
Hardware-Assisted Simulated Annealing with Application
for Fast FPGA Placement

Michael G. Wrighton, André M. DeHon
California Institute of Technology

Computer Science, 256-80
Pasadena, CA 91125

{wrighton, andre}@cs.caltech.edu

ABSTRACT
To truly exploit FPGAs for rapid turn-around development and
prototyping, placement times must be reduced to seconds; late-
bound, reconfigurable computing applications may demand
placement times as short as microseconds. In this paper, we
show how a systolic structure can accelerate placement by
assigning one processing element to each possible location for
an FPGA LUT from a design netlist. We demonstrate that our
technique approaches the same quality point as traditional
simulated annealing as measured by a simple linear wirelength
metric. Experimental results look ahead to compare quality
against VPR’s fast placer when considering the minimum
channel width required to route as the primary optimization
criteria. Preliminary results from an FPGA implementation
show the feasibility of accelerating simulated annealing by three
orders of magnitude using this approach. This means we can
place the largest design in the University of Toronto’s “FPGA
Placement and Routing Challenge” in around 4ms.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids - Placement and
routing.

C.1.3 [Processor Architectures]: Multiple datastream
architectures – Array and vector processors.

General Terms
Algorithms, Performance, Experimentation

Keywords
Field-programmable gate arrays, simulated annealing,
placement, design automation, reconfigurable computing

1. INTRODUCTION
The long runtimes demanded by placement and routing tools
plague users of Field-Programmable Gate Arrays (FPGAs). In
an era when synthesis can take minutes, placement runtimes can

be hours or days for the largest designs. This problem is not
mitigated by faster hardware as (1) FPGAs are getting larger
faster than uniprocessor CPUs are delivering more, useful MIPS
[1] and (2) traditional algorithms for placement generally scale
superlinearly in device size. Consequently, we expect this
problem only to increase with time. We further envision a day
when the requirements for reconfigurable computing
applications will include the capability to place and route a
design in milliseconds or even microseconds. Recent
developments show how to accomplish the latter [2, 3] of these,
but placement has remained troublesome.

Previous work on software placement technology has identified
ways to speed up placements as much as 50x by sacrificing
about 30% of the quality of reference tools [4, 5]. To give the
reader an intuition of the runtimes involved consider that an
8000 LUT design can be placed by VPR with its –fast option
in about 270 seconds on a Pentium IV 2.2 GHz workstation. So
an accelerated software placer such as [5] would place the same
design in roughly 5 seconds. Five seconds is still not fast
enough for many applications requiring dynamic
reconfiguration.

Since FPGAs and ASICs are becoming large enough to
implement hundreds if not thousands of independent processing
elements, it makes sense to investigate whether massive
parallelism can be used to reduce the time required to find a
quality placement. This would allow us to solve the problem
such that the technology for placement would scale with our
ability to fabricate larger and larger devices.

A traditional simulated annealing-based approach, aiming for
best possible quality, to the placement problem sequentially
performs swaps of random cell locations, accepting non-greedy
moves with exponentially decreasing probability based on the
current “temperature” of the anneal and the delta that would
occur in the overall cost function. Following some cooling
schedule, the temperature is reduced. At the outset of the
cooling schedule, virtually all moves are accepted. As the end of
the cooling schedule is reached, only moves that would improve
the overall cost function are accepted. For suitable cost
functions and sufficiently slow cooling, it can be shown that
simulated annealing produces optimum placements [6].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA’03, February 23-25, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-651-X/03/0002…$5.00.

Our novel approach is to build a parallel compute engine with a
systolic architecture optimized for the placement problem. We
assign each possible position for a LUT to a separate processing

mailto:wrighton@cs.caltech.edu
mailto:andre@cs.caltech.edu
http://www.caltech.edu/
http://www.cs.caltech.edu/
wrighton
Appearing in International Symposium on Field-Programmable Gate Arrays (FPGA'03), Feb. 23-25, 2003

element (“PE”). Then we consider all possible local swaps in
parallel and accept those that would reduce local contributions
to the cost function or that are randomly chosen based on the
current “temperature.” In Section 3, we sketch the structure for
spatial computation that allows the PEs to communicate only
locally, yet still drive towards a globally optimal solution. The
state and logic requirements for the PEs are detailed in
Section 4. In Subsection 4.5, we show how our approach
provides the same search strategy as simulated annealing.
Section 5 describes the benchmarks we performed to evaluate
our solutions against a traditional simulated annealing for linear
wirelength and against VPR. Further, we provide preliminary
results showing that hardware implementations are practical in
Section 6. Section 7 discusses how these results might be
applied to dynamically reconfigurable computing systems and
large-scale logic emulators. Finally, in Section 8, we document
the future work that will be required to fully understand and
optimize the power of our approach.

2. PRIOR WORK
As previously mentioned, within the traditional domain of
sequential software placers, 50x improvements in speed are
possible with only moderate quality losses. While further
improvements are likely possible in this area, it seems unlikely
that sequential software placers will increase in speed fast
enough to keep up with the ever-increasing number of LUTs
available on a chip.

We were inspired to consider massively parallel approaches to
the placement problem by the force-directed algorithm
described first for printed circuit board layout by Goto [7].
Force-directed algorithms for placement treat the placed netlist
as if the wires are springs pulling connected components
together. The algorithm models the behavior of those springs
subject to constraints (e.g., only one LUT allowed placement at
a given location on the chip). Force-directed algorithms can give
acceptable results, but often terminate trapped in local minimas
[8]. We believed that the local nature of the algorithm was well
suited to our needs and it formed the basis of our initial
experiments. In [9, 10] a scheme to assign one SIMD processor
to each cell of an ASIC design was described to accelerate
force-directed placement. This work demonstrated that it is
feasible to obtain orders of magnitude speedup by assigning
every circuit component its own processing element.
Unfortunately, this design depended on a large-scale
supercomputer, broadcasts to update cell positions, and swaps
between arbitrary positions. We show that this style of solution
is now feasible using FPGAs and demonstrate how to limit the
design to local operations in order to achieve scalability. We
further show how the massively parallel design can avoid local
minima.

