
Appearing in IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), May 11–13, 2014

Energy Reduction through
Differential Reliability and Lightweight Checking

Edin Kadric, Kunal Mahajan, and André DeHon
Dept. of Electrical and Systems Engineering

University of Pennsylvania
Philadelphia, PA, USA

Email: ekadric@seas.upenn.edu

Abstract—As technology feature sizes shrink, aggressive volt-
age scaling is required to contain power density. However, this
also increases the rate of transient upsets—potentially preventing
us from scaling down voltage and possibly even requiring voltage
increases to maintain reliability. Duplication with checking and
triple-modular redundancy are traditional approaches to combat
transient errors, but spending 2–3× the energy for redundant
computation can diminish or reverse the benefits of voltage
scaling. As an alternative, we explore the opportunity to use
checking computations that are cheaper than the base computa-
tion they are guarding. We identify and evaluate the effectiveness
of lightweight checks in a broad set of common FPGA tasks
in scientific computing and signal and image processing. We
find that the lightweight checks cost less than 14% of the base
computation. Using an exponential model for the relationship
between voltage and transient upset rate, we are able to show over
80% net energy reduction by aggressive voltage scaling without
compromising reliability compared to operation at the nominal
voltage.

I. INTRODUCTION

As we shrink technology feature sizes, we reduce the
capacitance, C, on wires and gates. This reduces delay and
energy, but also reduces the critical charge (Q = CV) holding
state on the nodes, making it easier for the node to be upset.
From an energy standpoint, we would like to reduce voltage
to reduce energy, but this, too, decreases the critical charge.
Therefore, to preserve the reliability of operations, we may be
forced to increase voltage.

Operating power density limits coupled with limited voltage
scaling have already put us in an energy-dominated regime.
We can now place more transistors on an integrated circuit die
than we can afford to switch [1], a phenomenon known as dark
silicon [2]. As a result, energy and reliability requirements are
at odds, and together, may limit our exploitation of scaled
technology.

Can we tolerate higher rates of upsets in our designs to
avoid this impasse? That is, if our designs are tolerant to
the upset rates that come with reduced voltage operation, we
could continue to reduce voltage as required by power den-
sity concerns, extracting more computation from our energy-
limited integrated circuits. However, the design changes we
make must not consume more energy than we save by voltage
reduction. For example, triple modular redundancy (TMR)
performs computations three times, thereby increasing the
energy by a factor of 3. Since energy scales as CV 2, we must

achieve voltage reductions of over
√
3 in order to achieve any

benefits, and even when there is a benefit, it is limited by the
TMR overhead.

As an alternative, we explore the use of application-specific
checks that are less expensive than the computation itself—
lightweight checks (LWC). We exploit the fact that, for many
computations, it is asymptotically and absolutely cheaper to
check that a proposed answer for a computational task is
correct than it is to perform the computation (Sec. II-B).
Furthermore, we exploit the fact that not all computations
must operate with the same reliability—differential reliability
(Sec. II-A). When we have operations that are amenable to
LWCs, these can run at lower voltages, while the supervisory
circuits that assure that the checks are performed operate at
higher voltages and hence reliabilities. To the extent we can
make the supervisory circuits a small fraction of the actual
computation, we can achieve the reliability of the high-energy
reliable circuits with the energy efficiency of the low-energy,
error-prone computation.

Our novel contributions include:
• Identifying a framework for exploiting LWCs (Sec. IV)
• Identifying a set of LWCs for common FPGA kernels

(Sec. V) and estimating their overhead (Sec. VII)
• Estimating the energy savings possible by exploiting

these LWCs with differential reliability (Sec. VII)
This paper focuses on logic and interconnect voltage, errors,

and energy, leaving the treatment of memories for future work.
Hence we assume that the memories do not operate at the
reduced voltages explored for logic. In a companion paper
[3], we explore techniques to minimize memory energy.

II. OPPORTUNITIES

We start by highlighting the key opportunities we explore.

A. Differential Reliability and Multiple Vdd

Differential reliability observes that we do not need the same
reliability out of all the components of our design. In partic-
ular, we can often use more reliable components to oversee
the computation of less reliable components. Error-correction
on memories and checksums on packet data transmission are
familiar and commonly used forms of differential reliability. In
the memory case, the peripheral circuitry for error detection

c© 2014 IEEE

http://www.fccm.org/

TABLE I: Taxonomy of Reliability Problems

Detect This
Challenge Immediate? | How? Response Sec. Work
Logic & Latch Y Concurrent Check Rollback, Retry III-A focus
Configuration N Checksum Reload III-C
Upset Y Concurrent Check Reload, Rollback III-C detect
Aging N Offline Test Remap to Avoid III-E

Y Concurrent Check Remap, Rollback III-E detect
Manufacture N/A Offline Test Map to Avoid III-D

and correction is typically of a larger, more reliable feature
size than the memory core.

We use operating voltage to control the reliability of a
circuit. We assume that we can run portions of the FPGA
at different voltages, following a long history of multiple
Vdd designs in the FPGA literature [4], [5]. Commercial
FPGAs use multiple supply voltages for core and periphery
and multiple bias voltages for operation [6].

B. Lightweight Checking (LWC)

Many computations have the property that it is cheaper
to check the computation than to perform it. Square root
and factoring are familiar examples, for which the check is
a simple multiplication, requiring less work than identifying
the square root or the factors. Furthermore, the NP-complete
complexity class specifically identifies a family of computa-
tions that have small, polynomial time checks, but have, to
date, no known polynomial time approach to computation.
In this paper, we build our understanding and show that
many important kernels and classes of computations do have
checkers that are significantly smaller in practice (Sec. V).

