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ABSTRACT 
To truly exploit FPGAs for rapid turn-around development and 
prototyping, placement times must be reduced to seconds; late-
bound, reconfigurable computing applications may demand 
placement times as short as microseconds. In this paper, we 
show how a systolic structure can accelerate placement by 
assigning one processing element to each possible location for 
an FPGA LUT from a design netlist. We demonstrate that our 
technique approaches the same quality point as traditional 
simulated annealing as measured by a simple linear wirelength 
metric. Experimental results look ahead to compare quality 
against VPR’s fast placer when considering the minimum 
channel width required to route as the primary optimization 
criteria. Preliminary results from an FPGA implementation 
show the feasibility of accelerating simulated annealing by three 
orders of magnitude using this approach. This means we can 
place the largest design in the University of Toronto’s “FPGA 
Placement and Routing Challenge” in around 4ms. 

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aids - Placement and 
routing. 

C.1.3 [Processor Architectures]: Multiple datastream 
architectures – Array and vector processors. 

General Terms 
Algorithms, Performance, Experimentation 

Keywords 
Field-programmable gate arrays, simulated annealing, 
placement, design automation, reconfigurable computing 

1. INTRODUCTION 
The long runtimes demanded by placement and routing tools 
plague users of Field-Programmable Gate Arrays (FPGAs). In 
an era when synthesis can take minutes, placement runtimes can 

be hours or days for the largest designs. This problem is not 
mitigated by faster hardware as (1) FPGAs are getting larger 
faster than uniprocessor CPUs are delivering more, useful MIPS 
[1] and (2) traditional algorithms for placement generally scale 
superlinearly in device size. Consequently, we expect this 
problem only to increase with time. We further envision a day 
when the requirements for reconfigurable computing 
applications will include the capability to place and route a 
design in milliseconds or even microseconds. Recent 
developments show how to accomplish the latter [2, 3] of these, 
but placement has remained troublesome. 

Previous work on software placement technology has identified 
ways to speed up placements as much as 50x by sacrificing 
about 30% of the quality of reference tools [4, 5]. To give the 
reader an intuition of the runtimes involved consider that an 
8000 LUT design can be placed by VPR with its –fast option 
in about 270 seconds on a Pentium IV 2.2 GHz workstation. So 
an accelerated software placer such as [5] would place the same 
design in roughly 5 seconds. Five seconds is still not fast 
enough for many applications requiring dynamic 
reconfiguration. 

Since FPGAs and ASICs are becoming large enough to 
implement hundreds if not thousands of independent processing 
elements, it makes sense to investigate whether massive 
parallelism can be used to reduce the time required to find a 
quality placement. This would allow us to solve the problem 
such that the technology for placement would scale with our 
ability to fabricate larger and larger devices. 

A traditional simulated annealing-based approach, aiming for 
best possible quality, to the placement problem sequentially 
performs swaps of random cell locations, accepting non-greedy 
moves with exponentially decreasing probability based on the 
current “temperature” of the anneal and the delta that would 
occur in the overall cost function. Following some cooling 
schedule, the temperature is reduced. At the outset of the 
cooling schedule, virtually all moves are accepted. As the end of 
the cooling schedule is reached, only moves that would improve 
the overall cost function are accepted. For suitable cost 
functions and sufficiently slow cooling, it can be shown that 
simulated annealing produces optimum placements [6]. 
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element (“PE”). Then we consider all possible local swaps in 
parallel and accept those that would reduce local contributions 
to the cost function or that are randomly chosen based on the 
current “temperature.” In Section 3, we sketch the structure for 
spatial computation that allows the PEs to communicate only 
locally, yet still drive towards a globally optimal solution. The 
state and logic requirements for the PEs are detailed in  
Section 4. In Subsection 4.5, we show how our approach 
provides the same search strategy as simulated annealing. 
Section 5 describes the benchmarks we performed to evaluate 
our solutions against a traditional simulated annealing for linear 
wirelength and against VPR. Further, we provide preliminary 
results showing that hardware implementations are practical in 
Section 6. Section 7 discusses how these results might be 
applied to dynamically reconfigurable computing systems and 
large-scale logic emulators. Finally, in Section 8, we document 
the future work that will be required to fully understand and 
optimize the power of our approach. 

2. PRIOR WORK 
As previously mentioned, within the traditional domain of 
sequential software placers, 50x improvements in speed are 
possible with only moderate quality losses. While further 
improvements are likely possible in this area, it seems unlikely 
that sequential software placers will increase in speed fast 
enough to keep up with the ever-increasing number of LUTs 
available on a chip. 

