
Appearing in IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), May 11–13, 2014

Kung Fu Data Energy—Minimizing
Communication Energy in FPGA Computations

Edin Kadric, Kunal Mahajan, and André DeHon
Dept. of Electrical and Systems Engineering

University of Pennsylvania, Philadelphia, PA, USA
Email: ekadric@seas.upenn.edu

Abstract—The energy in FPGA computations can be dom-
inated by data communication energy, either in the form of
memory references or data movement on interconnect (e.g., over
75% of energy for single processor Gaussian Mixture Modeling,
Window Filtering, and FFT). In this paper, we explore how to
use data placement and parallelism to reduce communication
energy. We further introduce a new architecture for embedded
memories, the Continuous Hierarchy Memory (CHM), and show
that it increases the opportunities to reduce energy by strategic
data placement. For three common FPGA tasks in signal and
image processing (Gaussian Mixture Modeling, Window Filters,
and FFTs), we show that data movement energy can vary over a
factor of 9. The best solutions exploit parallelism and hierarchy
and are 1.8–6.0× more energy-efficient than designs that place
all data in a large memory bank. With the CHM, we can get an
additional 10% improvement for full voltage logic and 30–80%
when operating the computation at reduced voltage.

I. INTRODUCTION

Energy is emerging as a dominant constraint for modern
computations. Mobile devices are limited by battery life;
server rooms are limited by power density.

Within FPGAs, for many applications, data movement
energy—the energy for moving data from one physical lo-
cation on the FPGA to another—can dominate computational
energy. Data movement includes both energy for accessing
memory and energy for moving bits over interconnect seg-
ments between processing elements. Just as Kung Fu aims for
maximum effect with minimum movement, energy-conscious
FPGA designs should aim to minimize data movement.

We look specifically at two opportunities: parallelism and
hierarchy. You might expect more parallel designs to consume
greater energy. However, we note that, to first order, energy
efficiency, or energy per work done, should remain unchanged.
Then, we observe that by making a design more parallel, we
can often reduce the size of memories used and hence memory
energy, so that increasing parallelism can reduce total energy.
Nevertheless, increasing parallelism also makes the design less
compact, potentially increasing the length of the wires and
hence the interconnect energy. We characterize this trade-off
and find the level of parallelism that minimizes total energy
efficiency. We further reduce data movement energy by using
hierarchy to place data that will be used in the near future
close to the consumer, allowing items that will not be needed
as soon to be placed farther away.

In addition to examining how to minimize energy on current
FPGAs, we explore how we might change FPGA architectures

to enhance our opportunity to reduce memory energy. We
introduce the Continuous Hierarchy Memory (CHM) that (1)
largely eliminates the cost of using an embedded memory that
is larger than necessary for a computation and (2) facilitates
aggressive use of hierarchy to reduce the average cost of a
memory access when the data access pattern is localized.

Our contributions include:
• quantifying the energy contribution of compute, memory,

and interconnect
• characterizing how parallelism impacts total dynamic

energy consumption and each of the above components
• providing guidance for energy reduction on current FP-

GAs with concrete application to Gaussian Mixture Mod-
eling (Sec. IV), Window Filters (Sec. V), and Fast Fourier
Transforms (Sec. VI), chosen for their different levels of
locality and communication requirements

• introducing the Continuous Hierarchy Memory and char-
acterizing its benefits (Sec. VII)

II. DATA MOVEMENT ENERGY

A. Memory Energy

The energy required to access a memory depends on its
capacity and the number of output bits. Roughly, the energy
(and delay) minimizing organization for an N -bit memory is
a
√
N ×

√
N array. This means that all the main wires in the

memory are of length
√
N , so that their capacitance scales

as
√
N and, consequently, their switching energy scales as√

N . Everything else being equal, a memory of four times
the capacity will cost twice the energy. Furthermore, bringing
twice as many bits out of an array roughly doubles the energy.
From an energy standpoint, we should use as small a memory
block as possible, with as small an output width as possible

B. Interconnect Energy

a) For Large Memories: Memory energy is driven by
wire lengths. This means we cannot “cheat” the

√
N energy

growth effect by decomposing the memory into several smaller
memories and wiring to them. We would still end up with
address wires of length

√
N and input/output wires of length√

N . If we were dominated by memory cell capacitance,
breaking the large memory into many smaller memory banks
and activating only one memory bank at a time could reduce
the memory cell energy, but we are still left with wiring energy
that also has a

√
N dependence.

© 2014 IEEE

The wiring effect between banks is even larger if they are
not densely packed (e.g. M9K columns are 5–16 columns apart
on a Stratix IV). Building a single, large capacity memory
from many, distributed, small capacity embedded memory
banks, as exist in most FPGAs [1], [2], consumes more energy
than a custom, large capacity memory as we might get in an
ASIC, contributing to the energy gap between FPGAs and
custom ASICs [3]. From an energy standpoint, we would like
to use a single memory block of the right size for a problem
rather than building it from small memory blocks that are
sparsely distributed in a computing array.

b) Between Computations: For many computations, we
can reduce the size of the memory by performing the com-
putation in parallel. Rather than having a single processing
element (PE) or computational datapath with a large memory
to hold all data values, we can have multiple PEs, each
with its own, smaller memory. In the extreme, we may be
able to eliminate the memories altogether and simply connect
together datapath elements. For example, we could build a
completely spatial FFT Butterfly network that had no internal
memories. As we make the design more parallel, we reduce
the size of memories, reducing memory energy. However, we
also increase the physical size of the computation, potentially
increasing the length of the wires in the system and hence
increasing energy. In tasks like the FFT, data must now be
moved from the PE where it is produced to the PE where it
is consumed, and this data movement costs energy.

c) Question: These two effects raise our main question:
How do we minimize total communication energy? Is total
energy minimized at either the parallel or sequential extreme?
Or, more generally, what is the optimal parallelism to minimize
energy in a computation? This question is closely related to
the ones explored in [4], [5], and we similarly show it is often
better to distribute the data and computation than to centralize
it in a single memory. Here, we look at concrete applications
and explore the use of embedded memories to perform sharing
of operators on FPGAs.

