng 1047 10.00 10.00 10.00 8

Total 207.81 205.92 204.50 199

Table 2: Route Quality Comparison

• Assert the lock bit after allocation for high fanout net.
If a switch has an asserted lock-bit, it will not propagate cost
signal upward. This assures the crossover switch box will not
select a path with high fanout nets. In our implementation,
nets with more than ten fanouts are locked after allocation.
Quality Comparison For comparison, we use the stan-
dard FPGA place and route benchmark suite from Toronto
[4]. The benchmark suite is placed on a tree network using
tools we developed for the HSRA [8]. The growth rate of
the network is governed by the Rent’s parameter (p) and is
selected to be 0.6 based on our previous work. The same
placement is used for both routing algorithms and thus the
comparison is fair regardless of the placement tool.

For the fanout lock algorithm, we route each netlist 500
times and use the statistics to calculate the expected num-
ber of tracks if we were to pick the best of multiple starts.
For the Pathfinder algorithm, we set the route trial (RT)
multiplier to be 50, which represents a high routing effort;
this means we allow the router to attempt a number of in-
dividual, two-point net route trials equal to 50× the total
number two-point nets in the design.

In Table 2, we list the quality results of routing each
benchmark using both algorithms. We see that as we in-
crease the number of route starts, the chance of find better
quality route increases as well. More importantly, the results
show that a random algorithm simple enough to be imple-
mented in hardware can approach the Pathfinder algorithm
in terms of quality (within 3%).
Routing speed comparison To measure running time
of the software router, we use the 64b TSC (Time Stamp
Counter) timer on the processor to measure time in cycles.
Our software router is written in C and compiled with the
GNU C Compiler (version 2.95.2) using -o3 option. Bench-
marks are run on 1.4 GHz Pentium3-based system running
Linux 2.4.18 with 133MHz system bus and variable amount
of main memory (from 256MB to 2GB). In general, since
we are performing graph traversals on a large data struc-



Software Pathfinder Hardware Route
Design Wmin Cycles(Millions) cyc/2pt net Cycles Adjusted

Wmin Wmin + 1 Wmin + 2 @Wmin + 2 Wmin Wmin + 1 Wmin + 2 Speedup

alu4 10 13,173 799 769 142K 281,124 126,471 123,031 4,686
apex2 10 N/A 676 529 79K 1,339,577 184,100 129,086 367
apex4 11 12,256 417 389 87K 167,262 147,580 147,009 7,328
bigkey 8 N/A 11,146 931 142K 2,197,956 111,011 99,991 10,041
clma 11 42,061 11,614 11,481 169K 2,418,400 562,298 554,284 1,739
des 9 95,352 370 356 58K N/A 150,267 131,689 246

diffeq 8 367,254 49,284 486 90K N/A 13,025,311 99,296 378
dsip 8 N/A 4,717 1,662 285K 1,024,711 106,747 95,013 4,419

elliptic 10 924,960 3,538 2,224 182K 694,776 277,612 272,066 133,131
ex1010 10 1,529,242 318,979 62,709 292K N/A N/A 29,727,647 211
ex5p 10 121,369 4,540 375 94K N/A 259,207 143,262 1,752
frisc 10 1,765,744 3,149 2,036 164K 7,583,946 286,291 220,987 23,283

misex3 10 N/A 477 493 93K 510,111 132,005 100,865 361
pdc 12 24,552 2,865 2,810 163K 989,232 544,587 540,704 2,482
s298 9 576,848 1,762 1,332 192K 1,190,185 146,285 134,887 48,467

s38417 9 489,715 8,231 2,874 141K N/A 221,047 184,183 3,723
s38584 9 215,098 3,422 3,283 159K 410,546 224,569 218,786 52,393

seq 10 N/A 620 598 96K 618,319 183,538 175,087 338
spla 12 14,248 1,750 1,650 116K 3,710,998 512,716 375,272 384
tseng 8 173,711 23,566 385 97K N/A N/A 88,150 436

Table 3: Pathfinder and Fanout Lock Route Time Comparison

ture, most memory accesses will be cache misses. However,
we make sure our entire data structure will fit in the main
memory, so that we are not measuring performance derated
by virtual memory thrashing.

For the software Pathfinder algorithm, we run each bench-
mark three times and report the minimum time. In Table 3,
we list the minimum number of track needed to route each
benchmark (Wmin), the routing time for Wmin, Wmin + 1,
and Wmin + 2, and average number of CPU cycles needed
to route a 2-point net (for Wmin + 2). An “N/A” entry in-
dicates that the router fails to route at that given number
of tracks. Our implementation of the Pathfinder algorithm
averages 140K cycles per 2-point net, which is comparable
with previous work.