We were inspired to consider massively parallel approaches to 
the placement problem by the force-directed algorithm 
described first for printed circuit board layout by Goto [7]. 
Force-directed algorithms for placement treat the placed netlist 
as if the wires are springs pulling connected components 
together. The algorithm models the behavior of those springs 
subject to constraints (e.g., only one LUT allowed placement at 
a given location on the chip). Force-directed algorithms can give 
acceptable results, but often terminate trapped in local minimas 
[8]. We believed that the local nature of the algorithm was well 
suited to our needs and it formed the basis of our initial 
experiments. In [9, 10] a scheme to assign one SIMD processor 
to each cell of an ASIC design was described to accelerate 
force-directed placement. This work demonstrated that it is 
feasible to obtain orders of magnitude speedup by assigning 
every circuit component its own processing element. 
Unfortunately, this design depended on a large-scale 
supercomputer, broadcasts to update cell positions, and swaps 
between arbitrary positions. We show that this style of solution 
is now feasible using FPGAs and demonstrate how to limit the 
design to local operations in order to achieve scalability. We 
further show how the massively parallel design can avoid local 
minima.  

An evaluation of parallel placement algorithms for FPGAs was 
documented in [11]. The authors attempted two parallelization 
strategies: First, they parallelized VPR’s simulated annealing by 
allowing parallel swaps on an SGI Origin shared-memory 
multiprocessor. This yielded no meaningful speedup due to the 
overhead of synchronizing the processors. They were 
successfully able to achieve near-linear speedups by allowing 
each of the separate processors of an IBM-SP2 distributed 
memory multiprocessor to work on the simulated annealing of 
the entire device, periodically distributing the best placement to 
the others, an approach they called “Markov Chains.” By 

accelerating the cooling schedule, any desired speedup is 
obtainable. With six processors used for a factor six speedup, 
however, the cost function reached 160% of the uniprocessor 
VPR result. We improve on this work by using FPGA-based 
PE’s to perform parallel swaps between nearest-neighbor PEs. 
This allows us to employ efficiently many more processors by 
exploiting massive and cheap local bandwidth, avoiding 
synchronization overhead. 

3. SOLUTION SKETCH 
The basic idea behind our approach to hardware-assisted 
placement is that we assign each physical space where a LUT 
could reside its own PE. That PE is responsible for keeping 
track of which LUT it contains and which LUTs connect to its 
inputs and outputs. The PE knows its own position and keeps an 
estimate (assume a perfect estimate for now) of the positions of 
the connected LUTs. Simultaneously, the PE’s negotiate with 
their neighbors to see which swaps would locally improve the 
total placement cost. Each PE assumes that its contribution to 
the current placement cost is the sum of the Manhattan 
wirelengths required to route to the estimated positions of LUTs 
connected to its inputs and outputs. 

If we assume that position estimates are correct, then this is only 
slightly different from the traditional, sequential simulated 
annealing approach to the problem: The cells make local cost 
reducing swaps to greedily search for a local minima. By adding 
a suitable element of randomness (which is introduced in 
Subsection 4.3.3) to the swaps, we avoid local minima by using 
a simulated annealing-style cooling schedule. 

As we are developing a scalable solution, we cannot make the 
perfect information assumption for hardware implementations. 
That is, we would prefer not to fully update the state of the 
placement engine every time a group of swaps is considered; 
simple update schemes after each set of potential swaps could 
require O(N) time. To deal with this, we insert a “position 
update chain,” which snakes through the array of PE’s. Every 
update interval this chain is shifted to update position estimates 
across the chip. The position chain carries identifiers for the 
LUTs (id’s) as well as their positions in the current placement. 
Each time we cycle through the position chain communicating 
current LUT locations, the algorithm considers all possible local 
swaps a number of times (proportional to the size of the design). 
Note that this results in a design that can be implemented as a 
systolic array; all the processing elements are connected only to 
their nearest neighbors. 

This raises several questions: 

• What is the effect of information staleness on the 
algorithm? How many swaps can be taken between 
updates before the staleness causes problems? 

• By what mechanism do the PE’s determine with 
which neighbor to negotiate a swap at any given time? 

• How long will the algorithm take to converge? 

• How does the potential for unbounded fanout affect 
the practicality of creating a systolic data structure? 

• By what mechanism is a netlist loaded into and then 
removed from the PE array? 



The following sections answer these questions and detail the 
architecture. 

4. THE DETAILS 
To explain the details of our solution, we first describe the top-
level structure of a hardware implementation. We then follow 
with an explanation of an individual PE. We continue with the 
pseudocode for the algorithm, which follows naturally from the 
circuit structure. This leads to a mathematical justification of 
how the algorithm performs a search through the solution space 
that is analogous to simulated annealing. 