Error correcting codes (ECC) can also be seen as LWCs,
since they avoid the cost of replicating stored or transmitted
data, instead using a small number of bits to detect errors in
a much larger number of bits. ECCs efficiently mitigate high
transient upset rates in memories, which is why this paper
focuses on the complementary problem of mitigating transient
upsets in computations.

III. BACKGROUND

To clarify the goals of this work and put it into context,
this section and Tab. I review common, small-feature-size
reliability problems. We also review prior work on fault-
tolerance in FPGAs.

A. Upset Phenomena and Voltage Scaling

This paper primarily addresses single-event logic and latch
upsets (SEUs), which become increasingly important with
scaled technology [7]. These may be caused by ionizing
particles that disrupt the voltage on nodes causing wrong
values in latches. SEUs may result directly from upsetting
the stored state in a latch or from upsetting logic that is then
sampled into a latch at a clock edge. They may also be caused
by thermal fluctuations or shot noise [8].

B. Prior Work on Soft-Error Upsets and Timing Failures

Space and avionics applications have long had to deal with
higher upset rates than ground-based systems, spawning a host
of prior work on SEU tolerance in FPGAs. Our LWCs are
an optimization over duplication with compare [9] since our
checkers are small compared to the base computation. TMR
has been the typical mitigation mechanism on FPGAs [10],
[11]. However, this comes at a high energy overhead (>200%).
When the application can accept errors in the output, previous
work shows that this can be reduced by applying TMR
selectively [12]. In contrast, our solution catches errors as they
occur, before they corrupt the output, and are significantly
more lightweight than TMR. Unlike TMR, our detection and
correction scheme does impact the throughput of results and
may not be suitable when there is no timing slack available
for recomputation. Still, as we will see from the low rate of
recomputation (Tab. II), the impact on aggregate throughput
due to recomputation is small.

Lowering voltage can also increase error rate due to timing
violations. The Razor latch [13], [14] addresses this issue
inexpensively by detecting late changes in signal values but
only catches violations in a narrow timing window and does
not address the broader classes of SEUs.

C. Configuration Upsets

FPGAs are particularly sensitive to transient events that
upset configuration bits. Nonetheless, (1) FPGA vendors al-
ready provide checksums and scrubbing logic to detect when
configurations need to be reloaded [15], and (2) there is
no need to aggressively scale down configuration voltages
since they do not switch dynamically during operation and
do not contribute to dynamic energy consumption. Keeping
the voltage on configuration bits high is a form of differential
reliability. A common recovery strategy is checkpoint and
rollback [16].

Our LWCs can catch configuration upsets as they occur. In
contrast, checksum and scrubbing schemes take millions of
cycles to detect upsets, resulting in a large number of erro-
neous outputs. Our LWC scheme validates every output and
detects errors immediately. If the error is an SEU (Sec. III-A),
the error will not persist and a retry will most likely not see it
again. If the error is a configuration upset or a lifetime aging
failure (Sec. III-E), the retry will fail as well, indicating the
need to reload the configuration or repair the logic [17]–[19].

D. Process Variation

High Vth variation in small feature size transistors could
also prevent aggressive scaling of component operating volt-
ages. That is, if our voltage scaling were limited by the
worst-case Vth on a multi-billion transistor 22 nm, or smaller,
device, we would have limited room to reduce the voltage.
This is not the primary concern of this work since prior work
[17] shows that it should be possible to avoid high variation
transistors in FPGAs and operate down to 150 mV—much
lower than the ITRS suggested operating point of 700 mV
at 22 nm. Significantly, these variation-avoidance techniques

LWC - High V

Compute
Low VCommit

previous
Input

Output

check

Commit
current

Fig. 1: Differential Reliability Structure

Compute Area

Input
stream

+ i/p sum +o/p sum

<? output&correct
Check

out

Output
stream

M
2

2
M

8

8
M

16

16
M

32

32
M

4

4
M

64

64
M

128

128
M

2

2

M
n

Merge unit
FIFO of size n

(i/p stream complete) (o/p stream complete)

1

=?

Register
LWC Area

Fig. 2: Sort kernel with its LWC

allow us to operate at the well-defined minimum energy point.
Nonetheless, [17] does not address the impact of low-voltage
operation on transient faults, which is the primary concern of
our work.

This post-fabrication, component-specific mapping allows
FPGAs to operate at lower voltages than ASICs and is a key
reason why FPGAs may have greater need to tolerate low
voltage operation of small-feature size devices than ASICs.
By combining the upset tolerance enabled by this work and
the variation tolerance in [17], we could close some of the
traditional energy gap between FPGAs and ASICs [20].

E. Aging

Small feature size devices are also susceptible to aging
faults [21] that can result in permanent rather than transient
circuit errors. As noted above (Sec. III-C), the LWCs we
describe can also immediately detect those aging faults. If
retry and configuration reload do not resolve the error, this
is an indication that an aging error has occurred. This can
serve as a trigger for repair mechanisms such as [18], [19].

IV. LIGHTWEIGHT CHECK EXAMPLE

A. LWCs and Differential Reliability

LWCs are one way to exploit differential reliability. If a
check can validate the correctness of a computation, then we
can tolerate low reliability in the computation as long as the
check reliably identifies when the computation is in error.
Specifically, this means we can run the computation at low
voltage, Vl, and the check at high voltage, Vh, as shown in
Fig. 1. To the extent the check is cheaper than the computation,
we have an opportunity to save energy.