III. BACKGROUND

A. Stratix IV Architecture

We use the Stratix IV architecture [2] as a concrete starting
point for exploring data movement energy because it has
embedded memory blocks of two different sizes. It includes
both M9K blocks that are organized as 256×36 memory banks
and M144K blocks that are organized as 2048×72 memory
banks. Both memories are dual-ported, capable of performing
one memory read and one memory write per cycle. Since
the M144K memories have 16 times the capacity (1449 =16)
and twice the datapath width (72/36), we expect each M144K
memory operation to be about

√
16× 2 = 8 times the energy

of each M9K memory operation. A more careful energy model
of delay-optimized memory blocks in CACTI 6.5 [6] suggests
the ratio should be 4.7. Using Altera’s PowerPlay [7], we es-
timated the energy of each of these memories and determined
the M9K spends 7.2 pJ per operation while the M144K spends
32.6 pJ per operation, a ratio of 4.5. Per bit read, the energy

premium for reading from the 72b-wide M144K instead of a
pair of 36b-wide M9K memories is a factor of 2.3. Further
experiments confirm that reading fewer bits than the native
output width (36b for M9K, 72b for M144K) does not reduce
the energy consumed per memory read. This suggests two
rules of thumb for energy minimization. When possible:

1) keep data in small memories
2) read at the maximum native memory width
The newer Stratix V architecture has only a single em-

bedded memory block size, M20K memories organized as
512×40 memory banks [8]. The analysis in [8] justified the
move to wider basic memories on the basis of soft-error
reliability and to a single block size based on area. There was
no discussion of the impact on energy efficiency.

B. Quartus Power Optimizations
In our work, we set Quartus to perform power-driven

synthesis [9], which includes power-aware memory balancing:
When several discrete memories are combined to form a sin-
gle, larger memory, higher speed can be traded for lower power
by either accessing all memories or only activating some of
them based on the current address. For example, consider
a 1K×36 memory implemented as 4, 256×36 M9K blocks.
With speed optimization, each M9K would be configured as a
1K×9 block, and each would be read on every cycle to form
the 36b output. With power optimization, each M9K could
be configured as 256×36, and only one of them would be
activated, thus reducing power, but introducing extra logic to
select the proper output and memory.

C. Energy Modeling
Prior work on FPGA energy accounting has shown that

interconnect consumes the majority (> 60%) of the switching
energy [10]. The most comprehensive works to date on FPGA
power modeling have focused on logic blocks and interconnect
[11], [12] and not addressed memory energy. These prior
works focus on RTL optimization where the logic content,
and hence level of parallelism, is fixed. In contrast, this paper
explores parallelism transforms that would be performed at the
behavioral level, changing the logic content and, more impor-
tantly, the shape of the memories used in the computation.

D. Related
Chen [13] notes that FFT can be dominated by data move-

ment. As a result, he explores a streaming FFT [14] that avoids
the physical interconnect of a large, spatial FFT and shows
that it keeps the data movement overhead down to a fraction
of the compute cost. [13] addresses exactly the issues we are
concerned with here. It emphasizes the need to read at the
maximum native width and shows how to do this for the FFT.
Chen used the most recent Virtex 7 architecture that has only
a single size of embedded memory so was not able to explore
the broader options of memory bank size, nor did he look
at how memory energy concerns might drive memory block
architecture. He compares only two levels of parallelism on a
single kernel while we perform a more general sweep of PE
count across 3 kernels with diverse interconnect requirements.

a) GMM operation

Registered
image

Read
params

Update
params

Params
mem

Read pixel

PE
Decide if
pixel is
foreground

a) GMM operation b) Parallel GMM – 4 PEs

PE PE

PE PE

º Exploit
locality

º Memory
sizes /4

º Routes
shorter

Fig. 1. GMM structure and parallelization

IV. APPLICATION 1: HIGH LOCALITY, GMM

A. GMM Kernel Description

As a starting example, we consider Gaussian Mixture
Models (GMM) [15] to separate foreground objects from
background (Fig. 1a). Since it has no interaction between the
data pixels, it has a Rent exponent [16] of prent = 0.

The task is to identify moving foreground objects from a
background in a registered image. For concreteness, imagine a
fixed surveillance or web camera. The goal is to separate out
the fixed background from the objects that move in front of
it. As a first attempt, we might note that an object moving in
front of a pixel will cause the pixel value to change, whereas
the background will have a fixed and steady pixel value. So,
the algorithm should “learn” the fixed values and use that to
differentiate the background from the object. In practice, light-
ing varies, so it is useful to model the background pixel not
as a single value but as a Gaussian distribution. Furthermore,
when we have complex backgrounds, like trees or water, a
pixel position can actually take on multiple different values but
still be part of the background. Consequently, effective GMM
algorithms adapt multiple Gaussians to model the distributions
for background pixels (we use 3 for our example). Values that
do not fit the Gaussian prediction models are then classified as
foreground. Each model stores a mean and variance, indicating
the likelihood that the given pixel has the given intensity,
as well as a weight, indicating the current confidence in
the model. Over time, these model parameters converge to
the values of the background image being monitored. Then,
when an object moves across the background, a deviation
in typical pixel values is observed, and the object can be
tracked. Each PE reads a pixel value, 9 parameters (3 models
× 3 parameters per model), decides whether the pixel is
background or foreground, and updates the parameter values.
If each pixel is stored using w = 16 bit, for an image of
size 64×64, we need to store w ·N2 = 64Kbit for the pixel
memory, and 32 ·w ·N2 = 576Kbit for the Gaussian models.
We restrict ourselves to this small image so that it fits on-chip
on a Stratix IV. Going to external memory off-chip would be
an even larger cost per bit.