For the fanout lock algorithm, we measure the total num-
ber of route search, rip-outs, and fanout search from our
software implementation. With these three parameters, we
calculate the speedup with hardware assistance similar to
the calculation performed in our previous work. We list the
expected routing time for Wmin, Wmin + 1, and Wmin + 2
in the table. We see that fanout lock is able to achieve equal
or better quality results on fourteen of the benchmarks. Fi-
nally, assuming a 10× difference in clock rates between the
CPU and the FPGA (e.g. 6 ns FPGA cycle and 0.6 ns CPU
cycle), we are still able to achieve speedups of over two orders
of magnitude. Summing the minimum channel requirements
across all 20 benchmarks, software Pathfinder requires 199
channels, whereas the fanout lock algorithm requires 202.

6. MESH ROUTING
The idea of doing a direct path search on the hardware or

an analog thereof is applicable to any network topology. In
general, however:
• There is no well defined crossover point which will contain

all possible routes.
• It is not obvious which direction through a switchpoint

actually leads to the shortest path to the destination.

• The path back to the source is not implied directly by the
topology of the routing network.
• Not all paths from source to sink are the same length and

non-minimal length paths may be important components
of a good solution.
The more general hardware-search strategy is to start a

path search as before with the source driving a one into
its output and all non-sources driving zeros. In this case,
we do not drive from the sink. Rather, we have the sink
listen for the arrival of a one on one of its inputs. The
switches are designed to propagate the one along any free
path in the network without delay and to propagate along
congested paths only after inserting an appropriate delay
to approximate an appropriate congestion delay. Using this
basic scheme, the signal from the least delay path, hopefully
least congested, will arrive at the destination first.
Back Paths The key new problem in this case is: how
do we find the path back to the source and negotiate among
equivalent, alternative paths?

Borrowing from Hansel and Gretel, we leave “breadcrumbs”
to mark our path back from the source to the sink. That is,
each switchpoint notes which input arrives first and marks
that input as the appropriate direction to route an allocate
signal should it subsequently receive one. It is quite possi-
ble, and quite likely, that two or more search signals arrive
at the same switchpoint at the same time. In the example
of a traditional, diamond-switchpoint in a mesh, a search
emanating from a LUT in the lower Southwest portion of
a chip can easily deliver search inputs to a switch to its
northeast on both the South and West inputs simultane-
ously. To promote stochastic path selection as we found
beneficial in the tree case, we allow the switchpoint to se-
lect randomly among the input signals arriving at the same
time. when multiple signals arrive in a destination C-Box
(or any crossbar like structure), we select randomly among
all the equivalent sources. We call the selected input the
preferred input. Here, unlike the tree, we distribute our
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Figure 9: Mesh Route Search
Shown here is the result of a path search for a route from
node (0,1) to node (2,1). The light (yellow), thick lines
show pre-existing routes. The dark (red), thick lines show
the paths driven to ones by the source and propagated
in the search; the dots indicate the preferred path and
arrows show the backpath direction. The numbers mark
the timestep when the search signal reaches the annotated
channel. Note the switchpoints at (2,1) and (0,0) receive
inputs form two different directions on the same timestep.

random selection along the path instead of making a single
random selection at the end. Figure 9 shows a sample route
search.

Allocation proceeds analogous to the tree case. We drive
a one into the selected input at the sink. This one will
follow the stored preferences back to the source, marking the
switchpoints which the path touches as allocation choices.
As before, if this new path intersects with an existing path,
the switches are marked as victims. A victim identification
phase allows all victim paths to be identified and dropped
from the network. The source records the fact that it was
victimized so the route controller will know that it needs to
be rerouted.
Fanout To support fanout in the mesh, we route all
of the destinations (two-point connections in a net) one at
a time in sequence and add additional state to track the
switchpoints which are allocated by the current net. To
attempt to minimize the resources used by each net, we
allow path search to flow along paths already allocated to
this net. The basic path search for each endpoints is as
follows:
1. Drive a one into the source and allow it to propagate along

the already allocated path.
2. Continue search, allowing the search to proceed outward

from the existing path through free paths, but do not al-
low any signal propagation through congested paths; this
has the effect of find the shortest, congestion-free exten-
sion of the existing net, if there is one.

3. If that fails, start a fresh search back at the sources, but
keep the path preferences from the previous search where
appropriate; this new search from the source makes sure
that we find the shortest path according to the standard
congestion delay metric to the sink. The new path may be
routed on a new track if that is the least cost path. Since
we keep the preferences from the previous search, existing

paths will always be preferred over new paths when they
are the same length; however if a new path is shorter,
which can happen because of victimization, the shorter
path is taken. Had we not restarted this victimizing search
from the source, we could not guarantee to find the path
with the least victimization.