4.1 Top-Level Structure 
To begin, let us start with a top-level view of an array of cells. 
As seen in Figure 1, the cells, which directly represent the 2-D 
placement, are connected to each of their four nearest neighbors. 
A position chain snakes throughout the design, enabling 
propagation of state information. We also use the position chain 
for bootstrapping an initial random placement into the design 
and shifting out a final placement. Every H×W shift cycles, the 
cells shift out their own current information, which is their 
location and the id number of the LUT they contain. On other 
shift cycles, the cells simply shift out the data received on the 
previous cycle, updating position estimates for any matching 
cells in their locally maintained connectivity lists. Note that all 
cells communicate only with their nearest neighbors.  

H

W  
Figure 1. Interconnect between PEs and position chain. Arced 

arrows represent path of the position chain, straight arrows show 
nearest-neighbor interconnect for swapping. 

 

4.2 Individual Processing Elements 
For a view of an individual processing element, see Figure 2. 
Note that it includes locally all the components needed to 
manipulate its part of the placement. A content addressable 
memory (“CAM”) stores the list of LUTs connected to inputs 
and outputs of the LUT currently at the cell’s position. It 
provides indexing into a memory that stores estimated locations 

of those LUTs. The control logic includes accumulators and 
comparators to compute the delta cost that would be associated 
with swapping a cell. A randomness generator provides for the 
stochastic behavior that gives us simulated annealing’s search 
strategy. Finally, a state machine manages the cell’s 
communication with its neighbors.  

It is important to consider the complication introduced by 
potentially unbounded fanout in the design netlist we wish to 
place. Since it is not feasible to allow enough memory for very 
large fanout at every cell, we need to limit the amount of fanout 
considered by the algorithm. Experimentally, we verified that 
the effect of truncating the list of connected cells to 12 did not 
significantly degrade result quality. We arrived at the number 12 
by reserving four slots for LUT inputs (since most architectures 
are based on 4-input LUTs), realizing that the average fanout 
would consequently be about four and then allowing a factor 2x 
to assure only cells with unusually high fanout would be 
truncated. A more thorough solution might be to configure the 
synthesis tools to generate LUT mappings with bounded fanout 
to fit into the allotted memory on the PE’s.  
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Figure 2. Internal structure of a processing element. 

 

4.3 Algorithm Pseudocode 
The pseudocode for the optimization algorithm naturally 
follows: 

4.3.1 High-Level Pseudocode 
rand
for interval in 0 t

omly place the design into the PE array 
o TMAX  

  for each node PE do in parallel  
      loop NUMBEROFCELLS times do 
          PE.LOADPOSITIONCHAIN(); 
          UPDATE PE.connectedCell.positions; 
      PE.SHIFTOUTCURRENTPOSITIO ;     N()
      loop SWAPSPERINTER  times do VAL

 for four phases do 
      
return the placement stored in the PE array 

    PE.SWAPIFAPPROPRIATE(); 

 
The four phases ensure that a node will negotiate swaps with its 
four nearest neighbors on alternating cycles. The next 
subsection explains the details of this.  



4.3.2 Swap Phases 
We guarantee both that all four possible swap directions will be 
considered and that every swap will be agreed to by exactly the 
two cells involved using a phase scheme. This is done by 
pairing suitably complementary directions between odd and 
even cell locations in both dimensions. Boundary cases are 
easily handled with special cells that never swap off the side of 
the array.  shows the swap phase concept graphically. Figure 3

Figure 3. Phase scheme assures that PE's consider swaps in 
pairs of two. The numbers represent which direction the PE will 
negotiate at a given phase. Boundary conditions are handled by 

not actually doing any swap at all. 
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4.3.3 The swapIfAppropriate Function 
The swapIfAppropriate function determines what criteria the 
algorithm optimizes. A purely greedy swapIfAppropriate 
function would be: 

if hypotheticalCost < currentCost then 
   return TRUE; 

  else 
     return FALSE; 
After some experimentation, we found that purely greedy 
functions land the algorithm very quickly in a local minimum. 
We settled on a stochastic swapIfAppropriate function, 
which provides the search behavior of simulated annealing. 

Our swapIfAppropriate function is: 

if P undefined then 
   P ← 1; 
P ← P – 1/(4×TOT ERVALSTORUN)                                ALINT
if ) < P then 

                      SWAP(s1, s2); 
RANDOM(
return TRUE;    

else if hypotheticalCost <  
         currentCost then  

   return TRUE; 
else 
   return FALSE; 

 

The local contribution to the cost metric is the sum of the 
estimated linear Manhattan wirelength to each of the fanin and 

fanout nodes referenced in the CAM. Readers will notice that 
this swapIfAppropriate differs from a traditional simulated 
annealing in that the magnitude of the change that would occur 
from a swap is not considered. Furthermore, linearly varying P 
is not what a traditional simulated annealing algorithm would 
do; it is merely a simple approach to use in a preliminary 
hardware implementation. Later in this section, we argue based 
on random walks that approaches both using and not using delta 
cost magnitude provide qualitatively similar explorations of the 
design space. 