B. More PEs, smaller memories, smaller routes

When we have only one PE (P = 1), we use one 576Kbit
memory and one 64Kbit memory. In contrast, with P PEs, we
need P memories of size (576/P)Kbit, and P memories of

size (64/P)Kbit. Using multiple PEs allows us to make the
memories smaller, reducing the cost of each memory access,
and place them closer to their associated PEs, reducing the
routing cost between memory and logic (Fig. 1b).

In the Stratix IV, 576Kbits can be stored using either 4
M144Ks or 64 M9Ks. The 64Kbits can be stored using either
1 M144K or 8 M9Ks. We leave this choice to Quartus, as
well as the choice of how to compose the memories, using
power-driven synthesis (Sec. III-B).

C. GMM Results

We implement the GMM kernel in Bluespec System Verilog
[17], translate it to Verilog and compile it in Quartus 13.0.1
for a Stratix IV FPGA (EP4SGX230KF40C2). We use virtual
pins instead of routing the outputs of the kernel to the edges of
the FPGA. After compiling, for a 50 MHz clock, we simulate
the design using random test cases in ModelSim to get signal
activities and static probabilities that we use with PowerPlay
to evaluate power consumption for the design.

The resources and energy results for different P values are
shown in Tab. I. The memory component of total energy is
separated from the compute component (“Comp” column),
which includes registers, DSPs, clock enable and combina-
tional logic. We also separate routing due to memory (Mroute)
and routing due to compute (Croute).

We notice a 1.7× energy reduction between the 1 PE and
64 PE cases. Even though the total number of memory bits
remains unchanged, they are split into smaller memory chunks,
each read by a different PE, thus reducing the cost of each
memory access. The table also shows that routing cost per
PE is reduced, thanks to the increase in locality. In contrast,
the work performed by the logic remains unchanged. Memory
energy alone is reduced by a factor of 4.6.

The first row reports results when using 1 PE with M144Ks.
The second row is still for 1 PE, but uses combinations
of M9Ks to form larger memories. As expected, here the
memory cost is lower, but there are also increased routing
costs to combine the memories, ultimately making this design
less efficient. However, for the next cases, combining M9Ks
gives an advantage over using M144Ks, so we only show
results with M9Ks (this is the choice made by power-optimized
synthesis). We notice two discrete jumps in memory energy as
the number of PEs is increased. With P = 1, the 64 M9Ks for
the parameter memory are organized into 4 banks of 16 M9Ks
each, so that only 16 of the 64 M9Ks are on at a time. The
pixel memory is organized as two banks of 4 M9Ks each. For
P = 2, 4, and 8, the banks contain 8 M9Ks for the parameter
memory, and 1 M9K for the pixel memory, hence the lower
memory energy. Even though memory energy is the same for
those cases, the cost of selecting the right bank is higher for
lower PE count, since there are more of them (4 parameter
banks for P = 2, 2 banks for P = 4), which contributes to
the decrease in Croute. P = 16, 32, and 64 each use 1 M9K
for the pixel memory and 4 M9Ks for the parameter memory,
hence the next drop in memory energy (all 4 M9Ks need to
be on all the time because of the data’s 144b width).

TABLE I
GMM ENERGY CONSUMPTION (64× 64 IMAGE)

PEs Resources Mem blocks/pixel Percentage of total energy Energy components (pJ/pixel) Total
P LUTs Regs DSPs Image Params Mem Mroute Comp Croute Mem Mroute Comp Croute (pJ/pixel)
1 1343 13 6 1 M144K 4 M144K 35% 12% 23% 31% 300 105 197 264 866
1 1536 21 6 8 M9K 64 M9K 25% 3% 22% 50% 230 29 206 458 923
2 3066 20 12 4 M9K 32 M9K 16% 3% 28% 53% 115 25 206 392 738
4 5968 13 24 2 M9K 16 M9K 18% 4% 31% 48% 115 24 201 311 651
8 10704 10 48 1 M9K 8 M9K 20% 13% 34% 33% 115 72 196 190 572

16 21312 9 96 1 M9K 4 M9K 12% 13% 36% 40% 65 68 195 211 539
32 42592 8 192 1 M9K 4 M9K 12% 13% 37% 38% 65 71 199 209 545
64 83136 7 384 1 M9K 4 M9K 13% 13% 38% 37% 65 69 195 190 520

d) Add 3 PEs (total of 4)c) Add 4 Line buffers

b) Single memorya) 5x5 Gaussian Filter

Read from Register
(5 cycles per pixel)

Read from memory

Read from line buffer

(1 pixel per cycle) (4 pixels per cycle)

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

-1 2 2 2 -1

-1 2 2 2 -1

-1 2 8 2 -1
5x5 window
of neighbor
pixels gives
1 output pixel

(Coefficients shown)

Fig. 2. Window Filter Configurations

V. APPLICATION 2: MEDIUM LOCALITY, WINF

The second application we explore is Window Filtering
(WINF), which has medium locality, prent = 0.5. We apply
the same communication-minimizing techniques as in GMM
but also optimize for data that is reused after an intermediate
amount of time.