An evaluation of parallel placement algorithms for FPGAs was
documented in [11]. The authors attempted two parallelization
strategies: First, they parallelized VPR’s simulated annealing by
allowing parallel swaps on an SGI Origin shared-memory
multiprocessor. This yielded no meaningful speedup due to the
overhead of synchronizing the processors. They were
successfully able to achieve near-linear speedups by allowing
each of the separate processors of an IBM-SP2 distributed
memory multiprocessor to work on the simulated annealing of
the entire device, periodically distributing the best placement to
the others, an approach they called “Markov Chains.” By

accelerating the cooling schedule, any desired speedup is
obtainable. With six processors used for a factor six speedup,
however, the cost function reached 160% of the uniprocessor
VPR result. We improve on this work by using FPGA-based
PE’s to perform parallel swaps between nearest-neighbor PEs.
This allows us to employ efficiently many more processors by
exploiting massive and cheap local bandwidth, avoiding
synchronization overhead.

3. SOLUTION SKETCH
The basic idea behind our approach to hardware-assisted
placement is that we assign each physical space where a LUT
could reside its own PE. That PE is responsible for keeping
track of which LUT it contains and which LUTs connect to its
inputs and outputs. The PE knows its own position and keeps an
estimate (assume a perfect estimate for now) of the positions of
the connected LUTs. Simultaneously, the PE’s negotiate with
their neighbors to see which swaps would locally improve the
total placement cost. Each PE assumes that its contribution to
the current placement cost is the sum of the Manhattan
wirelengths required to route to the estimated positions of LUTs
connected to its inputs and outputs.

If we assume that position estimates are correct, then this is only
slightly different from the traditional, sequential simulated
annealing approach to the problem: The cells make local cost
reducing swaps to greedily search for a local minima. By adding
a suitable element of randomness (which is introduced in
Subsection 4.3.3) to the swaps, we avoid local minima by using
a simulated annealing-style cooling schedule.

As we are developing a scalable solution, we cannot make the
perfect information assumption for hardware implementations.
That is, we would prefer not to fully update the state of the
placement engine every time a group of swaps is considered;
simple update schemes after each set of potential swaps could
require O(N) time. To deal with this, we insert a “position
update chain,” which snakes through the array of PE’s. Every
update interval this chain is shifted to update position estimates
across the chip. The position chain carries identifiers for the
LUTs (id’s) as well as their positions in the current placement.
Each time we cycle through the position chain communicating
current LUT locations, the algorithm considers all possible local
swaps a number of times (proportional to the size of the design).
Note that this results in a design that can be implemented as a
systolic array; all the processing elements are connected only to
their nearest neighbors.

This raises several questions:

• What is the effect of information staleness on the
algorithm? How many swaps can be taken between
updates before the staleness causes problems?

• By what mechanism do the PE’s determine with
which neighbor to negotiate a swap at any given time?

• How long will the algorithm take to converge?

• How does the potential for unbounded fanout affect
the practicality of creating a systolic data structure?

• By what mechanism is a netlist loaded into and then
removed from the PE array?

The following sections answer these questions and detail the
architecture.

4. THE DETAILS
To explain the details of our solution, we first describe the top-
level structure of a hardware implementation. We then follow
with an explanation of an individual PE. We continue with the
pseudocode for the algorithm, which follows naturally from the
circuit structure. This leads to a mathematical justification of
how the algorithm performs a search through the solution space
that is analogous to simulated annealing.

4.1 Top-Level Structure
To begin, let us start with a top-level view of an array of cells.
As seen in Figure 1, the cells, which directly represent the 2-D
placement, are connected to each of their four nearest neighbors.
A position chain snakes throughout the design, enabling
propagation of state information. We also use the position chain
for bootstrapping an initial random placement into the design
and shifting out a final placement. Every H×W shift cycles, the
cells shift out their own current information, which is their
location and the id number of the LUT they contain. On other
shift cycles, the cells simply shift out the data received on the
previous cycle, updating position estimates for any matching
cells in their locally maintained connectivity lists. Note that all
cells communicate only with their nearest neighbors.

H

W
Figure 1. Interconnect between PEs and position chain. Arced

arrows represent path of the position chain, straight arrows show
nearest-neighbor interconnect for swapping.

4.2 Individual Processing Elements
For a view of an individual processing element, see Figure 2.
Note that it includes locally all the components needed to
manipulate its part of the placement. A content addressable
memory (“CAM”) stores the list of LUTs connected to inputs
and outputs of the LUT currently at the cell’s position. It
provides indexing into a memory that stores estimated locations

of those LUTs. The control logic includes accumulators and
comparators to compute the delta cost that would be associated
with swapping a cell. A randomness generator provides for the
stochastic behavior that gives us simulated annealing’s search
strategy. Finally, a state machine manages the cell’s
communication with its neighbors.

It is important to consider the complication introduced by
potentially unbounded fanout in the design netlist we wish to
place. Since it is not feasible to allow enough memory for very
large fanout at every cell, we need to limit the amount of fanout
considered by the algorithm. Experimentally, we verified that
the effect of truncating the list of connected cells to 12 did not
significantly degrade result quality. We arrived at the number 12
by reserving four slots for LUT inputs (since most architectures
are based on 4-input LUTs), realizing that the average fanout
would consequently be about four and then allowing a factor 2x
to assure only cells with unusually high fanout would be
truncated. A more thorough solution might be to configure the
synthesis tools to generate LUT mappings with bounded fanout
to fit into the allotted memory on the PE’s.

CAM
Position

Estimates
Memory

Address

Cell Id

XY Location
Data

Control Logic:
Randomness Generator
Accumulator
Comparator
State Machine

D
at

a

Ad
dr

es
s

CAM Data Exchange

North Neighbor

South Neighbor

East
Neighbor

West
Neighbor

Shift OutShift In

Figure 2. Internal structure of a processing element.