Variations There are many variations on this scheme
as with the tree scheme. Notably:
• atomic victimization—we can remove nets either atom-

ically or one link at a time; the simplest scheme for non-
atomic victimization is to simply victimize the net atom-
ically, then add back all the destinations which can be
added without victimizing existing paths; this requires
that we take time to clear out a net (drop it) before we
reroute it.
• count net transitions—by allowing path search forward

along previously allocated paths without delay, we can
count the number of nets which intersect a path rather
than the number of used switches (See Section 4.3).
• congestion delay—since the mesh (and networks in gen-

eral) may have non-minimal length paths, simply delay-
ing the search signal one cycle is not adequate to dis-
tinguish between a congested route and a longer, uncon-
gested route. Consequently, we consider increased con-
gestion delays to help mitigate the aliasing effects.

Experiments To evaluate the viability of this scheme,
we implemented a low-level simulator of the routing logic
described in Section 7.2. Since this was a direct simulation
of the circuits, the uniprocessor simulation is quite slow pre-
venting us from running large benchmarks. Nonetheless, to
provide an initial characterization, we took six LUT-mapped
MCNC benchmarks which would fit onto a 10×10 array and
routed them both with this FPGA-based mesh routing al-
gorithm and with VPR [3].

We used the vpr422 challenge arch architecture as the
mesh architecture for routing; this has single-length seg-
ments, a single LUT per island, and uses a subset (diamond)
switch; each of the 4 LUT inputs appears on a single side
of the logic block (Tin = 1), and the output appears on two
sides (Tout = 2); both are fully populated (Fc = 1). We use
VPR 4.3 [2] to place the designs for both routers. We use
the channel minimizing VPR 4.3 router in both quality and
fast mode as our quality comparison. VPR was compiled
-o3 and run on a P3-1.4 GHz computer for timing.
Results Table 4 summarizes our routing results. With
minimal effort and no randomness, the spatial router gets
within 1 or 2 tracks of the VPR results. The determinis-
tic router can get itself into bad victimization loops as the
non-atomic case demonstrates on 5xp1. With random path
selection and non-atomic victimization, the spatial router
achieves the same quality as the VPR fast routing scheme
in 4 of the 6 cases.

Table 5 summarizes the cycles and runtime for both VPR
and the spatial router. For the VPR results, we ran VPR in
the fixed channel width target mode and recorded only the
cycles for the actual route using the Pentium TSC counter.
We ran the VPR routes three times, checked that they were
reasonably consistent from run to run, and recorded the least
cycles across the runs. For the spatial route, the cycle counts
come directly from the low-level, cycle-accurate simulator
and are the primary metric showing the time and effort re-
quired to find routes; in order to provide absolute time esti-
mates for comparison, we assume an FPGA implementation



VPR 4.3 FPGA-based Router (congestion delay=10)
Design LUTs quality fast deterministic rnd atomic rnd, not atomic

atomic not cnt trns cnt trns

5xp1 83 4 5 6 – 6 6 5 6
c8 87 5 5 7 7 6 6 6 6
ex2 90 5 6 6 6 7 6 6 6
mm9a 96 5 5 6 6 6 6 6 6
s526 84 5 5 6 6 6 6 5 5
s526n 90 4 5 6 6 6 5 5 5

Table 4: Mesh Quality Results

of the search logic with a 5 ns cycle. Easy routes show over
250× acceleration. Challenging routes still achieve greater
than 40× acceleration.

7. RESOURCE REQUIREMENTS

7.1 Tree Implementation
Implementing the logic equations for a tree switchpoint

(e.g. Figure 8) in LUTs will require around 21 LUTs, two of
which are added for fanout support. Moreover, we need to
consider the additional logic needed at the switch box level
such as the random number generator, the parallel prefix
circuit, and various control signals between the switch box
and the global route controller. We conservatively estimate
that it would require 9 more LUTs per switch for the switch-
box level logic. As a result, it would require 30 LUTs to
simulate a fast-routing switch.