A. WINF Kernel Description

Window filters compute each output pixel of an image as
the weighted sum of neighboring pixels. As an example, we
implement a Gaussian Filter for edge detection with a 5×5
window and power of 2 coefficients (Fig. 2a).

We choose an image of size 128 × 128, and 16 bits per
pixel intensity. This size is, again, selected to keep all memory
on chip. The memory requirement for WINF with a single
memory and a single PE is 0.25 Mbit, or 2 M144Ks.

The PE mostly consists of shifts, adders, and registers. In
this simplest setting, one pixel is read from the main memory
on each cycle and stored in one of the registers. It takes 5
cycles to fill one column of registers and produce one pixel
(Fig. 2b). Without registers, all reads would be from the main
memory, and it would take 25 cycles to produce each pixel.
Since most reads go back to a single, large memory, there is
significant communication overhead.

B. Line buffers: more locality

Since each pixel needs information from its neighbors,
which belong to different rows, there is non-locality that forces
us to read from memory multiple times to process each pixel.
The problem with the previous configuration is that those reads
all go to the main, large memory. Instead, we can exploit
memory hierarchy and use line buffers to store the pixels that
will be needed in the near future in smaller memories (2 Kbit,
or a quarter of an M9K for each line).

As shown in Fig. 2c, using 4 line buffers, we can produce
one pixel every cycle, where 20 pixels are available from
the PE’s registers, 4 are read from the 4 line buffers, and
one pixel is read from the main memory (and stored in the
appropriate line buffer to be used in the near future). This
line buffering scheme is typically used in window filters for
delay optimization [18], and our experiments show that these
also benefit energy, with a 2.5× improvement in total energy
efficiency, as shown in Tab. II, and a 3.1× improvement in
memory energy alone

C. Multiple pixels per cycle

Next, we use multiple PEs (Fig. 2d). If we read 2 or 4
pixels from the main memory every cycle instead of 1, we
can update 2 or 4 line buffers at the same time, and produce 2
or 4 neighboring pixels at the same time (that are on the same
column). This both reduces the number of memory accesses
and the registers’ overhead, since their content is shared among
multiple pixels in the same cycle. This gives an additional 2×
improvement in energy efficiency from 1 PE to 4 PEs (Tab. II),
and a 3.9× improvement in memory energy alone.

D. Sub-images, smaller memories, smaller routes

In the spirit of the strategy for GMM, one simple im-
provement is to divide the image into B sub-images, each
storing (0.25/B) Mbit and each having their own PEs, thus
reducing routing and lowering energy per memory access. The
only communication between the sub-images happens at their
borders, thus the operations are still localized within a sub-
image. With B = 4 sub-images, this gives an additional 1.2×
improvement over the previous case with 4 PEs (Tab. II), a
1.4× improvement in memory energy alone.

Overall, for WINF, there is a consistent decrease in both
memory and routing energy as we increase parallelism and
locality. Line buffers and extra PEs also decrease compute
energy (whereas using sub-images leaves it unchanged).

TABLE II
WINF ENERGY CONSUMPTION (128× 128 IMAGE)

Parameters Resources Mem blocks/B Percentage of total energy Energy components (pJ/pixel) Total
P LBuff? B LUTs Regs Image LBuff Mem Mroute Comp Croute Mem Mroute Comp Croute (pJ/pixel)
1 N 1 435 418 2 M144K 0 46% 4% 17% 33% 395 30 146 281 852
1 Y 1 474 417 32 M9K 4 M9K 33% 3% 25% 39% 126 11 81 124 342
2 Y 1 753 498 32 M9K 4 M9K 22% 3% 33% 42% 63 6 67 84 220
4 Y 1 1449 661 32 M9K 4 M9K 15% 2% 37% 46% 32 3 61 75 170
4 Y 2 2847 1308 16 M9K 4 M9K 11% 2% 42% 45% 23 3 59 63 148
4 Y 4 5647 2587 8 M9K 4 M9K 11% 2% 42% 45% 23 3 57 60 143

TABLE III
FFT ENERGY CONSUMPTION (N = 16K)

Parameters Resources Memory Blocks Percentage of total energy Energy components (pJ/point) Total
R P H LUTs Regs DSPs Data Twiddle Mem Mroute Comp Croute Mem Mroute Comp Croute (pJ/point)
2 1 1 730 170 10 4 M144K 2 M144K 50% 3% 19% 28% 2324 136 902 1291 4652
2 1 16 821 176 12 4 M9K/M144K 2 M144K 34% 6% 24% 36% 1308 210 925 1366 3810
2 4 4 1909 381 35 88 M9K 63 M9K 25% 2% 29% 43% 878 75 1019 1493 3465
2 16 1 8159 1234 129 64 M9K 62 M9K 16% 3% 35% 45% 421 85 896 1164 2566
2 32 1 16473 2379 257 64 M9K 63 M9K 9% 4% 38% 49% 206 85 913 1173 2377
4 1 1 1813 260 26 4 M144K 3 M144K 22% 2% 31% 45% 643 53 887 1314 2897
4 1 16 1897 266 27 4 M9K/M144K 3 M144K 15% 5% 33% 46% 389 133 855 1190 2567
4 4 4 5689 689 99 80 M9K 60 M9K 9% 2% 34% 55% 241 59 892 1462 2654
4 16 1 21433 2394 385 64 M9K 63 M9K 4% 2% 34% 61% 109 39 906 1615 2669

Radix 2 butterfly Radix 4 butterfly

a

b

= a + b w

= a - b w

w: input twiddle factor

inputs outputs a

b

c

d
w, x, y: twiddle factors

= a+bw+cx+dy

= a-jbw-cx+jdy

= a-bw+cx-dy

= a+jbw-cx-jdy

Fig. 3. FFT Butterfly, radix R = 2 and 4

VI. APPLICATION 3: LOW LOCALITY, FFT

The third application we explore is FFT (Fast Fourier
Transform), which has little locality, prent = 1.