Since the computation will have errors at some rate, we
checkpoint its inputs and keep them until the LWC vali-
dates that the computation was correct and the outputs are
themselves checkpointed. When the LWC sees an error, the
erroneous output is discarded and recomputed from the check-
pointed input. This scheme fits naturally into a streaming
compute model (e.g., [22], [23]).

B. Sort Algorithm and Implementation

As a motivating example, consider an n = 128 element
streaming merge sort [24], where each element is composed
of a single-precision floating-point number.

The merge-sort is implemented using log(n) = 7 merge
elements with appropriately sized buffers between them, as
shown in Fig. 2. A new input is presented to the first unit
on every cycle, and an output is produced on every cycle,
with a latency of n. The ith merge element performs an in-
order merge on two ordered 2i-element sequences in alternat-
ing 2i+1-cycle phases. On every cycle, each merge element
consumes the smallest of its inputs and sends it to the top
output on phase-1 and the bottom output on phase-2.

C. Checking Logic

To check the sort, we confirm the outputs’ order with a
simple pairwise comparison (Fig. 2). We also confirm that
no element was lost or modified by computing an integer
checksum of all the inputs and confirming that it matches that
of the outputs.

Performing the sort requires O(n log(n)) work, whereas
performing n comparisons and sums requires O(n) work. The
check is asymptotically and absolutely easier to perform than
the computation, making it a lightweight check.

Details on our experiments are in Sec. VII. We find that
the LWC’s energy overhead is only 10%, that it can detect all
faults due to single bit flips in the logic, and 99.955% of faults
due to 2 simultaneous flips (Tab. II). Differential reliability
and LWCs allow us to operate at 150mV to get 85% energy
savings with no loss in reliability.

V. SET OF KERNELS WITH LWCS

The sort example shows that we can reduce energy by
running the main computation on low-energy, error-prone
circuitry. The key enabler was the LWC, which raises the
question about how often such checks exist. In this section,
we identify LWCs for common FPGA operations in the areas
of scientific computing and signal and image processing.

A. Do Nothing

Before we review operations with LWCs, we note that many
applications, particularly in signal processing, can increase
the error rate while still maintaining proper operation. These
applications already tolerate some Signal to Noise Ratio
(SNR), such as compression, object matching and feature
detection. Therefore, we often have a margin to decrease
voltage and SNR, yet maintain an acceptable signal, image
or sound quality, even with more errors at the output.

For example, consider using Gaussian Mixture Models
(GMM) [25] to separate foreground objects from the back-
ground. The algorithm itself is inherently noisy. As a result,
the downstream processing typically performs morphological
operations to tolerate isolated pixels that are misidentified
[26]. As long as the errors introduced due to SEUs are small
compared to the noise inherent in the algorithm, the down-
stream operations can tolerate them along with the algorithm

noise. For the sake of evaluation, we assume that one pixel
classification error per 1000 pixels processed is tolerable. This
would result in an isolated foreground or background pixel that
would be removed by the morphological operations.

B. Operations with Checksums

Many signal, image processing, and scientific computing
tasks are based on linear weighted sums. As such, it is
often possible to identify sums that remain invariant between
the input data and the output data, or, at least, change in
easily predictable ways. These sums serve as an LWC on the
operation. As we have already shown, a sum was a useful part
of guarding sort operations (Sec. IV-C).

1) Window Filtering: Window filtering operations compute
each output pixel as the weighted sum of a number of
neighboring pixels. Gaussian Filtering for edge detection is
a common example of a window filter. Since each pixel in
the original image contributes to the output image weighted
by coefficients in the window mask, the total sum of the final
image is the same as the sum of the original image times the
weight of the window mask, provided we compute the edge
pixels for the output image as well (assuming neighbors with
pixel value of 0 when their value is not given).

Except for edging effects, the LWC only requires two
additions for each pixel, one for the input sum and one for
the output sum, while the window filter operation requires
one multiplication and one addition per window coefficient for
each pixel. For a 5×5 window filter, this is 25 multiplications
and additions per pixel.

2) Matrix Multiplication: The n × n square matrix multi-
plication A × B = C requires n3 additions and multiplica-
tions. As suggested in [27] and implemented for FPGAs in
[28], an LWC for this operation is to compute a checksum
row for A: An+1,j =

∑n
i=1Ai,j , a checksum column for

B: Bi,n+1 =
∑n
j=1Bi,j , and include them as part of the

multiplication, resulting in a product matrix C with an extra
row and column, whose common element, the bottom-right
corner, is the sum of all the elements of C, thus the LWC:

Cn+1,n+1 =

n∑
i=1

n∑
j=1

Ci,j

The LWC requires 3n2 additions to compute the checksums
and n additions and multiplications for the corner element
Cn+1,n+1, which is O(n2) complexity. This is less work than
computing A×B = C, which has complexity O(n3).

3) FFT: The Discrete Fourier Transform (DFT) is a matrix-
vector computation, and thus has an LWC similar to the one
just described. However, the most straight-forward version
does not protect against errors in the butterfly multiplications.
A variant from [29] addresses this problem by encoding the
inputs and outputs to assign each of them a non-trivial weight
in the checksum. The result is that we simply need to perform
a dot product on the input and output of the FFT and compare
them. This means the LWC requires O(n) operations, while

the FFT requires O(n log(n)). In fact, the energy overhead of
the check using [29] is about 2/ log(n).

C. Convergent Algorithms

Iterative convergent algorithms are an important class of
kernels in both image processing (e.g., [30]) and scientific
computing [31]. They often have the useful property that an
LWC is built into the algorithm—the convergence acceptance
test. Assuming we protect the acceptance check, it guaran-
tees that no result is produced until correct. In an iterative
improvement computation, the algorithm will typically self-
correct when errors occur. This means, for correctness, we
only need to focus on the convergence test regardless of the
iterative improvement computation.