Conservatively counting a π-switch (two up-links) as two
T-switches (one uplink, shown in Figure 2) and assuming
p = 0.67, the total number of switchpoints in a design will
be 5 ·Narray ·C. This is easily seen by observing that there

are
Narray

2
tree switchboxes at the lowest level of the tree,

each of which hold C π-switches. One level up, we have
Narray

4
switchboxes with 2 · C π-switches. At the second

level up we have
Narray

4
T -switchbox which holds 2 · C T-

switches. For p = 0.67, this pattern of π- and T-switchboxes
then repeats, so that we have:

Nsw = 5 ·Narray · C (1)

In general, the switch constant, which is 5 here, depends
on the particular p value (0.5 < p < 1.0). Combining
with the 30 LUTs per T-switch equivalent, we see we need
about 150 LUTs per base channel per leaf tree LUT. For
C = 13 (largest value in Table 2), this means the network
will have 65 T-switch equivalents switches per leaf tree LUT,
or around 2000 LUTs per leaf tree LUT. Some additional
logic will be required to support the base channel. Since
base channels are independent, the logic can easily be se-
quentialized by base channel, allowing us to save up to a
factor of C in LUT count. The time cost will be less than a
factor of C since many operations (e.g. allocation, victimiza-
tion, and fanout-free route extensions) need to be performed
only on a single base channel tree at a time.

7.2 Mesh Implementation
Table 6 shows that we need around 160 4-LUTs per switch-

point to implement the switch routing logic for the mesh;
about half of these LUTs are required to support fanout.
Note that features like the SRL16 [20] [19] allow us to imple-
ment large congestion delays in conventional FPGAs with-
out a large cost. We will need about this much logic again

Logical Number Total LEs per
Function 4-input LEs SwitchPoints

Outs 12×4+5 53
Congest 1×4 4
Allocate 6×2 12

Net Share 6×3 18
Victim 6×4+2 26
Config 6×2 12
Prefer 30 30

Total 155

Table 6: Diamond Switchpoint Resource Summary

per track to support the connection box (C-box). As a re-
sult we need several hundred LUTs per track. Since tracks
are independent, it would likely be benefitial to sequentialize
track search so that we contain the total design to several
hundred LUTs per LUT in the original design.

8. SUMMARY
We have shown that it is possible to design a spatial rout-

ing structure that achieves comparable quality to Pathfinder,
the state-of-the-art software routing scheme. The spatial
router can accommodate fanout and can be adapted for less
regular topologies than trees, such as meshes. Supporting
history costs directly in the spatial structure appears pro-
hibitively expensive; however, suitable application of ran-
dom path selection and route locking appears to be an ade-
quate substitute for Pathfinder’s history records. Even with
multiple route re-starts needed to stochastically explore the
route space, the parallel, spatial structure can find routes in
three to six orders of magnitude fewer cycles than the se-
quential, software routers. If we must derate this by an order
of magnitude to account for the spatial transit time between
switch logic in an FPGA implementation, an FPGA-based
spatial router can still be two to five orders of magnitude
faster than the software router. This is sufficient to place
many routing tasks in the millisecond or sub-millisecond
range.
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APPENDIX

A. DETAILED TREE ROUTE STATISTICS
For the fanout lock algorithm, we measure the total num-

ber of route search, rip-outs, and fanout search from our
software implementation (Table 7). These were used to cal-
culate the speedups reported in Table 3.

Design #LUTs Size #Nets Nrt Nro Nfo

alu4 1522 4096 1536 1925 192 5712
apex2 1878 4096 1916 2357 106 6907
apex4 1262 4096 1269 1642 96 4685
bigkey 1707 2048 1935 2324 130 6569

des 1591 2048 1847 2236 115 6298
diffeq 1497 2048 1560 2065 264 5641
dsip 1370 2048 1598 1955 139 5887

elliptic 8192 8192 3734 4343 178 12455
ex1010 4598 8192 4608 5214 14 16086
ex5p 1064 4096 1072 1759 400 4663
frisc 3556 8192 3575 4425 274 12849

misex3 1397 4096 1411 1769 99 5164
pdc 4575 16384 4591 5587 122 17379
s298 1931 4096 1934 2175 206 7166

s38417 6406 8192 6434 8380 956 22185
s38584.1 6446 8192 6483 7041 47 20657

seq 1750 4096 1791 2202 94 6367
spla 3690 16384 3706 4346 80 13951
tseng 1047 2048 1098 1454 174 3920

Table 7: Statistics from Fanout Lock Router on
Toronto Benchmark Set

Size indicates the size of the physical tree on which the
benchmark is placed; these are all powers of two and may
be depopulated to match the p = 0.6 growth rate [8]. Nrt
is the number of route search, Nro is the number of victim-
ization, and Nfo is the number of fanout search.

B. SWITCH LOGIC
Figure 10 presents the logic equations needed to imple-

ment a tree switch that supports hardware-assisted routing.
Figure 11 shows a representative set of equations for the
diamond switchpoint. Table 8 is an expanded version of Ta-
ble 6 which summarizes the resources requirements for the
diamond switchpoint.