A. FFT Kernel Description

We compute an N-point FFT, where each output point
depends on every input point, thus the non-locality and
prent = 1. The CooleyTukey FFT algorithm [19] is performed
by recursively subdividing it into R sub-FFTs of size N/R
each, where R is the radix of the algorithm. The data is
recursively divided into R subsets until the last R points,
which are transformed using a radix R butterfly unit (Fig. 3).
Furthermore, each sub-FFT can be performed in parallel with
the other ones and can thus be assigned its own PE. We use a
total of P PEs, each implementing its own butterfly unit. We
use 18-bit fixed-point arithmetic so that each input to the FFT
is a complex number requiring 18 × 2 = 36 bits.

Fig. 4 shows the FFT network. Fig. 5 shows the hardware
datapath for the network. On each cycle, one value is read from
each memory. The data is permuted and fed into the PEs, then
de-permuted and written back to the memory location it came
from. The first column labeled “memories” in Fig. 4 shows

0
4
8
12
2
6
10
14
1
5
9
13
3
7
11
15

0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
15

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
8
4
12
2
10
6
14
1
9
5
13
3
11
7
15

0
8
4
12
2
10
6
14
1
9
5
13
3
11
7
15

A0

B0

B0

A0

B0

A0

A0

B0

A1

B1

B1

A1

B1

A1

A1

B1

Stage 0 Stage 1 Stage 2 Stage 3
outputsinputs

memories

PE1

PE2

Fig. 4. Basic FFT network for N = 16, R = 2, P = 2

PE0

PE1

Switch
PEs in
Stage

3

Switch
PEs in
Stage

3

Switch
order

Switch
order

Switch
order

Switch
order

mem
A0

mem
B0

mem
A1

mem
B1

Fig. 5. Basic FFT implementation for N = 16, R = 2, P = 2

how to distribute the data in the memories to ensure that no
two datapoints from the same memory are needed at the same
time at a particular stage. With this scheme, we need P × R
memories of depth N/(P × R) with 1 read port and 1 write
port. Not shown in the figures, we also need (P × R − 1)
Read-Only-Memories (ROMs) of depth N/(P × R) with 1

read port for the coefficients (twiddle factors). The latency of
this scheme is [(N log(N))/(R log(R))]/P .

Similarly to GMM and WINF, using multiple PEs decreases
memory sizes and makes each memory access less expensive.
Furthermore, each PE is closer to its own memory, reducing
routing overhead. However, FFT has low locality: data eventu-
ally moves across the whole network between PEs, increasing
routing significantly with PE count. Note that with multiple
PEs, we do exploit locality, since each PE can work inde-
pendently of the other ones, until the last (log(P)/ log(R))
stages. For example, in Fig. 4, all communication is local to
each PE, until stage 3 where data is shared across PEs.

B. Hierarchical FFT

With the scheme described so far, each PE needs to perform
a sub-FFT of size N/P before the recombining stages. Each
sub-FFT is, itself, split recursively into R sub-FFTs at each
stage. Within one PE’s task, the most straightforward way to
sequence operations is to compute all the data from one stage
(column) before moving to the next. For example, in Fig. 4,
we would compute all of stage 0, then all of stage 1, etc.

Alternately, we can perform all the stages of one sub-FFT
before moving to the next sub-FFT. For example, in Fig. 4,
we would compute the first two butterflies of stage 0, then
the first two of stage 1, and only then move to the 3rd and
4th butterflies of stage 0, then the 3rd and 4th of stage 1.
With this depth-first or recursive approach [20], we could use
a smaller memory for stages 0 and 1, and only use the N/P size
memory at stage 2. This further reduces the memory sizes and
the cost of each memory access: we only use larger memories
when they are needed. To characterize this optimization, we
introduce a parameter H for the ratio of the larger PE memory
that is needed in both cases to the smaller memory used for
leaf FFTs. In the previous example, H=2.

C. FFT Results

Tab. III shows experimental results for an N = 16K-point
FFT. As we scale the number of PEs and exploit hierarchy, we
observe a 2.0× improvement in total energy for the radix 2
case, an 11.3× improvement in memory energy alone. This is
achieved with 32 PEs.

For low PE count, we find that the FFT performs better
with radix 4 than radix 2. This is not only because it uses
memories that are exactly the right size, but also because
the radix 4 algorithm requires fewer compute operations per
FFT input. However, as the number of PEs is increased, the
radix 4 version’s routing increases faster than that of radix 2
due to non-locality, its total energy increases, and it eventually
becomes less efficient than using radix 2. The optimum point
for radix 4 is obtained with 1 PE and H = 16, with a
1.13× improvement in total energy over the simple 1 PE
case, a 1.65× improvement in memory energy. Beyond that,
although increasing parallelism reduces memory energy, it also
increases routing energy (Croute), resulting in an increase in
total energy. Radix 2 continues energy reduction at least down
to 32 PEs.