We use the Conjugate Gradient iterative solution (CGrad) to
a system of linear equations A~x = ~b as an example. We check
whether the residue of the current iteration is smaller than the
one obtained from the previous iteration: (~rTk+1~rk+1 < ~rTk ~rk).
If it is, then the monotonic convergence property of the
conjugate gradient was preserved. Otherwise, we know that
an error occurred during the last iteration, so we rollback to
the previous state whose estimate was closer to the actual
solution. Furthermore, CGrad might converge to a wrong value
even if (~rTk+1~rk+1 < ~rTk ~rk) is respected at every step because
~rk is updated based on its previous value ~rk−1, instead of
using ~rk = ~b − A~xk at every step (making the algorithm
more efficient). We detect these cases by computing A~xk and
confirming that (A~xk = ~b) after convergence is achieved.
Since convergence takes O(n) cycles for an n×n matrix A, the
conjugate gradient algorithm requires O(n3) work, whereas
the check is only an O(n2) operation.

D. Round-off Errors

When dealing with floating-point data, checking exact
equality of the checksums does not work. Instead, to avoid
false positives in the LWC output, we must consider a thresh-
old σ that indicates whether two numbers are close enough
together: whether they might be different only because of
rounding. This threshold should be high enough to avoid false
positives, but low enough to catch errors. We consider two
floating-point numbers to be equal when their difference is
within σ ULPs (Unit of Least Precision).

As suggested in [29] for FFTs, when the LWC catches an
error, the recomputation should be done differently to avoid
triggering the same false positive. For example, in the FFT
case, we use a simple mechanism where the input checksum
is computed as a running sum starting from the ith input,
where i is the number of times the computation was already
performed with the same inputs. In our experiments, this
always succeeded in identifying false positives, and it took
an average of 15 recomputations to do so (if the error is not
a false positive, only 1 recomputation is normally required).
False positives being rare events, and the recomputation being
lightweight, the overall cost associated with false positives is
small as quantified in Sec.VII and Tab. II.

Target	

SDC

fault sim.

Eq. 1
Tolerable	

Fault Rate Eq. 6

Tries Eq.2-5 Esav

VTR activity sim.

Vl
bf
p

Fig. 3: Calculation Flow for Energy Savings

VI. EVALUATION METHODOLOGY

To evaluate the effectiveness of differential reliability and
LWCs, we need to understand:
• How reliably the check protects the kernel as a function

of SEU rate
• How lightweight the check is compared to the base kernel

computation
• How the SEU rate rises with voltage reduction

Fig. 3 shows how the pieces come together to estimate energy
savings. We describe our kernels and LWCs in Bluespec
SystemVerilog [32] and compile them to Verilog. The Verilog
modules are then mapped with VTR (Verilog To Routing) [33].
The rest of this section describes the custom components of
the Fig. 3 flow.

a) Reliability: To estimate reliability, we systematically
inject all combinations of 1, 2, or 3 errors into a mapped,
LUT-level simulation of the kernel and compare the outputs
with an error-free version of the kernel. Each error is injected
for one randomly chosen clock cycle at the net level (at
LUT outputs), thus covering logic and routing transient errors.
From these simulations, we determine which faults actually
propagate to outputs, which are detected by the lightweight
check, and which are not detected at the output. To compute
the probability of Silent Data Corruption (SDC), an error that
is not caught by our LWC, we compute:

psdc =

∞∑
i=1

(
N

i

)
(pbf)

i
(1− pbf)N−i pprop(i)× (1)

[pundet(i)(1− pfd) + (1− pundet(i)) pfd]

Here pbf is the probability of a LUT output being in error, i is
the number of gates failing on a cycle, N is the total number
of gate evaluations in the kernel, pprop(i) is the probability the
error propagates to the output when there are i faults, pfd is
the probability of an error in the detector itself, and pundet(i)
is the probability that the injection of i faults results in an
error at the output that is not detected by the LWC. Since
the probability of errors decreases exponentially with i, we
approximate Eq. 1 by only performing the sum up to i = 3.

b) Energy: For relative energy estimations, we map our
designs to 4-LUTs with one LUT per cluster. In FPGAs, it
is well-known that interconnect is the dominant contribution
to energy [34]. As such, we approximate the dynamic energy
consumption of a net i as proportional to its activity αi and
segment count Sci . This gives the total energy of a circuit:

Edyn = βCsegV
2 (2)

β =
∑
nets i

αiSci (3)

Cseg is the capacitance of an interconnect segment. Our
custom simulator computes each net’s activity factor, αi, and
reads in segment counts, Sci , from VTR’s output route file,
allowing us to evaluate energy consumption. Since the ratios
of energies do not depend on Cseg , the absolute value of Cseg
is not important to the comparison. This is an abstract model,
not for a specific FPGA; we believe that it is representative of
FPGA energy. As a sanity check, we correlated the total com-
putation and routing energy that Altera PowerPlay estimates
for designs mapped to a Stratix IV to the R4 segment count
for those designs and found a correlation coefficient of 98%.
We compute β for both the kernel computation (βkernel) and
for its associated LWC (βlwc).