4.3 Algorithm Pseudocode
The pseudocode for the optimization algorithm naturally
follows:

4.3.1 High-Level Pseudocode
rand
for interval in 0 t

omly place the design into the PE array
o TMAX

 for each node PE do in parallel
 loop NUMBEROFCELLS times do
 PE.LOADPOSITIONCHAIN();
 UPDATE PE.connectedCell.positions;
 PE.SHIFTOUTCURRENTPOSITIO ; N()
 loop SWAPSPERINTER times do VAL

 for four phases do

return the placement stored in the PE array

 PE.SWAPIFAPPROPRIATE();

The four phases ensure that a node will negotiate swaps with its
four nearest neighbors on alternating cycles. The next
subsection explains the details of this.

4.3.2 Swap Phases
We guarantee both that all four possible swap directions will be
considered and that every swap will be agreed to by exactly the
two cells involved using a phase scheme. This is done by
pairing suitably complementary directions between odd and
even cell locations in both dimensions. Boundary cases are
easily handled with special cells that never swap off the side of
the array. shows the swap phase concept graphically. Figure 3

Figure 3. Phase scheme assures that PE's consider swaps in
pairs of two. The numbers represent which direction the PE will
negotiate at a given phase. Boundary conditions are handled by

not actually doing any swap at all.

1

2

4

3

1

2

3

4

1

2

3

4

1

2

4

3

1

2

4

3

1

2

3

4

1

2

3

4

1

2

4

3

1

2
4

3

1

2

3

4

1

2

3

4

1

2

4

3

1

2

4

3

1

2

3

4

1

2

3

4

1

2

4

3

4.3.3 The swapIfAppropriate Function
The swapIfAppropriate function determines what criteria the
algorithm optimizes. A purely greedy swapIfAppropriate
function would be:

if hypotheticalCost < currentCost then
 return TRUE;

 else
 return FALSE;
After some experimentation, we found that purely greedy
functions land the algorithm very quickly in a local minimum.
We settled on a stochastic swapIfAppropriate function,
which provides the search behavior of simulated annealing.

Our swapIfAppropriate function is:

if P undefined then
 P ← 1;
P ← P – 1/(4×TOT ERVALSTORUN) ALINT
if) < P then

 SWAP(s1, s2);
RANDOM(
return TRUE;

else if hypotheticalCost <
 currentCost then

 return TRUE;
else
 return FALSE;

The local contribution to the cost metric is the sum of the
estimated linear Manhattan wirelength to each of the fanin and

fanout nodes referenced in the CAM. Readers will notice that
this swapIfAppropriate differs from a traditional simulated
annealing in that the magnitude of the change that would occur
from a swap is not considered. Furthermore, linearly varying P
is not what a traditional simulated annealing algorithm would
do; it is merely a simple approach to use in a preliminary
hardware implementation. Later in this section, we argue based
on random walks that approaches both using and not using delta
cost magnitude provide qualitatively similar explorations of the
design space.

4.4 IO Placement
A final issue is how to handle IO placement. Our initial
approach, and the one on which we base our results, is to
perform a systolic placement on the LUTs themselves and then
use a simple greedy algorithm to place the IO pads. Our
architecture has some number of IO pads (“slots”) along each
side of the chip at the ends of every row and column of LUTs.
We place each IO that will fit into a slot closest to the LUT to
which it is connected. For example, a LUT located at (3,6) on a
10 × 10 array would have its output placed on the left side of the
chip six places from the bottom, if a space were available at
that group of pins. Then we iteratively increase the amount of
error from this “ideal” position until all IOs have been placed. If
our LUT at (3,6) could not have its output placed on the left at
position six, the next iteration through the loop would attempt to
place it on the left side at either position five or seven.

We make no claim this algorithm is ideal, merely that it is
simple to implement and yields reasonable results. Since our
designs are relatively small, the computational overhead of
performing the IO placement with a sequential processor is
reasonable.

Another approach is to place the IO pads along with the LUTs.
Then, as the cooling schedule progresses, give the pads a
synthetic force towards the side of the chip to which they are
closest. Finally, use a greedy algorithm to assign them to IO
slots.

4.5 Mathematical Analysis
A traditional, design automation formulation of simulated
annealing works as follows [8]:

T ← TEMPINIT
while (T>TFINAL) do
 while (useful to cool at T)
 do
 s1 ← random location;
 s2 ← random location;
 cost ← DELTA(s1,s2);
 if (cost<0) then
 (s1, s2); SWAP
 else
 if (EXP(-cost/T) > RANDOM()) then
 T=NEXT(T); // make smaller

The key features of this algorithm:

• allows non-greedy moves to avoid becoming trapped
in local minima

• the acceptance probability for non-minimizing moves
decreases exponentially with increasing cost

• starts out allowing almost any move (T→∞ → accept
all swaps)

• as T decreases, less likely to accept moves (T→0 →
accept no non-minimizing swaps)

• if we stay at a temperature long enough, all elements
should, with high probability, be within a temperature
defined cost radius around the optimum location

• as the algorithm progresses T decreases, shrinking the
cost radius from the optimal location

The non-decreasing cost moves allow the algorithm to move the
design through a series of non-minimizing configurations in its
search for global minima.

In this case, our cost function for a swap will be:

∑

∑

∑

∑

∈

∈

∈

∈

−−

−−

−+

−=

 s2for ios alli

 s1for ios alli

 s2for ios alli

 s1for ios alli

sLiiosL

sLiiosL

sLiiosL

sLiiosLcost

)2())(.2(

)1())(.1(

)1())(.2(

)2())(.1(

Where L(s1) is the current location of element s1 and s1.io(i) is
the ith element connected to s1. We can see this is separable
into two parts – the delta cost for moving s1 to s2 and the delta
cost for moving s2 to s1. (N.B. This introduces an inaccuracy if
s1 or s2 drives a pin on the other. The worst consequence
possible is a small, local oscillation in the system).

))1(tomove 2(
))2(tomove 1(

sLscost
sLscostcost

+
=

∑

∑

∈

∈

−−

−=

 sifor ios allk

 sifor ios allk

siLkiosiL

lockiosiLlocsicost

)())(.(

))(.() tomove (

It is, therefore, useful to simplify this and consider what
happens for the case of moving s1 to L(s2) (which exactly
corresponds to the case where location s2 is empty so its delta
cost is 0). plots e-(cost/T), the probability that a node is
moved to a distance cost from its cost minimizing position.

