Corrections to Fault Secure Encoder and Decoder for NanoMemory Applications

Helia Naeimi (helia.naeimi@intel.com) André DeHon (andre@acm.org)

This document is prepared as an attachment to [1], and its purpose is to correct the error in the presentation of a code in that paper. In [1] the code under consideration is a (15,7,5) EG-LDPC code. We used this code as an example to concretely illustrate the concept of the fault secure encoder, decoder, and checker; and the implementation of these units. There are a few representation errors in Figures 5, and 6 of paper [1] that we will correct in this document. The (15,7,5) EG-LDPC code has the generator polynomial

$$1 + x^4 + x^6 + x^7 + x^8. (1)$$

This generator polynomial will result in the generator matrix, shown in Figure A below. We perform linear row operations to make this cyclic non-systematic generator matrix into systematic form. We perform the following operations:

$$i_0 = i_0 + i_4 + i_6 \tag{2}$$

$$i_1 = i_1 + i_5$$

$$i_2 = i_2 + i_6 (3)$$

This systematic form is presented in Figure B. This is the correct representation of this systematic format and should replace Figure 5 of [1]. Based on this new generator matrix the encoder structure shown in Figure 6 of [1] will also need to be changed to the new encoder shown in Figure C.

Figure A: The generator matrix of (15,7,5) EG-LDPC code in cyclic format

	\mathbf{c}_0	\mathbf{C}_1	c_2	\mathbf{c}_3	C_4	C ₅	c_6	C ₇	c_8	C ₉ (C ₁₀ (C ₁₁	C ₁₂	C ₁₃	C ₁₄
. 1	Г	^	^	^	^	^	^	4	^	^	^	4	^	4	Л
10	1	U	U	U	U	U	U	1	U	U	U	ı	U	I	1
i ₁	0	1	0	0	0	0	0	1	1	0	0	1	1	1	0
i_2	0	0	1	0	0	0	0	0	1	1	0	0	1	1	1
i ₃	0	0	0	1	0	0	0	1	0	1	1	1	0	0	0
i_4	0	0	0	0	1	0	0	0	1	0	1	1	1	0	0
i ₅	0	0	0	0	0	1	0	0	0	1	0	1	1	1	0
i ₀ i ₁ i ₂ i ₃ i ₄ i ₅ i ₆	0	0	0	0	0	0	1	0	0	0	1	0	1	1	1
	_														

Figure B: The generator matrix of (15,7,5) EG-LDPC code in systematic format

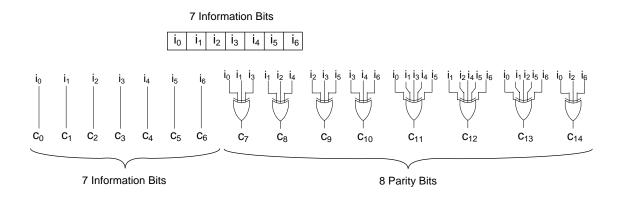


Figure C: The systematic encoder circuit of (15,7,5) EG-LDPC code

References

[1] Helia Naeimi. Fault Secure Encoder and Decoder for NanoMemory Applications. IEEE Transaction on VLSI, 17(4):473–486, April 2009.