The total energy for a protected computation is:

Etotal = Tries× (Ekernel + Elwc) (4)

The average number of tries is 1
1−prcmp

; prcmp is the probabil-
ity that a failure is detected, requiring rollback and recomputa-
tion, which is also computed by our fault injection simulations.
This means the total energy saved when operating the kernel
at low voltage, Vl, and the checker at a high voltage, Vh, is:

Esav = 1− Etotal
Ekernel(V = Vh)

= 1−

[(
Vl
Vh

)2

+
βlwc
βcomp

](
1

1− prcmp

)
(5)

As Vl tends to zero, Esav is driven toward the β ratio until
prcmp becomes large.

c) Reliability and Voltage: Both [35] and [36] suggest an
exponential relationship between Soft Error Rate (SER) and
voltage due to the minimum charge, Qcrit, that needs to be
deposited by a particle strike to upset a node:

pbfl(V) = pbfh10
c0(Vh−Vl) (6)

pbfl is the bit flip rate of a node at voltage Vl, pbfh is the bit flip
rate at nominal voltage (Vh = Vdd), and c0 is a technology-
dependent constant. To date, these values have largely been
determined by physical fault injection experiments. The exact
value of c0 does not affect the core ideas and basic trends
presented in this paper, but will impact the absolute benefits.
In this paper, we show our greatest benefits for any c0 ≤ 18.
For reference, we can estimate c0 = 3 at 90 nm from [37].

[38] predicts and [39] experimentally confirms a FIT rate
(Failures In Time = number of failures in one Billion hours of
operation) (pbfh) of about 4.4× 10−5 for an inverter running
at 1 GHz in the 90 nm technology. Furthermore, Fig. 5 in [38]
suggests an order of magnitude increase in FIT rate when
scaling feature size by a factor of 2, so about 4.4 × 10−3

at 22 nm. This means the probability of a bit flip, pbfh , on
a net running at the nominal voltage (ITRS suggested Vdd),
is on the order of pbfh = 4.4×10−3

1 Billion hours×1GHz ≈ 10−24.
Nonetheless, the exact value of pbfh does not have a strong
impact on the results. Our results on energy savings in Sec. VII
are unchanged for any pbfh ≤ 10−19.

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6
c0=10
c0=8
c0=6
c0=4
c0=3
c0=2

VL (V)

pb
fl

 /
pb

f h

Vl (Volts)

Fig. 4: Bit flip rate of logic at low voltage Vl to bit flip rate
of logic at nominal voltage Vh = 0.7

VII. RESULTS

A. Characteristics of the Kernels

We evaluate the impact of the LWCs described in Sec. V.
Their characteristics are shown in Tab. II. Input data to the
kernels is generated uniformly at random, and it is appropri-
ately scaled to avoid saturation to infinity. Except for CGrad,
the work performed per task is data independent.

How lightweight are the checks? Tab. II shows the LWC
overheads for each kernel, the βratio, with values ranging
between 0–14%. The βratio is a lower bound on the energy
used by the LWC scheme—a low βratio ensures there is
enough room for energy gains when voltage is scaled (Eq. 5).
Tab. II also shows the raw reliability statistics for the kernels
and LWCs including their rate of detection (pundet) and rate
of false positives (pf+t).

B. Effects of the Different Parameters

1) Error Rate Scaling: What range of SERs do we expect
to see for pbf? Fig. 4 plots the exponential dependency of the
bit flip rate pbfl on voltage according to Eq. 6 for different
values of c0. This shows a one to six order of magnitude
increase in fault rate across our operational voltage range.

2) Error Rate Impact: What range of SER can our LWC
mitigate? Fig. 5 shows how increasing the bit flip rate per net
increases the overall error rate seen at the output of the WinF
kernel—its SDC rate (similar results are obtained for the other
kernels). Note that we show increasing bit flip rates towards
the left since high error rates correlate with smaller voltages,
which we show on the left of other graphs. This is shown
when no LWC is used (Unprotected), and when the LWC is
kept at a fixed bit flip rate of 10−24 (Diffrel). Also shown is
the recomputation rate of Diffrel, which is very close to the
SDC rate for the Unprotected case since most of the errors are
caught and recomputed. Diffrel clearly shows the improvement
in reliability over the Unprotected case. The line showing a
108× difference in bit flip rate suggests that the Protected case
could run in an environment with a bit flip rate 108 times
higher, yet still provide the same overall reliability (SDC rate)
as the Unprotected case with a bit flip rate of 10−24. This is
less than the 106× increase in bit flip rate from Fig. 4.

1E-221E-181E-141E-10
1E-32

1E-28

1E-24

1E-20

1E-16

1E-12

1E-08

1E-04

1E+00

SDC rate
Unprotected
pbf_comp = pbf

SDC rate
Diffrel
pbf_comp = pbf
pbf_check = 1e-24

Prcmp – Diffrel

pbf - Bit Flip Rate per net

Pr
ob
ab
ili
tie
s

Increasing
Bit Flip Rate

1e-24

x108

Fig. 5: Effect of changing the bit flip rate per net (pbf) on
overall reliability and rollback rate (prcmp) for WinF

3) Energy Savings: How much energy do we actually save?
Fig. 6a shows the exponential evolution of psdc, the error
rate at the output of WinF, as a function of c0, as voltage is
varied. It highlights the point at which psdc crosses the SDC
rate target obtained from running the unprotected kernel at
Vdd. This determines the lowest operating voltage at which
we can meet the reliability target. Fig. 6b shows how the
associated voltage points turn into net energy savings. The
main curve (c0=2–15) stops at the 150 mV point (Sec. III-D),
where most of the possible savings are achieved. As c0
is increased, the same voltage point results into a higher
upset rate, translating to a higher prcmp. Yet, as long as
the upset rate is low enough to keep prcmp low (e.g., less
than 1%), Esav is determined by the voltage and the βratio

(i.e., Esav ' 1 −
[(

Vl

Vh

)2
+ βcheck

βcomp

]
from Eq. 5). This is

independent of c0, which is why the curves shown in Fig. 6b
overlap for every c0 parameter when the voltages are high.
However, each c0 has a different point at which the energy
savings curve reaches a maximum, then starts degrading, due
to prcmp becoming dominant. Highlighted dots on the curves
show the voltage points at which the LWC mitigated SDC
rate, psdc, drops to the full voltage SDC rate (same points
as shown in Fig. 6a), indicating the maximum energy savings
achievable without degrading overall reliability compared to a
design running at Vdd without LWCs.