4.4 IO Placement 
A final issue is how to handle IO placement. Our initial 
approach, and the one on which we base our results, is to 
perform a systolic placement on the LUTs themselves and then 
use a simple greedy algorithm to place the IO pads. Our 
architecture has some number of IO pads (“slots”) along each 
side of the chip at the ends of every row and column of LUTs. 
We place each IO that will fit into a slot closest to the LUT to 
which it is connected. For example, a LUT located at (3,6) on a 
10 × 10 array would have its output placed on the left side of the 
chip six places from the  bottom, if a space were available at 
that group of pins. Then we iteratively increase the amount of 
error from this “ideal” position until all IOs have been placed. If 
our LUT at (3,6) could not have its output placed on the left at 
position six, the next iteration through the loop would attempt to 
place it on the left side at either position five or seven. 

We make no claim this algorithm is ideal, merely that it is 
simple to implement and yields reasonable results. Since our 
designs are relatively small, the computational overhead of 
performing the IO placement with a sequential processor is 
reasonable. 

Another approach is to place the IO pads along with the LUTs. 
Then, as the cooling schedule progresses, give the pads a 
synthetic force towards the side of the chip to which they are 
closest. Finally, use a greedy algorithm to assign them to IO 
slots.  

4.5 Mathematical Analysis 
A traditional, design automation formulation of simulated 
annealing works as follows [8]: 

T ← TEMPINIT 
while (T>TFINAL)  do 
     while (useful to cool at T)  
        do 
          s1 ← random location; 
          s2 ← random location; 
          cost ← DELTA(s1,s2); 
          if (cost<0) then 
          (s1, s2);    SWAP
          else  
             if (EXP(-cost/T) > RANDOM()) then 
     T=NEXT(T); // make smaller 
 

 
The key features of this algorithm: 

• allows non-greedy moves to avoid becoming trapped 
in local minima 

• the acceptance probability for non-minimizing moves 
decreases exponentially with increasing cost 



• starts out allowing almost any move (T→∞ → accept 
all swaps) 

• as T decreases, less likely to accept moves (T→0 → 
accept no non-minimizing swaps) 

• if we stay at a temperature long enough, all elements 
should, with high probability, be within a temperature 
defined cost radius around the optimum location 

• as the algorithm progresses T decreases, shrinking the 
cost radius from the optimal location 

The non-decreasing cost moves allow the algorithm to move the 
design through a series of non-minimizing configurations in its 
search for global minima. 

In this case, our cost function for a swap will be: 
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Where L(s1) is the current location of element s1 and s1.io(i) is 
the ith element connected to s1. We can see this is separable 
into two parts – the delta cost for moving s1 to s2 and the delta 
cost for moving s2 to s1. (N.B. This introduces an inaccuracy if 
s1 or s2 drives a pin on the other. The worst consequence 
possible is a small, local oscillation in the system). 
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It is, therefore, useful to simplify this and consider what 
happens for the case of moving s1 to L(s2) (which exactly 
corresponds to the case where location s2 is empty so its delta 
cost is 0).  plots e-(cost/T), the probability that a node is 
moved to a distance cost from its cost minimizing position.  

Figure 4

Figure 4

Figure 4. Probability that a node moves to a distance cost from 
its current position for a traditional simulated annealler. 

In our implementation, we want to exploit fast, high-bandwidth 
local communication. Consequently, we force all swaps to be 
nearest neighbor swaps. We manage to achieve the same 
aggregate behavior as sequential simulated annealing using our 
probabilistic swapping scheme. 

To see this, it is useful, again, to focus on the probability locus 
of a single cell. Assuming for the moment that the cell starts in a 
cost minimizing position, let us look at where the cell is likely 
to be after a number of these swaps. Each swap can move away 
from the minimizing position with probability Ps. After N 

swaps, the likelihood that our cell is distance d away from the 
cost minimizing position is: 

m d + 2

 
That is, in order to be distance d away, we need to make d more 
non-minimizing moves than cost minimizing moves. There are 
N=2m+d choose m+d different ways we can make m+d non-
minimizing moves. (To be concrete consider N=3 and d=2; 
There are 3 choose 2 = 3 ways to make 2 non-minimizing steps 
and 1 minimizing step. The probability of making these steps is 
Ps×Ps×(1-Ps) for an aggregate probability of 3×Ps

2×(1-Ps). ) Note 
here that m is a free variable. As m increases, we have a higher 
probability of actually finding the cost minimizing position, so 
that the assumption that we start in a cost minimizing position 
becomes more likely to be satisfied. In addition, as m increases, 
we get law of large numbers effects reducing the variance and 
making the series of discrete swaps converge to this continuous 
distribution. As shown in , the probability locus that this 
generates has the same characteristics as the traditional 
simulated annealing exponential cost function (See ). Ps 
plays an analogous role to temperature (T). As Ps→1, all swaps 
are accepted (compare T→∞); as Ps→0, only cost-minimizing 
moves are accepted (compare T→0). 