Figure 4

Figure 4

Figure 4. Probability that a node moves to a distance cost from
its current position for a traditional simulated annealler.

In our implementation, we want to exploit fast, high-bandwidth
local communication. Consequently, we force all swaps to be
nearest neighbor swaps. We manage to achieve the same
aggregate behavior as sequential simulated annealing using our
probabilistic swapping scheme.

To see this, it is useful, again, to focus on the probability locus
of a single cell. Assuming for the moment that the cell starts in a
cost minimizing position, let us look at where the cell is likely
to be after a number of these swaps. Each swap can move away
from the minimizing position with probability Ps. After N

swaps, the likelihood that our cell is distance d away from the
cost minimizing position is:

m d + 2

That is, in order to be distance d away, we need to make d more
non-minimizing moves than cost minimizing moves. There are
N=2m+d choose m+d different ways we can make m+d non-
minimizing moves. (To be concrete consider N=3 and d=2;
There are 3 choose 2 = 3 ways to make 2 non-minimizing steps
and 1 minimizing step. The probability of making these steps is
Ps×Ps×(1-Ps) for an aggregate probability of 3×Ps

2×(1-Ps).) Note
here that m is a free variable. As m increases, we have a higher
probability of actually finding the cost minimizing position, so
that the assumption that we start in a cost minimizing position
becomes more likely to be satisfied. In addition, as m increases,
we get law of large numbers effects reducing the variance and
making the series of discrete swaps converge to this continuous
distribution. As shown in , the probability locus that this
generates has the same characteristics as the traditional
simulated annealing exponential cost function (See). Ps
plays an analogous role to temperature (T). As Ps→1, all swaps
are accepted (compare T→∞); as Ps→0, only cost-minimizing
moves are accepted (compare T→0).

Figure 5

0

0.2

0.4

0.6

0.8

1

1.2

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Cost

Pr
ob

ab
ili

ty
 a

cc
ep

t t
hi

s
co

st
 m

ov
e

P(T=1000)

P(T=100)

P(T=10)

P(T=1)

−

In both cases, there may not be a single cost minimizing
location, so the location radius surrounds a cost-minimizing
equipotential region rather than a single point.

If the cost function is the same as the distance function, then
these two formulations give identical probability loci for
suitably corresponding values of Ps and T. Strictly speaking the
cost function is not the same shape as the distance function, so
the exact, detailed shape of the probability locus will differ.
What is important, however, is that both formulations allow the
component to explore the radius around the cost-minimizing
position with an exponentially decreasing probability as we get
away from the minimum and with a drop-off rate that can be
incrementally tightened over the course of the algorithm. Our
local swap formulation is closer to real, physical annealing than
the traditional, design automation formulation since real, micro-
scale particles will make local moves in order to explore the
state space.

m
sP

d + m
s P

m+d
d)P ()1(−

=

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99

Distance

Pr
ob

ab
ili

ty
 a

t t
hi

s
di

st
an

ce
 fr

om
 m

in
im

um

P(0.5)
P(0.47)
P(0.45)
P(0.43)

0.045

Figure 5. Probability that a node will be a given distance from
the greedy, local cost-minimizing position for the local swap

annealler.

5
We employ a two-fold ap the systolic

provide result

emented both a
th annealer (with a cooling schedule

e end metric (e.g. channel

laced and routed more quickly, at the cost of

Ou
beh were 9x

ber of cooling steps. In order to
on and take

. BENCHMARKING RESULTS
proach to benchmarking

placer. First, we demonstrate that it is tunable to
quality that is close to traditional simulated annealing when
optimizing total linear wirelength. Having chosen appropriate
constants for the algorithm, look at the channel width which this
achieves and argue that the systolic placer offers a new point on
placement technology’s time-quality envelope.

5.1 Methodology
For the purpose of experimentation, we impl
traditional, linear wireleng
similar to the one used by VPR) and a simulation of the systolic
algorithm in Java, working within the framework offered by a
simple mesh-connected FPGA structure. We compared
placement quality results as measured by total estimated linear
wirelength between the two for the well-known Toronto20
benchmark suite used for the “FPGA Place and Route
Challenge” [12, 13]. We experimentally explored the variables
of SWAPSPERINTERVAL and number of intervals we should allow
the algorithm to run before declaring that the algorithm is
effective for a range of design sizes.

Measuring placement quality solely in terms of this rough
metric is not a perfect predictor of th
width required to route, critical path delay). Therefore to gain
insight into the final quality our designs, we ran the placements
generated with the systolic placer through Versatile Place and
Route (VPR) [14] with the –route_only and –fast option and
compared the results to the case where VPR handles both the
placement and routing with the –fast option. According to the
VPR manual [15]:

-fast: Sets the various placer and router parameters so that a
circuit will be p
some (~10 – 15 %) degradation in quality.

r own comparison of –fast option with the default VPR
avior for the Toronto20 suite found that runtimes

faster and the channel utilization was 27% worse on average,
while critical path delays were 4% better when performing both
the place and route steps. Our use of the –fast option explains
why our reported VPR results are worse than those which are
published on the FPGA Place and Route Challenge’s webpage.

Since our results trade quality for decreased runtime, we believe
that it is appropriate to compare them to the fastest generally
available software algorithm.

5.2 Intervals Required Exploration
In order to tune the algorithm for the benchmark set, we begin
by finding an appropriate num
do this, we make the perfect information assumpti
four swaps (stepping through all the phases). Figure 6 shows
that after going through 400 cooling steps, the improvement
provided is incremental and reaches quality nearly as good as
that of the traditional annealing algorithm for several designs in
the benchmark suite.

2

0.8

1

1.2

1.4

1.6

1.8

100 200 400 800 1600 3200

intervals

N
or

m
al

iz
ed

 L
in

ea
r W

ire
le

ng
th

 M
e ex1010

alu4
misex3
tseng

tr
ic

Figure 6. Exploration of intervals to run for several netlists.
Result quality is normalized to the quality from a traditional

annealing algorithm.