In addition to high energy savings, low prcmp also ensures
that the throughput overhead of the checking and recomputa-
tion operations is low. This is especially important in embed-
ded applications with a limited tolerance for recomputation in
order to support real-time processing.

4) Sensitivity To c0: How much do the results change as c0
increases? Fig. 7 plots the optimum Esav points (highlighted
dots in Fig. 6) versus c0 for all the kernels. This shows
how the energy savings we can achieve vary with technology
characteristics. While we are uncertain of the appropriate value
of c0 at 22 nm, we do not expect it to be an order of magnitude
higher than c0 = 3 that we saw for 90 nm. We include data
at larger c0 only to illustrate the evolution in behavior. Fig. 7
shows net energy savings in excess of 80% for all kernels up
to c0 = 15. The LWCs all achieve higher reliability (lower

TABLE II: Characteristics of the Different Kernels
Nets Segment Count Average α β (energy) pundet (%) (c0 = 3)

Kernel Properties Data Depth Comp LWC Comp LWC Comp LWC Comp LWC Ratio Ne=1 Ne=2 Ne=3 pf+t prcmp

Sort 128 inputs Float 128 6400 904 66183 5263 11.7% 15.4% 7748 811 10% 0 0.045 0.075 0 2.2e-8
CGrad A16×16 Float 376 15850 4971 189888 59814 7.5% 1% 14200 588 4.1% 0 0 0 0 2.1e-3

FFT 32K-point Double 240K 57254 63108 891492 916320 7.9% 1.1% 70122 10060 14% 0 0.016 0.022 3.8e-8 5.4e-7
WinF 1K × 1K FixP32 1024K 1103 278 6545 1341 24.4% 13.9% 1594 186 12% 0 3.31 0.46 0 2.6e-7
GMM 3 models FixP32 1 6057 0 68109 0 22.6% 0% 15419 0 0% - - - 0 0

MatMul-i 16× 16 Int32 4K 1512 2285 14646 18629 21.2% 1.99% 3101 147 4.7% 0 1.38 0.29 0 2.7e-8
MatMul-s 16× 16 Float 4K 4731 9486 60513 118277 7.2% 0.3% 4375 396 9.1% 0 0.071 0.474 5.9e-10 2.0e-8

0.1 0.2 0.3 0.4 0.5 0.6 0.7
1E-32

1E-28

1E-24

1E-20

1E-16

1E-12

1E-08

1E-04

1E+00

C0=35

C0=30

C0=18

C0=10

C0=3

SDC
rate
withoutS

D
C

 r
a

te c0 = 35

co = 30

c0 = 18

Target
Reliability

SDC rate
with LWC

Vl (Volts)

SDC rate
without
LWC
at Vdd

(a) Error Rate Versus Voltage for Different c0 Values for WinF

0.1 0.2 0.3 0.4 0.5 0.6 0.7

-20%

0%

20%

40%

60%

80%

100%

Max Esav
1-βratio

c0=2-20

c0=30

c0=35

E
n

e
rg

y
S

a
vi

n
g

s
(E

sa
v)

c0=30
c0=35

c0=18

c0=2-15

Vl (Volts)

Target
Reliability

(b) Energy Savings Versus Voltage for Different c0 Values for WinF

Fig. 6: Effects of Voltage Scaling for Different c0 Values

SDC) than the target at low c0 values. Nonetheless, they have
different levels of protection, so we see them begin to drop
from their maximum savings at different c0 values. Those with
the highest probability of undetected errors (e.g. WinF) and
false positive rates (e.g., FFT) drop first (See Tab. II), while
those with no false positives and no undetected errors up to
3 errors injected (GMM and CGgrad) tolerate the highest c0
values before their savings begins to drop.

VIII. OPEN QUESTIONS

As noted at the outset, this paper focused only on logic
and interconnect energy. The full design also includes storage
energy that can be reduced using small distributed memories
as shown in [3] to prevent memory energy from dominating
the total energy as we scale voltage down for the logic and
interconnect. Applying the differential reliability and LWC
technique shown here to the optimized kernels in [3], we get
total savings, including memory, of 90% for GMM, 76% for
WinF, and 78% for FFT (Sec.VII.D in [3]).

0 5 10 15 20 25 30 35 40
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
GMM
Cgrad
MatMul-i
Sort
MatMul-s
WinF
FFT

E
n

e
rg

y
S

a
vi

n
g

s
(E

sa
v)

Expected
c0 range

C0

C0=3

Fig. 7: Energy Savings Achievable over Different Technology
Points (Different c0)

Furthermore, a full accounting must include any extra
energy required to store and recover data that would not be
incurred in a fault-free computation. Whether the data needs
to be stored in the baseline case is highly dependent upon how
the kernel is used in a larger computation.