Figure 5
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In both cases, there may not be a single cost minimizing 
location, so the location radius surrounds a cost-minimizing 
equipotential region rather than a single point. 

If the cost function is the same as the distance function, then 
these two formulations give identical probability loci for 
suitably corresponding values of Ps and T. Strictly speaking the 
cost function is not the same shape as the distance function, so 
the exact, detailed shape of the probability locus will differ. 
What is important, however, is that both formulations allow the 
component to explore the radius around the cost-minimizing 
position with an exponentially decreasing probability as we get 
away from the minimum and with a drop-off rate that can be 
incrementally tightened over the course of the algorithm. Our 
local swap formulation is closer to real, physical annealing than 
the traditional, design automation formulation since real, micro-
scale particles will make local moves in order to explore the 
state space. 
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Figure 5. Probability that a node will be a given distance from 
the greedy, local cost-minimizing position  for the local swap 

annealler. 
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. BENCHMARKING RESULTS 
proach to benchmarking 

placer. First, we demonstrate that it is tunable to 
quality that is close to traditional simulated annealing when 
optimizing total linear wirelength. Having chosen appropriate 
constants for the algorithm, look at the channel width which this 
achieves and argue that the systolic placer offers a new point on 
placement technology’s time-quality envelope. 

5.1 Methodology 
For the purpose of experimentation, we impl
traditional, linear wireleng
similar to the one used by VPR) and a simulation of the systolic 
algorithm in Java, working within the framework offered by a 
simple mesh-connected FPGA structure. We compared 
placement quality results as measured by total estimated linear 
wirelength between the two for the well-known Toronto20 
benchmark suite used for the “FPGA Place and Route 
Challenge” [12, 13]. We experimentally explored the variables 
of SWAPSPERINTERVAL and number of intervals we should allow 
the algorithm to run before declaring that the algorithm is 
effective for a range of design sizes. 

Measuring placement quality solely in terms of this rough 
metric is not a perfect predictor of th
width required to route, critical path delay). Therefore to gain 
insight into the final quality our designs, we ran the placements 
generated with the systolic placer through Versatile Place and 
Route (VPR) [14] with the –route_only and –fast option and 
compared the results to the case where VPR handles both the 
placement and routing with the –fast option. According to the 
VPR manual [15]: 

-fast: Sets the various placer and router parameters so that a 
circuit will be p
some (~10 – 15 %) degradation in quality. 

r own comparison of –fast option with the default VPR 
avior for the Toronto20 suite found that runtimes 

faster and the channel utilization was 27% worse on average, 
while critical path delays were 4% better when performing both 
the place and route steps. Our use of the –fast option explains 
why our reported VPR results are worse than those which are 
published on the FPGA Place and Route Challenge’s webpage. 

Since our results trade quality for decreased runtime, we believe 
that it is appropriate to compare them to the fastest generally 
available software algorithm.  

5.2 Intervals Required Exploration 
In order to tune the algorithm for the benchmark set, we begin 
by finding an appropriate num
do this, we make the perfect information assumpti
four swaps (stepping through all the phases). Figure 6 shows 
that after going through 400 cooling steps, the improvement 
provided is incremental and reaches quality nearly as good as 
that of the traditional annealing algorithm for several designs in 
the benchmark suite.  
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provement is 

.3 swapsPerInterval Exploration 
fter determining that 400 intervals will give reasonable result

SWAPSPERINTERVAL to see if further quality im
possible at the chosen number of intervals. To increase the 
number of swaps performed, it is preferable to increase the 
SWAPSPERINTERVAL rather the number of intervals, because each 
additional interval involves O(N) clock cycles to update the 
state, where N is the size of the placement. We hypothesize that 
performing O( N ) swaps at every interval is logical since there 
is a maximum distance of 2 N  cells between a LUT’s position 
at the outset of the interval and its “ideal” position in the 
placement at that time.  

Figure 7 shows, for each m ber of the Toronto20 suite, the 
relative result quality against the sequential simulated annealing 
program at several SW

em

APSPERINTERVAL as a ratio of total 

value of .08

estimated linear wirelengths.  

The chart indicates staleness doesn’t become a meaningful 
problem at the SWAPSPERINTERVAL we considered. It appears 
that a SWAPSPERINTERVAL N  should be 
reasonable for all of the netlists. 
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Figure 7. Analysis of swapsPerInterval vs. quality relative to 

sequential simulated annealing. 