Addrs 0–15 16–63 64–255
Organization 16×36 48×36 192×36

Shape 50×34 90×65 93×130
(µm×µm)
Emem (pJ) 2.0 2.9 6.5

Eawires (pJ) 0.0 0.041 0.11
Edwires (pJ) 0.0 0.15 0.39

192x36

48x36

16
x3

6

93 microns

13
0
m
ic
ro
ns

90
 m
ic
ro
ns

65 microns34	

microns

Fig. 6. M9K Three-Level Memory

VII. MEMORY ARCHITECTURE

We saw that the Stratix IV is able to construct memories
with sizes in between M9K and M144K, or over M144K, by
composing the memory blocks it has available. However, this
comes with decoder, multiplexer and routing overheads that
make the memory energy higher than it would have been had
there been blocks of exactly the right size.

With proper decomposition, we can eliminate most of this
cost. By internally banking the embedded memories and
preferentially using the small banks close to the memory I/O
ports, we can reduce the costs of using larger memories and
enable hierarchical memory optimizations. Furthermore, by
asymmetrically organizing the addresses within the memory,
we can place some memory content closer to the output and
hence access it with lower energy.

To concretely illustrate this idea in isolation, we consider
modifying the M9K and M144K memories in the Altera
Stratix IV architecture while leaving the rest of the architecture
unchanged. This allows us to use the same designs and
design tools (Quartus) for the architectural comparison, but
prevents us from exploring more comprehensive architectural
alternatives, which we leave for future work.

A. Three-Level Hierarchical Memory for M9K

For the M9K, we consider a 3-level hierarchy that allows
the block to be used as a 16×36, 64×36, or 256×36 memory.
Furthermore, addressing maps them into a single address
space, with the lower addresses mapped to the smaller memory
banks (Fig. 6). This revised memory can be used efficiently as
the smaller banks and can be used to reduce energy by placing
more frequently accessed data in the low addresses.

Using the Stratix III M9K area from [21] and the aspect
ratio of LABs from [2], we estimate the Stratix IV M9K
block as 4700F × 5600F , where F is the technology half
pitch. For the 40 nm technology, this is 190µm×220µm. We
use 100µm×220µm for the memory banks (Fig. 6), leaving
the rest of the area for the interconnect and interfacing logic.
[22] suggests half of the LAB area, or 2.6MF 2, is needed for
interconnect at each LAB or M9K site. We use CACTI 6.5
[6] to estimate memory block area and energy.

CACTI does not model the exact technology used by Altera
for the Stratix IV, so we simply use CACTI to obtain relative
energies for various block sizes and scale the energy estimate

TABLE IV
M144K HIERARCHICAL MEMORY WITH 8 BANKS

Addrs Org. Shape Emem Eawires Edwires

(µm×µm) (pJ) (pJ) (pJ)
0–255 256×72 190×130 11.2 0.0 0.0

256–767 2×256×72 2×190×130 11.2 0.27 1.9
768–1279 2×256×72 2×190×130 11.2 0.53 3.8

1280–1791 2×256×72 2×190×130 11.2 0.80 5.8
1792–2047 256×72 190×130 11.2 1.1 7.7

256x72

190 microns

13
0
m
ic
ro
ns

I/O at center

0--255 256--511512--767 768--10231024--1279 1280--15351536--17911792--2047

Fig. 7. Possible Layout of 8 Bank M144K (rotated 90◦)

obtained from Quartus for the M9K (7.2 pJ) to get comparable
energy estimates for the smaller blocks. The 192×36 is 90%,
the 48×36 is 40%, and the 16×36 is 28% of the energy of
the 256×36 memory block.

We add energy costs for the wiring to the various banks.
We assume the smallest bank is immediately adjacent to the
interconnect ports and requires no additional wiring. Then, we
must route across that bank to reach each of the larger banks
as shown in Fig. 6. Each bank gets at most 9b of address and
returns 36b. We add a bit for an enable so we have 10b address
and 36b return. In this technology, wires are roughly 2 pF/cm
[23, Table INTC6]. Based on PowerPlay energy estimates for
R4 segment energy, we assume wires are buffered sufficiently
to cost 3 pF/cm. Connecting to the 48×36 memory requires
wires that run 34µm across the 16×36 memory. The energy
for the address wires (Eawires) is 0.041 pJ, calculated as:

Eawires = 1/2× 0.92 × 10× 34µm× 3pF/cm (1)

Vdd = 0.9V , hence the 0.92 term. The data wires (Edwires)
are 0.15 pJ. We make a similar calculation for connecting
to the 192×36 memory, where wires must run 90µm across
the height of the 48×36 memory, and summarize all wiring
energies in Fig. 6. We calculate the energy used per access
based on the activity of the respective wires (α terms):

Echm = αaddrEawires + Emem + αdataEdwires (2)

B. Banked, Hierarchical Memory for M144K

If the M144K memory was organized in a square, we would
use a decomposition into exponentially sized memories similar
to the M9K. However, since the M144K is spread across 8
rows, we consider each row a 256×72 memory bank. We
assume the interconnect interfacing is in the middle, and assign
higher address groups to banks further away from the center
(Tab. IV, Fig. 7). We use the same methodology for calculating
memory bank and wire energy and summarize in Tab. IV.