When a kernel becomes large, a high N could make the
probability of seeing an error, 1 − (1− pbfl)

N , too high, to
the point where it could drive the recomputation rate up and
Esav down. In this case, it may be beneficial to decompose the
kernel into smaller subkernels with lower error probabilities
for each: we compute checksums on smaller computations
and rollback less often. Identifying the kernel sizes at which
decomposition is necessary is left as future work.

Finally, we also leave as future work the exploration of the
freedom we have in trading some of the achievable energy
benefits for an increase in reliability over unprotected designs
running at Vdd. This is useful when the SDC rate at nominal
voltage is unacceptably high for a given application.

IX. CONCLUSIONS

Energy consumption is becoming the dominant concern in
a large variety of computing systems at the same time that
operational reliability is preventing aggressive voltage scaling.
We show how FPGAs can use differential reliability, alongside
component-specific mapping and configuration scrubbing, to
reduce operating voltage and save over 80% energy in some
common FPGA tasks without decreasing reliability, even when
the relation between upset rate and voltage decrease is expo-
nential. This provides an opportunity to narrow the traditional
energy gap between FPGAs and ASICs. A key enabler was
the identification of lightweight checks for a set of important
FPGA kernels whose low logic overhead of 0–14% enables
high energy savings.

X. ACKNOWLEDGMENTS

This research was funded in part by DARPA/CMO contract
HR0011-13-C-0005. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

REFERENCES

[1] B. Nikolic, “Design in the power-limited scaling regime,” IEEE Trans.
Electron Devices, vol. 55, no. 1, pp. 71–83, January 2008. I

[2] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in ISCA,
2011, pp. 365–376. [Online]. Available: http://doi.acm.org/10.1145/
2000064.2000108 I

[3] E. Kadric, K. Mahajan, and A. DeHon, “Kung fu data energy—
minimizing communication energy in FPGA computations,” in FCCM,
2014. I, VIII

[4] Y. Hu, Y. Lin, L. He, and T. Tuan, “Physical synthesis for FPGA
interconnect power reduction by dual-Vdd budgeting and retiming,”
ACM Tr. Des. Auto. of Elec. Sys., vol. 13, no. 2, pp. 1–29, 2008. II-A

[5] J. Ryan and B. Calhoun, “A sub-threshold FPGA with low-swing dual-
Vdd interconnect in 90nm CMOS,” in CICC, September 2010, pp. 1–4.
II-A

[6] D. Lewis, E. Ahmed, D. Cashman, T. Vanderhoek, C. Lane,
A. Lee, and P. Pan, “Architectural enhancements in Stratix-III
and Stratix-IV,” in FPGA, 2009, pp. 33–42. [Online]. Available:
http://doi.acm.org/10.1145/1508128.1508135 II-A

[7] V. Chandra and V. R. Aitken, “Impact of technology and voltage
scaling on the soft error susceptibility in nanoscale CMOS,”
in DFT, ser. DFT ’08, 2008, pp. 114–122. [Online]. Available:
http://dx.doi.org/10.1109/DFT.2008.50 III-A

[8] J. Kim and L. Kish, “Error rate in current-controlled logic processors
with shot noise,” Fluct. and Noise Let., vol. 4, no. 1, pp. 83–86, 2004.
III-A

[9] J. Johnson, W. Howes, M. Wirthlin, D. McMurtrey, M. Caffrey, P. Gra-
ham, and K. Morgan, “Using duplication with compare for on-line error
detection in FPGA-based designs,” in Proc. of IEEE Aerospace Conf.,
2008, pp. 1–11. III-B

[10] C. Carmichael, Triple Module Redundancy Design Techniques for Vir-
tex FPGAs, Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124,
2006, xAPP 197 <http://www.xilinx.com/bvdocs/appnotes/xapp197.
pdf>. III-B

[11] N. Rollins, M. Wirthlin, P. Graham, and M. Caffrey, “Evaluating TMR
techniques in the presence of single event upsets,” in Proc. MAPLD,
2003. III-B

[12] B. Pratt, M. Caffrey, P. Graham, K. Morgan, and M. Wirthlin, “Improv-
ing FPGA design robustness with partial TMR,” in Proc. IEEE Intl. Rel.
Phys. Symp., 2006, pp. 226–232. III-B

[13] T. Austin, D. Blaauw, T. Mudge, and K. Flautner, “Making typical
silicon matter with Razor,” IEEE Computer, vol. 37, no. 3, pp. 57–65,
March 2004. III-B

[14] A. Brant, A. Abdelhadi, D. Sim, S. L. Tang, M. Yue, and G. Lemieux,
“Safe overclocking of tightly coupled CGRAs and processor arrays using
razor,” in FCCM, 2013, pp. 37–44. III-B

[15] C. Carmichael and C.-W. Tseng, Correcting Single-Event Upsets
in Virtex-4 Configuration Memory, Xilinx, Inc., 2100 Logic
Drive, San Jose, CA 95124, 2009, xAPP 1008. [Online].
Available: http://www.xilinx.com/support/documentation/application
notes/xapp1088.pdf III-C

[16] G.-H. Asadi and M. B. Tahoori, “Soft error mitigation for SRAM-based
FPGAs,” in Proc. VLSI Test Symp., 2005, pp. 207–212. III-C

[17] N. Mehta, R. Rubin, and A. DeHon, “Limit Study of Energy & Delay
Benefits of Component-Specific Routing,” in FPGA, 2012, pp. 97–106.
III-C, III-D

[18] V. Lakamraju and R. Tessier, “Tolerating operational faults in cluster-
based FPGAs,” in FPGA, 2000, pp. 187–194. III-C, III-E