5.4 Spatial Annealing Quality and Scaling 
Figure 8

Figure 8. Exploration of effect of design size on relative 
placement quality. 

 summarizes the quality achieved by our systolic placer 
using a SWAPSPERINTERVAL of .08 N  and running for 400 
intervals. This shows that we are able to optimize wirelengths 
within 25% of the software annealer for many of the designs.  It 
further suggests that the algorithm does not deteriorate too badly 
for large designs 
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5.5 Comparison Against VPR Results 
In order to look ahead and understand our placements’ quality 
against a fully optimized software placer, we ran the placements 
generated by our tool (using 400 intervals and a 
SWAPSPERINTERVAL of .08 N ) through VPR’s router with its 
−route_only, −fast, and −route_algorithm 
breadth_first options. We report the channel requirements 
for three passes through the flow.  The architecture is an array 
of simple 4-LUTs each paired with one output flip-flop. Note 
that VPR is optimizing directly for channel width, whereas our 
current systolic placer is only optimizing the linear wirelength 
metric; as such, we believe, much of the quality loss is due to 
the simpler cost function rather than from the systolic placement 
algorithm. 

We also ran the benchmarks through the full VPR flow with the 
−fast and −place_algorithm bounding_box option, 
having instrumented the tool to give us the amount of time spent 
in its placement routine. We compiled VPR with GCC version 
3.04 and an optimization setting of −O3. Our workstation was an 

unloaded machine with 2 GB of RAM and a 2.2 GHz Intel Xeon 
processor with 512 KB of cache. Assuming an FPGA clock rate 
of 100 MHz and 150 clock cycles to be equivalent to one of the 
algorithm’s steppings through the four phases (we show this to 
be reasonable in Section 6), we compute an approximate 
runtime for the spatial implementation. Note that the hardware 
approach would therefore require approximately 4.2 ms to place 
the largest design, clma. We compare this time against the 
amount of processor time required by VPR. This gives an 
estimation of the speedup offered by our approach that is very 
conservative for several reasons: 

• We are using 400 intervals when some of the designs 
could be placed over a shorter cooling cycle as shown 
in Figure 6. 

• We expect our FPGA implementation can be 
optimized substantially both to increase the clock rate 
and to reduce the number of clock cycles required on 
every interval. 

Table 1 shows the results of our comparison. Clearly, the 
systolic placer’s results are inferior to VPR’s, but for some of 
the designs, the results would likely be acceptable and perhaps 
preferable given the amount of speedup involved. Note that our 
systolic scheme optimizing a simple wirelength model yields 
placements that are about 35% worse than VPR’s when 
measured in terms of minimum channel width required to route. 
If we take the best of three runs, an average penalty of 29% is 
attainable. Both placements achieve roughly the same critical 
path delay; however, neither algorithm is directly attempting to 
minimize delay. We believe this is substantially faster than a 
software placer that achieves the same quality level and that we 
will be able to improve the quality of this approach to compete 
more seriously against VPR by improving the cost function. 

5.6 Speedup Justification 
It is worth pointing out that the speedup a hardware-assisted, 
systolic approach like ours will give can be much greater than 
that of simply employing a system with a very large number of 
traditional processors tied to a single memory. This is for 
several fundamental reasons: 

• Local memories and nearest neighbor interconnect 
allow for extremely high system bandwidth. Instead of 
requiring massive amounts of expensive shared 
memory bandwidth, we rely on cheap systolic 
bandwidth between nearest neighbors. 

• There is no added overhead caused by cache thrashing 
on processors manipulating large data structures or 
synchronization overhead associated with maintaining 
cache coherency between processors. 

• Specialized datapaths build directly the computation 
required for this algorithm, providing the right level 
and structure for parallelism within the local swap 
calculation and avoiding the overhead associated with 
structures that are more general. 

6. HARDWARE IMPLEMENTATION 
In order to understand the feasibility of employing our concept 
for a systolic placer in practical systems, we are developing an 
FPGA implementation.  



6.1 Preliminary Design Completed 
We have created an implementation of the basic systolic placer 
cell in VHDL and targeted the Xilinx Virtex2 FPGA. 
Synthesizing the design with Synplify Pro 7.2 and placing and 
routing the netlist with the Xilinx ISE 5.1i toolset have led us to 
believe that a design, which requires about 400 LUTs for each 
processing element and runs at over 100 MHz, is attainable. We 
were able to use special Virtex “SRL16E” primitives to create 
reasonably-sized distributed memories and CAM’s within the 
cell [16]. We hold a “shadow” copy of the CAM contents in a 
RAM to reduce the amount of data that needs to pass between 
cells. This gives a 3x reduction in swap time at the expense of a 
modest amount of device resources. As a source of pseudo-
random numbers, we employ linear feedback shift registers 
initialized on power up to random values (i.e. not the same from 
PE to PE) [17]. A smaller, faster design is likely achievable with 
further refinement. 