The worst-case memory is actually less energy than the
PowerPlay M144K (11.2+1.1+7.7=20 pJ<32.6 pJ). One reason
is that we split the length of the longest wire. Since we feed
from the middle and only activate one bank, we do not need
to send address and data across all 7 unused banks, which
would have cost 26.6 pJ, only the four banks in a particular
direction. An unbanked version would have address and bit

TABLE V
GMM ENERGY WITH CHM

PEs Mem blocks/pixel Mem (pJ/pixel) Total (pJ/pixel)
P Image Params Base Bank CHM Base Bank CHM
32 1 M9K/4 4 M9K/2 65 54 42 545 533 522
64 1 M9K/8 4 M9K/4 65 54 25 520 508 479

TABLE VI
WINF ENERGY WITH CHM

Mem blocks/B Mem (pJ/pixel) Total (pJ/pixel)
P B Image LBuff Base Bank CHM Base Bank CHM
1 1 32 M9K 4 M9K/4 126 105 79 342 321 295
2 1 32 M9K 4 M9K/4 63 52 40 220 209 196
4 1 32 M9K 4 M9K/4 32 26 20 170 164 158
4 2 16 M9K 4 M9K/4 23 19 13 148 144 138
4 4 8 M9K 4 M9K/4 23 19 13 143 139 133

lines that ran the entire length. Banking will likely be slower
since it adds logic to determine the lines to drive.

C. CHM results

GMM is dominated by the parameter memory, for which
at least 4 M9Ks are active at all times to supply the 144b
wide data. However, only half and a quarter of those M9Ks
are actually needed at 32 and 64 PEs respectively. With M9K-
CHM memory we only pay for that fraction of the cost.

Tab. V shows improved GMM results using CHM. We get
benefits just from replacing the M9K block with the banked
version discussed here, even if we use all of it (all 9 Kbits). The
gains from this effect alone are captured in the “Bank” column:
this is the CHM with worst-case access patterns; quantifying
the impact of the absolutely lower energy for the M9K. The
CHM column captures the full benefits of using a smaller
memory bank. Tab. V shows that we can further reduce GMM
memory energy by 2.6×, making the GMM design 1.1× more
energy efficient. The total gains are modest because memory
is no longer the dominant contributor to energy.

In WINF, the line buffers are implemented with M9Ks, but
only need a quarter of their capacity (2 Kbits). Once again,
with an M9K-CHM memory, we only pay for that fraction of
the cost. Tab. VI shows an additional 1.1–1.2× improvement
over the optimized cases from Tab. II, including a 1.6–1.8×
improvement in memory energy alone.

Performing the FFT computation recursively (hierarchi-
cally) further benefits from the CHM. With CHM memories,
we do not need a separate small memory. Instead, since the
access pattern to the memory is non-uniform—most of the
addressing is to the lower addresses—we pay the cost of the
smaller CHM configuration more often. This results in the
largest CHM benefits (Tab. VII) with a 1.3–2.3× reduction
in memory energy alone for a 1.04–1.14× total improvement.
Including the effect of banking the memories, this is a 1.1–
1.5× improvement in total energy.

D. Discussion of the CHM Results

The results show modest CHM gains, in part because by the
time we optimize memories, the dominant energy becomes that
of the interconnect and logic. Nonetheless, energy-conscious
designs will scale voltage for interconnect and logic more
aggressively, as memories are notoriously the first to fail

TABLE VII
FFT ENERGY WITH CHM

Param Mem (pJ/point) Total (pJ/point)
R P H Base Bank CHM Base Bank CHM
2 1 1 2324 1090 822 4652 3418 3150
2 1 16 1308 705 487 3810 3207 2989
2 4 4 878 726 316 3465 3313 2902
2 16 1 421 348 151 2566 2493 2296
2 32 1 206 170 74 2377 2341 2245

at small feature sizes and low voltages. For example, [24]
shows 84% energy reduction for WINF in compute and
interconnect when scaling voltage. With this voltage scaling
for computational energy, the total energy consumption for the
best WINF case drops from 42 pJ/pixel to 32 pJ/pixel when
using CHM, a 1.31× benefit, compared to 1.08× previously
(143 pJ/pixel to 133 pJ/pixel, Tab. VI); overall, this is a 26×
reduction in energy over the base case. Similarly, CHM gives
a 1.84× benefit for the best GMM case (1.08× previously);
18× over the baseline. Finally, CHM gives a 1.27× benefit for
the best FFT case (1.06× previously); 10× over the baseline.

VIII. DISCUSSION AND OPEN ISSUES

This paper has focused on energy reduction. The more
parallel versions will consume higher dynamic power. If
the concern is battery life (mAh) or a utility bill (kWh),
minimizing energy is the goal. Reducing the clock frequency
commensurate with the parallelism will turn the energy saving
into a dynamic power saving.

While the focal exploration here is on FPGAs, the results
hint at larger lessons. The most sequential cases are memory-
energy dominated, meaning the FPGA design cannot be sub-
stantially less efficient than ASIC or sequential processor
cases. Furthermore, the general trend of increased parallelism
using smaller, distributed memories reducing memory energy
and hence total energy should hold as well.

It will be worthwhile to perform a more comprehensive
architectural study of the size and distribution of CHM blocks
to identify energy-minimizing FPGA architectures.

IX. CONCLUSIONS

The energy of FPGA computations can be dominated by
data movement, which is minimized by using the right size
memories. Parallelism often allows us to split larger memories
into smaller blocks that use less energy than larger ones. For
GMM, WINF, and FFT, we show that more parallel designs
where PEs only use a few Stratix IV M9Ks for memory can
use significantly less energy than single PE designs with large
memories. For highly interconnected designs, like the FFT,
data movement energy on interconnect wiring can dominate
memory energy, suggesting a limited benefit to parallelism.
We also introduced a Continuous Hierarchy Memory that can
reduce the impact of size mismatches in FPGA embedded
memories and offers further energy reduction when the fre-
quency of data access varies in the application.

X. ACKNOWLEDGMENTS

This research was funded in part by DARPA/CMO contract
HR0011-13-C-0005. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the
authors and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

REFERENCES

[1] Xilinx Virtex 2.5V Field Programmable Gate Arrays, Xilinx, Inc., 2100
Logic Drive, San Jose, CA 95124, April 2001.