5
A s
for the designs in the Toronto20 suite, we move on to adjust the

provement is

.3 swapsPerInterval Exploration
fter determining that 400 intervals will give reasonable result

SWAPSPERINTERVAL to see if further quality im
possible at the chosen number of intervals. To increase the
number of swaps performed, it is preferable to increase the
SWAPSPERINTERVAL rather the number of intervals, because each
additional interval involves O(N) clock cycles to update the
state, where N is the size of the placement. We hypothesize that
performing O(N) swaps at every interval is logical since there
is a maximum distance of 2 N cells between a LUT’s position
at the outset of the interval and its “ideal” position in the
placement at that time.

Figure 7 shows, for each m ber of the Toronto20 suite, the
relative result quality against the sequential simulated annealing
program at several SW

em

APSPERINTERVAL as a ratio of total

value of .08

estimated linear wirelengths.

The chart indicates staleness doesn’t become a meaningful
problem at the SWAPSPERINTERVAL we considered. It appears
that a SWAPSPERINTERVAL N should be
reasonable for all of the netlists.

0.8

1

1.2

1.4

1.6

1.8

2

1 .02√N .04√N .06√N .08√N .10√N .12√N .14√N .16√N .18√N .20√N

swapsPerInterval

N
or

m
al

iz
ed

 L
in

ea
r W

ire
le

ng
th

 M
et

ric

alu4.net
apex2.net
apex4.net
bigkey.net
clma.net
des.net
diffeq.net
dsip.net
elliptic.net
ex1010.net
ex5p.net
frisc.net
misex3.net
pdc.net
s298.net
s38417.net
s38584.1.net
seq.net
spla.net
tseng.net

Figure 7. Analysis of swapsPerInterval vs. quality relative to

sequential simulated annealing.

5.4 Spatial Annealing Quality and Scaling
Figure 8

Figure 8. Exploration of effect of design size on relative
placement quality.

 summarizes the quality achieved by our systolic placer
using a SWAPSPERINTERVAL of .08 N and running for 400
intervals. This shows that we are able to optimize wirelengths
within 25% of the software annealer for many of the designs. It
further suggests that the algorithm does not deteriorate too badly
for large designs

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Area

Q
ua

lit
y

R
el

at
iv

e
to

 S
im

ul
at

ed
 A

nn
ea

lin
g

5.5 Comparison Against VPR Results
In order to look ahead and understand our placements’ quality
against a fully optimized software placer, we ran the placements
generated by our tool (using 400 intervals and a
SWAPSPERINTERVAL of .08 N) through VPR’s router with its
−route_only, −fast, and −route_algorithm
breadth_first options. We report the channel requirements
for three passes through the flow. The architecture is an array
of simple 4-LUTs each paired with one output flip-flop. Note
that VPR is optimizing directly for channel width, whereas our
current systolic placer is only optimizing the linear wirelength
metric; as such, we believe, much of the quality loss is due to
the simpler cost function rather than from the systolic placement
algorithm.

We also ran the benchmarks through the full VPR flow with the
−fast and −place_algorithm bounding_box option,
having instrumented the tool to give us the amount of time spent
in its placement routine. We compiled VPR with GCC version
3.04 and an optimization setting of −O3. Our workstation was an

unloaded machine with 2 GB of RAM and a 2.2 GHz Intel Xeon
processor with 512 KB of cache. Assuming an FPGA clock rate
of 100 MHz and 150 clock cycles to be equivalent to one of the
algorithm’s steppings through the four phases (we show this to
be reasonable in Section 6), we compute an approximate
runtime for the spatial implementation. Note that the hardware
approach would therefore require approximately 4.2 ms to place
the largest design, clma. We compare this time against the
amount of processor time required by VPR. This gives an
estimation of the speedup offered by our approach that is very
conservative for several reasons:

• We are using 400 intervals when some of the designs
could be placed over a shorter cooling cycle as shown
in Figure 6.

• We expect our FPGA implementation can be
optimized substantially both to increase the clock rate
and to reduce the number of clock cycles required on
every interval.

Table 1 shows the results of our comparison. Clearly, the
systolic placer’s results are inferior to VPR’s, but for some of
the designs, the results would likely be acceptable and perhaps
preferable given the amount of speedup involved. Note that our
systolic scheme optimizing a simple wirelength model yields
placements that are about 35% worse than VPR’s when
measured in terms of minimum channel width required to route.
If we take the best of three runs, an average penalty of 29% is
attainable. Both placements achieve roughly the same critical
path delay; however, neither algorithm is directly attempting to
minimize delay. We believe this is substantially faster than a
software placer that achieves the same quality level and that we
will be able to improve the quality of this approach to compete
more seriously against VPR by improving the cost function.

5.6 Speedup Justification
It is worth pointing out that the speedup a hardware-assisted,
systolic approach like ours will give can be much greater than
that of simply employing a system with a very large number of
traditional processors tied to a single memory. This is for
several fundamental reasons:

• Local memories and nearest neighbor interconnect
allow for extremely high system bandwidth. Instead of
requiring massive amounts of expensive shared
memory bandwidth, we rely on cheap systolic
bandwidth between nearest neighbors.

• There is no added overhead caused by cache thrashing
on processors manipulating large data structures or
synchronization overhead associated with maintaining
cache coherency between processors.

• Specialized datapaths build directly the computation
required for this algorithm, providing the right level
and structure for parallelism within the local swap
calculation and avoiding the overhead associated with
structures that are more general.

6. HARDWARE IMPLEMENTATION
In order to understand the feasibility of employing our concept
for a systolic placer in practical systems, we are developing an
FPGA implementation.

6.1 Preliminary Design Completed
We have created an implementation of the basic systolic placer
cell in VHDL and targeted the Xilinx Virtex2 FPGA.
Synthesizing the design with Synplify Pro 7.2 and placing and
routing the netlist with the Xilinx ISE 5.1i toolset have led us to
believe that a design, which requires about 400 LUTs for each
processing element and runs at over 100 MHz, is attainable. We
were able to use special Virtex “SRL16E” primitives to create
reasonably-sized distributed memories and CAM’s within the
cell [16]. We hold a “shadow” copy of the CAM contents in a
RAM to reduce the amount of data that needs to pass between
cells. This gives a 3x reduction in swap time at the expense of a
modest amount of device resources. As a source of pseudo-
random numbers, we employ linear feedback shift registers
initialized on power up to random values (i.e. not the same from
PE to PE) [17]. A smaller, faster design is likely achievable with
further refinement.