We arrived at 150 cycles required for each iteration through the 
swap phases by the following calculation: 

Clock Cycles Cell Operations 

4×  For each direction consider swaps 
 5 Compute total current and hypothetical costs 

with neighbor  
 1 Decide whether or not to swap with neighbor 
 12 Swap or don’t swap the RAM, computing 

current and hypothetical costs for the next 
direction 

 18 Swap or don’t swap the CAM 
134  Cycles total 

 
 
This only adds up to 134 cycles per iteration; but we round up to 
150 because we expect further pipelining to increase this 
number slightly. We do not include the amount of time to read 
in the initial placement or output the final placement. 

7. APPLICATIONS 
We are also examining several practical applications for the 
technology. Reconfigurable computing is a paradigm that is on 
the horizon and will need fast placement to enable key 
capabilities. Logic emulations systems are constrained by long 
placement runtimes today. 

7.1 Application of Hardware Solution to 
Reconfigurable Computing 
In SCORE [18, 19], designs are segmented into pages at netlist 
generation time (which is often compile time).  These page 
graphs, which may be of arbitrary size, are then scheduled onto 
a particular device at runtime. This yields a two-level hierarchy, 
which makes dynamic, run-time configuration more 
manageable. The fixed-size compute pages become the atomic 
unit of placement and reconfiguration at runtime. As long as a 
physical SCORE compute page is larger than one of our 
placement engine processing elements (~400 LUTs as described 
in the previous section), a SCORE device is capable of 
performing inter-page placement on itself. That is, we can 
directly configure the physical SCORE device to be a placement 
engine that is exactly large enough to place the set of pages that 
can run on the physical device in a single SCORE timeslice. 
This works for any number of SCORE pages; the critical 
parameter is simply that each SCORE page be powerful enough 

to implement the placement engine’s processing element. This 
adds no additional hardware to the SCORE device; it will 
simply require a discipline where the runtime system reserves 
configuration memory space to store the configuration of the 
placement processing element. Each time a new set of virtual 
pages requires placement, the runtime system will direct the 
device to switch to the placement configuration and perform the 
placement. 

Further, in applications where we do want to generate new page 
configurations at runtime, we can use the whole SCORE device 
to perform one or more intra-page placements as well. This 
works directly when the SCORE device has equal or greater 
physical compute pages than it has LUTs within a physical 
compute page. In this case, we configure a suitable subset of the 
SCORE device with the placement processing elements and use 
that to compute the intra-page placement for the LUTs within 
the compute page. Very large SCORE devices that have more 
physical compute pages than there are LUTs within a compute 
page may be able to place multiple compute pages 
simultaneously or place a compute page while operations 
continue on other portions of the array. Note that it only takes 
devices with 400×400=160,000 LUTs to be large enough to 
place a 400 LUT compute page. Xilinx's XC2VP125 (the largest 
documented Virtex-II Pro part) has over 100,000 LUTs [20], 
suggesting devices of suitable size to do single, intra-page 
placement are not far off in the future. 

7.2 Application to Logic Emulation Systems 
In order to accelerate VHDL and Verilog RTL simulations of 
large ASIC designs, several companies (e.g. Quickturn, IKOS) 
market arrays of FPGAs used for rapid prototyping. These 
accelerators attempt to allow simulations, which would take 
hours, days, or years using conventional uniprocessors, to run in 
seconds, minutes, or hours. Unfortunately, with software 
placement tools, it takes hours to place each of the FPGAs in 
these systems. Since these systems typically employ hundreds to 
thousands of FPGAs, it would take days to weeks for a single 
workstation simple to place the devices in order to run the 
accelerated simulation! This long placement time reduces the 
benefit and utility of these accelerators. As a partial mitigation, 
emulation vendors typically ship dozens of workstation-class 
computers along with a single accelerator box in order to reduce 
the FPGA place and route time. In contrast, our approach shows 
how one could use the FPGAs in the emulation engine itself to 
perform more rapidly the intra-FPGA placement. That is, as 
long as the emulation engine has 400 or more FPGAs, we can 
use that collection of FPGAs to place each single FPGA 
quickly. 

8. FUTURE DIRECTIONS 
This approach to simulated-annealing is very new and requires 
substantial theoretical and experimental work before being 
practical for applications. Thus, we anticipate significant future 
work. 

8.1 Hardware Implementation and Testing 
The most obvious direction our work will take is to get the 
hardware implementation optimized and working on a real 
FPGA. It is further important to chain together our fast 
placement solution with a hardware-assisted routing solution 
such as [3]. Such a platform could demonstrate the feasibility of 
runtime placement and routing, making dynamically 



8.2.2 Cost Functions reconfigurable computing systems more practical than 
previously shown. While the linear wirelength cost function offers a simple way to 

demonstrate the concept of massively parallel annealing, we 
expect to get better results with a cost function that actively 
minimizes congestion or critical path delay. Recent work 
suggests spatial approaches to both problems may be practical 
[21, 22]. We hope to explore the practicality of implementing 
other cost functions, especially bounding-box, spatially. A 
bounding-box metric would make comparisons with VPR’s 
placer more direct.  