[2] D. Lewis, E. Ahmed, D. Cashman, T. Vanderhoek, C. Lane,
A. Lee, and P. Pan, “Architectural enhancements in Stratix-III
and Stratix-IV,” in FPGA, 2009, pp. 33–42. [Online]. Available:
http://doi.acm.org/10.1145/1508128.1508135

[3] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
IEEE Trans. Computer-Aided Design, vol. 26, no. 2, pp. 203–215,
February 2007.

[4] A. DeHon, “Location, location, location: The role of spatial locality
in asymptotic energy minimization,” in FPGA, 2013, pp. 137–146.
[Online]. Available: http://doi.acm.org/10.1145/2435264.2435291

[5] ——, “Wordwidth, instructions, looping, and virtualization: The role of
sharing in absolute energy minimization,” in FPGA, 2014, pp. 189–198.
[Online]. Available: http://doi.acm.org/10.1145/2554688.2554781

[6] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI
6.0: A tool to model large caches,” HP Labs, Palo Alto, CA, HPL
2009-85, April 2009, latest code release for CACTI 6 is 6.5. [Online].
Available: http://www.hpl.hp.com/techreports/2009/HPL-2009-85.html

[7] PowerPlay Early Power Estimator, Altera Corporation, 2013.
[Online]. Available: http://www.altera.com/support/devices/estimator/
pow-powerplay.jsp

[8] D. Lewis, D. Cashman, M. Chan, J. Chromczak, G. Lai, A. Lee,
T. Vanderhoek, and H. Yu, “Architectural enhancements in Stratix
V,” in FPGA, 2013, pp. 147–156. [Online]. Available: http:
//doi.acm.org/10.1145/2435264.2435292

[9] PowerPlay Optimization, Altera Corporation, 2013. [Online]. Available:
http://www.altera.com/literature/hb/qts/qts qii52016.pdf

[10] T. Tuan, A. Rahman, S. Das, S. Trimberger, and S. Kao, “A 90-
nm Low-Power FPGA for Battery-Powered applications,” IEEE Trans.
Computer-Aided Design, vol. 26, no. 2, pp. 296–300, 2007.

[11] K. Poon, S. Wilton, and A. Yan, “A detailed power model for field-
programmable gate arrays,” ACM Tr. Des. Auto. of Elec. Sys., vol. 10,
pp. 279–302, 2005.

[12] F. Li, Y. Lin, L. He, D. Chen, and J. Cong, “Power modeling
and characteristics of field programmable gate arrays,” IEEE Trans.
Computer-Aided Design, vol. 24, no. 11, pp. 1712–1724, Nov. 2005.

[13] R. Chen, N. Park, and V. K. Prasanna, “High throughput energy efficient
parallel FFT architecture on FPGAs,” in HPEC, 2013, pp. 1–6.

[14] P. A. Jackson, C. P. Chan, J. E. Scalera, C. M. Rader, and M. M. Vai,
“A systolic FFT architecture for real time FPGA systems,” in HPEC,
2004.

[15] M. Genovese and E. Napoli, “ASIC and FPGA implementation of the
gaussian mixture model algorithm for real-time segmentation of high
definition video,” IEEE Trans. VLSI Syst., vol. 22, no. 3, pp. 537–547,
March 2014.

[16] B. S. Landman and R. L. Russo, “On pin versus block relationship for
partitions of logic circuits,” IEEE Trans. Comput., vol. 20, pp. 1469–
1479, 1971.

[17] Bluespec, Inc., “Bluespec SystemVerilog 2012.01.A.” [Online].
Available: http://www.bluespec.com

[18] H. Yu and M. Leeser, “Automatic sliding window operation optimization
for FPGA-based,” in FCCM, April 2006, pp. 76–88.

[19] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,” Math. Comput., vol. 19, pp. 297–301, 1965.

[20] M. Frigo and S. G. Johnson, “The design and implementation of
FFTW3,” Proc. IEEE, vol. 93, no. 2, pp. 216–231, 2005.

[21] H. Wong, V. Betz, and J. Rose, “Comparing FPGA vs. custom CMOS
and the impact on processor microarchitecture,” in FPGA, 2011, pp.
5–14.

[22] M. S. Abdelfattah and V. Betz, “Design tradeoffs for hard and soft
FPGA-based networks-on-a-chip,” in ICFPT, 2012, pp. 95–103.

[23] “International technology roadmap for semiconductors,” <http://www.
itrs.net/Links/2010ITRS/Home2010.htm>, 2010.

[24] E. Kadric, K. Mahajan, and A. DeHon, “Energy reduction through
differential reliability and lightweight checking,” in FCCM, 2014.

Web link for this document: <http://ic.ese.upenn.edu/abstracts/kungfu fccm2014.html>

http://doi.acm.org/10.1145/1508128.1508135
http://doi.acm.org/10.1145/2435264.2435291
http://doi.acm.org/10.1145/2554688.2554781
http://www.hpl.hp.com/techreports/2009/HPL-2009-85.html
http://www.altera.com/support/devices/estimator/pow-powerplay.jsp
http://www.altera.com/support/devices/estimator/pow-powerplay.jsp
http://doi.acm.org/10.1145/2435264.2435292
http://doi.acm.org/10.1145/2435264.2435292
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.bluespec.com
http://www.itrs.net/Links/2010ITRS/Home2010.htm
http://www.itrs.net/Links/2010ITRS/Home2010.htm
http://ic.ese.upenn.edu/abstracts/kungfu_fccm2014.html