We arrived at 150 cycles required for each iteration through the
swap phases by the following calculation:

Clock Cycles Cell Operations

4× For each direction consider swaps
 5 Compute total current and hypothetical costs

with neighbor
 1 Decide whether or not to swap with neighbor
 12 Swap or don’t swap the RAM, computing

current and hypothetical costs for the next
direction

 18 Swap or don’t swap the CAM
134 Cycles total

This only adds up to 134 cycles per iteration; but we round up to
150 because we expect further pipelining to increase this
number slightly. We do not include the amount of time to read
in the initial placement or output the final placement.

7. APPLICATIONS
We are also examining several practical applications for the
technology. Reconfigurable computing is a paradigm that is on
the horizon and will need fast placement to enable key
capabilities. Logic emulations systems are constrained by long
placement runtimes today.

7.1 Application of Hardware Solution to
Reconfigurable Computing
In SCORE [18, 19], designs are segmented into pages at netlist
generation time (which is often compile time). These page
graphs, which may be of arbitrary size, are then scheduled onto
a particular device at runtime. This yields a two-level hierarchy,
which makes dynamic, run-time configuration more
manageable. The fixed-size compute pages become the atomic
unit of placement and reconfiguration at runtime. As long as a
physical SCORE compute page is larger than one of our
placement engine processing elements (~400 LUTs as described
in the previous section), a SCORE device is capable of
performing inter-page placement on itself. That is, we can
directly configure the physical SCORE device to be a placement
engine that is exactly large enough to place the set of pages that
can run on the physical device in a single SCORE timeslice.
This works for any number of SCORE pages; the critical
parameter is simply that each SCORE page be powerful enough

to implement the placement engine’s processing element. This
adds no additional hardware to the SCORE device; it will
simply require a discipline where the runtime system reserves
configuration memory space to store the configuration of the
placement processing element. Each time a new set of virtual
pages requires placement, the runtime system will direct the
device to switch to the placement configuration and perform the
placement.

Further, in applications where we do want to generate new page
configurations at runtime, we can use the whole SCORE device
to perform one or more intra-page placements as well. This
works directly when the SCORE device has equal or greater
physical compute pages than it has LUTs within a physical
compute page. In this case, we configure a suitable subset of the
SCORE device with the placement processing elements and use
that to compute the intra-page placement for the LUTs within
the compute page. Very large SCORE devices that have more
physical compute pages than there are LUTs within a compute
page may be able to place multiple compute pages
simultaneously or place a compute page while operations
continue on other portions of the array. Note that it only takes
devices with 400×400=160,000 LUTs to be large enough to
place a 400 LUT compute page. Xilinx's XC2VP125 (the largest
documented Virtex-II Pro part) has over 100,000 LUTs [20],
suggesting devices of suitable size to do single, intra-page
placement are not far off in the future.

7.2 Application to Logic Emulation Systems
In order to accelerate VHDL and Verilog RTL simulations of
large ASIC designs, several companies (e.g. Quickturn, IKOS)
market arrays of FPGAs used for rapid prototyping. These
accelerators attempt to allow simulations, which would take
hours, days, or years using conventional uniprocessors, to run in
seconds, minutes, or hours. Unfortunately, with software
placement tools, it takes hours to place each of the FPGAs in
these systems. Since these systems typically employ hundreds to
thousands of FPGAs, it would take days to weeks for a single
workstation simple to place the devices in order to run the
accelerated simulation! This long placement time reduces the
benefit and utility of these accelerators. As a partial mitigation,
emulation vendors typically ship dozens of workstation-class
computers along with a single accelerator box in order to reduce
the FPGA place and route time. In contrast, our approach shows
how one could use the FPGAs in the emulation engine itself to
perform more rapidly the intra-FPGA placement. That is, as
long as the emulation engine has 400 or more FPGAs, we can
use that collection of FPGAs to place each single FPGA
quickly.

8. FUTURE DIRECTIONS
This approach to simulated-annealing is very new and requires
substantial theoretical and experimental work before being
practical for applications. Thus, we anticipate significant future
work.

8.1 Hardware Implementation and Testing
The most obvious direction our work will take is to get the
hardware implementation optimized and working on a real
FPGA. It is further important to chain together our fast
placement solution with a hardware-assisted routing solution
such as [3]. Such a platform could demonstrate the feasibility of
runtime placement and routing, making dynamically

8.2.2 Cost Functions reconfigurable computing systems more practical than
previously shown. While the linear wirelength cost function offers a simple way to

demonstrate the concept of massively parallel annealing, we
expect to get better results with a cost function that actively
minimizes congestion or critical path delay. Recent work
suggests spatial approaches to both problems may be practical
[21, 22]. We hope to explore the practicality of implementing
other cost functions, especially bounding-box, spatially. A
bounding-box metric would make comparisons with VPR’s
placer more direct.

We would also like to demonstrate that our design can be
mapped over multiple FPGAs to handle designs of arbitrary
complexity. This would be economical for hardware emulation
platforms, which already include large numbers of devices.

8.2 Open Questions
The most important open question is how much can be done to
improve the quality of the placements generated by our
algorithm. It would also be interesting to examine how other applications

of simulated annealing could map to a spatial structure. The
scheduling problem stands out as one logical candidate. 8.2.1 Improved Performance

We believe that there are several obvious directions we can
explore to improve the performance of this algorithm. Most
obviously is that we should develop an adaptive cooling
schedule. Readers familiar with simulated annealing know that
most of the change in an objective function’s value occurs
during a relatively small band of temperatures. Further, it is also
clear that some designs require substantially less cooling time
than others do. It should be reasonable to move to a termination
condition that halts the algorithm as soon as the placement cost
is stable. This will speed up many placements. Further, more
sophisticated position chain topologies may reduce the overhead
for state updating. As pointed out in Subsection 5.4, for a wide
variety of designs, we anticipate very good scalability in
runtime as design size varies. We are hoping to experiment with
the algorithm on designs larger than those available in the
Toronto20 suite, the largest of which consumes only about 10%
of a contemporary large device.