We would also like to demonstrate that our design can be 
mapped over multiple FPGAs to handle designs of arbitrary 
complexity. This would be economical for hardware emulation 
platforms, which already include large numbers of devices. 

8.2 Open Questions 
The most important open question is how much can be done to 
improve the quality of the placements generated by our 
algorithm.  It would also be interesting to examine how other applications 

of simulated annealing could map to a spatial structure. The 
scheduling problem stands out as one logical candidate. 8.2.1 Improved Performance 

We believe that there are several obvious directions we can 
explore to improve the performance of this algorithm. Most 
obviously is that we should develop an adaptive cooling 
schedule. Readers familiar with simulated annealing know that 
most of the change in an objective function’s value occurs 
during a relatively small band of temperatures. Further, it is also 
clear that some designs require substantially less cooling time 
than others do. It should be reasonable to move to a termination 
condition that halts the algorithm as soon as the placement cost 
is stable. This will speed up many placements. Further, more 
sophisticated position chain topologies may reduce the overhead 
for state updating. As pointed out in Subsection 5.4, for a wide 
variety of designs, we anticipate very good scalability in 
runtime as design size varies. We are hoping to experiment with 
the algorithm on designs larger than those available in the 
Toronto20 suite, the largest of which consumes only about 10% 
of a contemporary large device. 

9. SUMMARY 
We have shown substantial speedups to simulated annealing 
solutions to the placement problem using spatial computation 
hardware. Our chief contributions to the literature are: 

• A formulation of a local-swap variant of simulated 
annealing and a demonstration that it is suitable for 
FPGA placement where the cost metric is linear 
wirelength 

• The design of a direct spatial analog of the placement 
solution space, which performs this version of 
simulated annealing using only local communications 

• Experimental demonstration of substantial speedups 
over state-of-the-art software placers for the 
placement of moderate-sized designs 

Table 1-Comparison of Systolic placements to VPR Placements 
 

VPR –fast 
-bounding box 

Systolic Placer Channel Width (3 runs) 
(% of VPR result) 

Clock 
Cycles 

Netlist Size 
(LUTs) 

Channel Width Runtime Minimum Maximum Average  

Speedup 
Assuming 100 MHz 
and 150 cycles to 
consider four swaps 

alu4 1522 11 4.455 12 (109%) 13 (118%) 12.33 (112%) 9.27E+05 481 
apex2 1878 13 6.57 14 (108%) 15 (115%) 14.33 (110%) 1.07E+06 615 
apex4 1262 14 3.7 16 (114%) 16 (114%) 16.00 (114%) 7.35E+05 503 
bigkey 1707 8 6.86 11 (138%) 12 (150%) 11.14 (139%) 1.54E+06 444 
clma 8383 14 110.23 23 (164%) 28 (200%) 24.33 (174%) 4.16E+06 2649 
des 1591 9 6.37 13 (144%) 16 (178%) 15.00 (167%) 2.05E+06 310 
diffeq 1497 9 4.9 13 (144%) 15 (167%) 14.33 (159%) 8.94E+05 548 
dsip 1370 7 4.99 9 (129%) 10 (143%) 9.50 (136%) 1.55E+06 323 
elliptic 3604 13 22.04 21 (162%) 23 (177%) 21.67 (167%) 1.88E+06 1170 
ex1010 4598 12 34.65 14 (117%) 17 (142%) 16.00 (133%) 2.33E+06 1490 
ex5p 1064 15 3.41 16 (107%) 17 (113%) 16.67 (111%) 6.48E+05 526 
frisc 3556 15 21.94 21 (140%) 22 (147%) 21.33 (142%) 1.83E+06 1197 
misex3 1397 13 3.99 14 (108%) 14 (108%) 14.00 (108%) 8.63E+05 463 
pdc 4575 20 32.77 24 (120%) 26 (130%) 25.00 (125%) 2.33E+06 1408 
s298 1931 9 5.88 17 (189%) 19 (211%) 18.33 (204%) 1.07E+06 550 
s38417 6406 10 71.54 12 (120%) 14 (140%) 13.00 (130%) 3.21E+06 2227 
s38584.1 6447 11 78.07 13 (118%) 15 (136%) 13.75 (125%) 3.25E+06 2404 
seq 1750 13 6.11 15 (115%) 17 (131%) 15.67 (121%) 9.98E+05 612 
spla 3690 17 22.87 22 (129%) 24 (141%) 23.00 (135%) 1.89E+06 1213 
tseng 1047 8 3.19 11 (138%) 12 (150%) 11.33 (142%) 6.50E+05 490 
Total 
Channels 

 
241  311 (129%) 345 (143%) 

326.73 
(136%) 
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