Equation 1 is easily derived by noticing that summing the
the switches contributed per level to the endpoint forms a
geometric sum:

Nsw = Narray ·
((

2 · C
2

+
2 · 2 · C

4
+

1 · 4 · C
8

)
+(

2 · 4 · C
16

+
2 · 8 · C

32
+
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64

)
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)
= Narray · C ·

((
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+

(
1
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+

1
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+

1

4

)
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)
= Narray · C ·

(
5
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5

4
+

5
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≤ Narray · C ·

(
5

2
· 2
)

= 5 ·Narray · C

Logical Number Total LEs per
Function 4-input LEs SwitchPoints

Outs 12×4+5 53
Congest 1×4 4
Allocate 6×2 12

ATN 6×1 6
UON 6×2 12

Victim 6×4+2 26
Config 6×2 12
Prefer 30 30

Total 155

Table 8: Diamond Switchpoint Resource Summary



V ictimLatch := ((Parentin · IdentifyV ictim · (CL+ CR)) + (Parentin ·DropBit)) · ClearV ictim
ConfigClear = Drop · V ictimLatch

CL := GlobalRouteleft ·Allocate · Parentin · ConfigClear
CR := GlobalRouteright ·Allocate · Parentin · ConfigClear
CA := AllocateThisPath ·Allocate

Switchleft = CL+ (IdentifyV ictim ·GlobalRouteleft)
Switchright = CR+ (IdentifyV ictim ·GlobalRouteright)
Switchacross = CA

Occupied = CA+ CR+ CL

Delay = Occupied · ((Leftin · CL) + (Rightin · CR))

LeftOrRight = Leftin +Rightin

LeftOrRightFF := LeftOrRight

LockFF = Lock · Parentout
Search = LockFF · (Delay · LeftOrRightFF +Delay · LeftOrRight)
Leftout = AllocateThisPath+ (Switchacross ·Rightin) + (Switchleft · Parentin)

Rightout = AllocateThisPath+ (Switchacross · Leftin) + (Switchright · Parentin)

Parentout = (V ictimSearch · V ictimLatch) + Search+ (Switchleft · Leftin) + (Switchright ·Rightin)

FanoutFF := Allocate · (AllocateThisPath+ Parentin) ·NewNet
V alidPath = (Leftin ·Rightin) + (FanoutFF · ((Leftin ·GlobaRouteleft) + (Rightin ·GlobalRouteright))

V ictimPath = Leftin +Rightin

Figure 10: Logic Equations for a T-switchpoint
CL, CR, and CA are the configuration bits for the left, right, and across transistors.
GlobalRouteleft and GlobalRouteright are part of global route tree that guides the allocation
process. Allocate, VictimSearch, IdentifyVictim, ClearVictim, Drop, DropBit, Lock, and NewNet
are global control signals that help guide the routing process.

AnyIn = Nin + Ein + Sin +Win

AnyAlloc = NSalloc +NEalloc +NWalloc + SEalloc + SWalloc + EWalloc

Nout calc = Search ·Nin ·Nuon ·
(
Sin · Suon +Win ·Wuon + Ein · Euon

)
· Prefer[2 : 0] = N

+Allocate ·AnyIn · (Prefer[2 : 0] = N)

+IdentifyV ictim · (NSvictim +NWvictim +NEvictim)

+ (Search+ SensitizePath) · (Ein ·NEatn + Sin ·NSatn +Win ·NWatn) · Prefer[2 : 0] = N

+Nout congest · SensitizePath · Prefer[2 : 0] = N

Nout congest := Search · (Ein + Sin +Win)

Nout := SearchBegin ·Nout calc + SearchBegin ·Nout
NS := (Install ·NSalloc +NS) ·

(
Clear + Install ·NSvictim ·NSalloc

)
NSatn := SearchNetBegin · (NSatn +NSalloc · Install)
Nuon = NS ·NSatn +NE ·NEatn +NW ·NWatn

NSalloc := Allocate · (Nin · (Prefer[2 : 0] == S) + Sin · (Prefer[2 : 0] == N)) + SearchBegin ·NSalloc
NSvictim := SearchBegin ·NS ·NSatn ·

(
AnyAlloc · EWalloc + IdentifyV ictim · (Nin + Sin)

)
+SearchBegin ·NSvictim

N.B. uon designates “Used by Other Nets”; atn designates “Allocated for This Net”.

Figure 11: Representative Set of Logic Equation for Diamond Switchpoint
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