9. SUMMARY
We have shown substantial speedups to simulated annealing
solutions to the placement problem using spatial computation
hardware. Our chief contributions to the literature are:

• A formulation of a local-swap variant of simulated
annealing and a demonstration that it is suitable for
FPGA placement where the cost metric is linear
wirelength

• The design of a direct spatial analog of the placement
solution space, which performs this version of
simulated annealing using only local communications

• Experimental demonstration of substantial speedups
over state-of-the-art software placers for the
placement of moderate-sized designs

Table 1-Comparison of Systolic placements to VPR Placements

VPR –fast
-bounding box

Systolic Placer Channel Width (3 runs)
(% of VPR result)

Clock
Cycles

Netlist Size
(LUTs)

Channel Width Runtime Minimum Maximum Average

Speedup
Assuming 100 MHz
and 150 cycles to
consider four swaps

alu4 1522 11 4.455 12 (109%) 13 (118%) 12.33 (112%) 9.27E+05 481
apex2 1878 13 6.57 14 (108%) 15 (115%) 14.33 (110%) 1.07E+06 615
apex4 1262 14 3.7 16 (114%) 16 (114%) 16.00 (114%) 7.35E+05 503
bigkey 1707 8 6.86 11 (138%) 12 (150%) 11.14 (139%) 1.54E+06 444
clma 8383 14 110.23 23 (164%) 28 (200%) 24.33 (174%) 4.16E+06 2649
des 1591 9 6.37 13 (144%) 16 (178%) 15.00 (167%) 2.05E+06 310
diffeq 1497 9 4.9 13 (144%) 15 (167%) 14.33 (159%) 8.94E+05 548
dsip 1370 7 4.99 9 (129%) 10 (143%) 9.50 (136%) 1.55E+06 323
elliptic 3604 13 22.04 21 (162%) 23 (177%) 21.67 (167%) 1.88E+06 1170
ex1010 4598 12 34.65 14 (117%) 17 (142%) 16.00 (133%) 2.33E+06 1490
ex5p 1064 15 3.41 16 (107%) 17 (113%) 16.67 (111%) 6.48E+05 526
frisc 3556 15 21.94 21 (140%) 22 (147%) 21.33 (142%) 1.83E+06 1197
misex3 1397 13 3.99 14 (108%) 14 (108%) 14.00 (108%) 8.63E+05 463
pdc 4575 20 32.77 24 (120%) 26 (130%) 25.00 (125%) 2.33E+06 1408
s298 1931 9 5.88 17 (189%) 19 (211%) 18.33 (204%) 1.07E+06 550
s38417 6406 10 71.54 12 (120%) 14 (140%) 13.00 (130%) 3.21E+06 2227
s38584.1 6447 11 78.07 13 (118%) 15 (136%) 13.75 (125%) 3.25E+06 2404
seq 1750 13 6.11 15 (115%) 17 (131%) 15.67 (121%) 9.98E+05 612
spla 3690 17 22.87 22 (129%) 24 (141%) 23.00 (135%) 1.89E+06 1213
tseng 1047 8 3.19 11 (138%) 12 (150%) 11.33 (142%) 6.50E+05 490
Total
Channels

241 311 (129%) 345 (143%)

326.73
(136%)

ACKNOWLEDGMENT
This research was funded in part by the DARPA Moletronics
program under grant ONR N00014-01-0651 and by the NSF
CAREER program under grant CCR-0133102.

REFERENCES
[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D.

Burger, "Clock Rate versus IPC: The End of the Road for
Conventional Microarchitectures," Proceedings of the 27th
Annual International Symposium on Computer
Architecture, pp. 248--259, 2000.
<http://www.cs.utexas.edu/users/cart/publications/isca00.p
df>.

[2] A. DeHon, R. Huang, and J. Wawrzynek, "Hardware-
Assisted Fast Routing," presented at IEEE Symposium on
Field-Programmable Custom Computing Machines
(FCCM), Napa, CA, 2002.
<http://www.cs.caltech.edu/research/ic/abstracts/fastroute_
fccm2002.html>.

[3] A. DeHon, R. Huang, and J. Wawrzynek, "Stochastic
Spatial Routing for Hypergraphs, Trees, and Meshes,"
presented at Eleventh ACM International Symposium on
Field-Programmable Gate Arrays, Monterey, CA, 2003.
<http://www.cs.caltech.edu/research/ic/abstracts/fastroute_
fpga2003.html>.

[4] C. Mulpuri and S. Hauck, "Runtime and quality tradeoffs
in FPGA placement and routing," Proceedings of the Ninth
International Symposium on Field programmable Gate
Arrays, pp. 29--36, 2001.
<http://www.ee.washington.edu/faculty/hauck/publications
/RuntimeTradeoffs.pdf>.

[5] Y. Sankar and J. Rose, "Trading quality for compile time:
ultra-fast placement for FPGAs," Proceedings of the 1999
ACM/SIGDA seventh international symposium on Field
programmable gate arrays, pp. 157--166, 1999.
<http://www.eecg.toronto.edu/~jayar/pubs/sankar/fpga99sa
nkar.pdf>.

[6] D. Mitra, F. Romeo, and A. Sangiovanni-Vincentelli,
"Convergence and Finite-Time Behavior of Simulated
Annealing," Advances in Applied Probability, vol. 18, pp.
747-771, 1986.

[7] S. Goto, "An Efficient Algorithm for the Two-Dimensional
Placement Problem in Electrical Circuit Design," IEEE
Transactions on Circuits and Systems, vol. CAS-28, pp.
12-18, 1981.

[8] K. Shahookar and P. Mazumder, "VLSI cell placement
techniques," ACM Computing Surveys (CSUR), vol. 23, pp.
143-220, 1991.

[9] P. Banerjee, Parallel Algorithms for VLSI Computer-Aided
Design, Chapter 3. Englewood Cliffs, NJ: PTR Prentice
Hall, 1994.

[10] E. I. Horvath, R. Shankar, and A. S. Pandya, "A Parallel
Force Directed Standard Cell Placement Algorithm."
Technical Report. Dept. Computer Science, Florida
Atlantic University, Boca Raton, FL., 1992.

[11] M. Haldar, A. Nayak, A. Choudhary, and P. Banerjee,
"Parallel algorithms for FPGA placement," Proceedings of
the tenth Great Lakes Symposium on VLSI, pp. 86--94,
2000.
<http://www.ece.nwu.edu/cpdc/Match/Pubs/glvlsi2000.mal
ay.ps>.

[12] V. Betz, "The 'FPGA Place-and-Route Challenge'."
Toronto, 2001.
<http://www.eecg.toronto.edu/~vaughn/challenge/challeng
e.html>.

[13] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD
for deep-submicron FPGAs. Boston: Kluwer Academic
Publishers, 1999.

[14] V. Betz and J. Rose, "VPR: A New Packing, Placement
and Routing Tool for FPGA Research," presented at
International Workshop on Field Programmable Logic and
Applications, London, 1997.
<http://www.eecg.toronto.edu/~vaughn/papers/fpl97.pdf>.

[15] V. Betz, VPR and T-VPack User's Manual (Version 4.30),
2000.
<http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html>.

[16] J.-L. Brelet and B. New, "XAPP203: Designing Flexible,
Fast CAMs with Virtex Family FPGAs," Xilinx
Application Note, 1999.
<http://www.xilinx.com/xapp/xapp203.pdf>.

[17] P. Alfke, "XAPP052: Efficient Shift Registers, LFSR
Counters, and Long Pseudo-Random Sequence
Generators," Xilinx Application Note, 1996.
<http://www.xilinx.com/xapp/xapp203.pdf>.

[18] E. Caspi, M. Chu, R. Huang, J. Yeh, J. Wawrzynek, and A.
DeHon, "Stream Computations Organized for
Reconfigurable Execution (SCORE): Extended Abstract,"
presented at Conference on Field Programmable Logic and
Applications, Villach, Austria, 2000.
<http://www.cs.berkeley.edu/projects/brass/documents/scor
e_fpl2000.html>.

[19] E. Caspi, M. Chu, R. Huang, J. Yeh, Y. Markovskiy, J.
Wawrzynek, and A. DeHon, "Stream Computations
Organized for Reconfigurable Execution (SCORE):
Introduction and Tutorial," 2000.
<http://www.cs.berkeley.edu/projects/brass/documents/scor
e_tutorial.html>.

[20] Xilinx, "Virtex-II 1.5V Field Programmable Gate Arrays:
Data Sheet." San Jose, CA, 2002.
<http://www.xilinx.com/partinfo/ds031.pdf>.

[21] B. Hu and M. Marek-Sadowska, "Congestion Minimization
During Placement Without Estimation," presented at
IEEE/ACM Internation Conference on Computer Aided
Design, San Jose, CA, 2002.

[22] T. Kong, "A Novel Net Weighting Algorithm for Timing-
Driven Placement," presented at IEEE/ACM International
Conference on Computer Aided Design, San Jose, CA,
2002.

http://www.cs.utexas.edu/users/cart/publications/isca00.pdf>
http://www.cs.utexas.edu/users/cart/publications/isca00.pdf>
http://www.cs.caltech.edu/research/ic/abstracts/fastroute_fccm2002.html>
http://www.cs.caltech.edu/research/ic/abstracts/fastroute_fccm2002.html>
http://www.cs.caltech.edu/research/ic/abstracts/fastroute_fpga2003.html>
http://www.cs.caltech.edu/research/ic/abstracts/fastroute_fpga2003.html>
http://www.ee.washington.edu/faculty/hauck/publications/RuntimeTradeoffs.pdf>
http://www.ee.washington.edu/faculty/hauck/publications/RuntimeTradeoffs.pdf>
http://www.eecg.toronto.edu/~jayar/pubs/sankar/fpga99sankar.pdf>
http://www.eecg.toronto.edu/~jayar/pubs/sankar/fpga99sankar.pdf>
http://www.ece.nwu.edu/cpdc/Match/Pubs/glvlsi2000.malay.ps>
http://www.ece.nwu.edu/cpdc/Match/Pubs/glvlsi2000.malay.ps>
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html>
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html>
http://www.eecg.toronto.edu/~vaughn/papers/fpl97.pdf>
http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html>
http://www.xilinx.com/xapp/xapp203.pdf>
http://www.xilinx.com/xapp/xapp203.pdf>
http://www.cs.berkeley.edu/projects/brass/documents/score_fpl2000.html>
http://www.cs.berkeley.edu/projects/brass/documents/score_fpl2000.html>
http://www.cs.berkeley.edu/projects/brass/documents/score_tutorial.html>
http://www.cs.berkeley.edu/projects/brass/documents/score_tutorial.html>
http://www.xilinx.com/partinfo/ds031.pdf>
wrighton
Web links for this document:

http://www.cs.caltech.edu/research/ic/abstracts/hwassistsa_fpga2003.html
wrighton

wrighton
 http://www.cs.caltech.edu/research/ic/abstracts/hwassistsa_fpga2003.html

	INTRODUCTION
	PRIOR WORK
	SOLUTION SKETCH
	THE DETAILS
	Top-Level Structure
	Individual Processing Elements
	Algorithm Pseudocode
	High-Level Pseudocode
	Swap Phases
	The swapIfAppropriate Function

	IO Placement
	Mathematical Analysis

	BENCHMARKING RESULTS
	Methodology
	Intervals Required Exploration
	swapsPerInterval Exploration
	Spatial Annealing Quality and Scaling
	Comparison Against VPR Results
	Speedup Justification

	HARDWARE IMPLEMENTATION
	Preliminary Design Completed

	APPLICATIONS
	Application of Hardware Solution to Reconfigurable Computing
	Application to Logic Emulation Systems

	FUTURE DIRECTIONS
	Hardware Implementation and Testing
	Open Questions
	Improved Performance
	Cost Functions

	SUMMARY