[19] R. Rubin and A. DeHon, “Choose-Your-Own-Adventure Routing:
Lightweight Load-Time Defect Avoidance,” Transactions on Reconfig-
urable Technology and Systems, vol. 4, no. 4, December 2011. III-C,
III-E

[20] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
IEEE Trans. Computer-Aided Design, vol. 26, no. 2, pp. 203–215,
February 2007. III-D

[21] E. A. Stott, J. S. J. Wong, P. Pete Sedcole, and P. Y. K. Cheung,
“Degradation in FPGAs: measurement and modelling,” in FPGA, 2010,
p. 229. III-E

[22] A. DeHon, Y. Markovsky, E. Caspi, M. Chu, R. Huang, S. Perissakis,
L. Pozzi, J. Yeh, and J. Wawrzynek, “Stream computations organized for
reconfigurable execution,” J. Microproc. and Microsys., vol. 30, no. 6,
pp. 334–354, September 2006. IV-A

[23] M. Butts, A. Jones, and P. Wasson, “A structural object programming
model, architecture, chip and tools for reconfigurable computing,” in
FCCM, 2007, pp. 55–64. IV-A

[24] D. Koch and J. Torresen, “FPGASort: A high performance sorting
architecture exploiting run-time reconfiguration on FPGAs for large
problem sorting,” in FPGA, 2011, pp. 45–54. IV-B

[25] M. Genovese and E. Napoli, “ASIC and FPGA implementation of the
gaussian mixture model algorithm for real-time segmentation of high
definition video,” IEEE Trans. VLSI Syst., vol. 22, no. 3, pp. 537–547,
March 2014. V-A

[26] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture
models for real-time tracking,” in Computer Vision and Pattern
Recognition, 1999. IEEE Computer Society Conference on., vol. 2.
Los Alamitos, CA, USA: IEEE, Aug. 1999, pp. 246–252 Vol. 2.
[Online]. Available: http://dx.doi.org/10.1109/cvpr.1999.784637 V-A

[27] K.-H. Huang and J. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Trans. Comput., vol. C-33, no. 6, pp. 518–
528, 1984. V-B2

[28] A. Jacobs, G. Cieslewski, and A. D. George, “Overhead and reliability
analysis of algorithm-based fault tolerance in FPGA systems,” in FPL,
2012. V-B2

[29] S.-J. Wang and N. K. Jha, “Algorithm-based fault tolerance for FFT
networks,” IEEE Trans. Comput., vol. 43, no. 7, pp. 849–854, July 1994.
V-B3, V-D

[30] S. Baker and I. Matthews, “Lucas-kanade 20 years on: A unifying
framework,” International Journal of Computer Vision, vol. 56, no. 3,
pp. 221–255, Febuary 2004. V-C

[31] Y. Saad, Iterative Methods for Sparse, Linear Systems, 2nd ed. SIAM,
2003. V-C

[32] Bluespec, Inc., “Bluespec SystemVerilog 2012.01.A.” [Online].
Available: http://www.bluespec.com VI

[33] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville, K. B.
Kent, P. Jamieson, and J. Anderson, “The VTR project: architecture and
CAD for FPGAs from verilog to routing,” in FPGA. New York, NY,
USA: ACM, 2012, pp. 77–86. VI

[34] T. Tuan, A. Rahman, S. Das, S. Trimberger, and S. Kao, “A 90-nm Low-
Power FPGA for Battery-Powered applications,” IEEE Trans. Computer-
Aided Design, vol. 26, no. 2, pp. 296–300, 2007. VI-0b

[35] D. Zhu, R. Melhem, and D. Mossé, “The effects of energy management
on reliability in real-time embedded systems,” in ICCAD, 2004, pp. 35–
40. VI-0c

[36] F. Firouzi, M. E. Salehi, F. Wang, and S. M. Fakhraie, “An accurate
model for soft error rate estimation considering dynamic voltage and
frequency scaling effects,” Micro. Rel., vol. 51, no. 2, pp. 460–467,
2011. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0026271410004804 VI-0c

[37] T. Heijmen, P. Roche, G. Gasiot, K. Forbes, and D. Giot, “A compre-
hensive study on the soft-error rate of flip-flops from 90-nm production
libraries,” IEEE Trans. Device Mat. Rel., vol. 7, no. 1, pp. 84–96, 2007.
VI-0c

[38] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi,
“Modeling the effect of technology trends on the soft error rate of
combinational logic,” in Proc. Intl. Conf. Dependable Sys. and Nets,
2002, pp. 389–398. VI-0c

[39] B. Narasimham, M. Gadlage, B. Bhuva, R. Schrimpf, L. Massengill,
W. Holman, A. Witulski, R. Reed, R. Weller, and X. Zhu, “Charac-
terization of neutron- and alpha-particle-induced transients leading to
soft errors in 90-nm CMOS technology,” IEEE Trans. Device Mat. Rel.,
vol. 9, no. 2, pp. 325–333, 2009. VI-0c

Web link for this document: <http://ic.ese.upenn.edu/abstracts/lwc fccm2014.html>

http://doi.acm.org/10.1145/2000064.2000108
http://doi.acm.org/10.1145/2000064.2000108
http://doi.acm.org/10.1145/1508128.1508135
http://dx.doi.org/10.1109/DFT.2008.50
http://www.xilinx.com/bvdocs/appnotes/xapp197.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp197.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp197.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp197.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1088.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1088.pdf
http://ic.ese.upenn.edu/abstracts/cspec_limit_fpga2012.html
http://ic.ese.upenn.edu/abstracts/cspec_limit_fpga2012.html
http://ic.ese.upenn.edu/abstracts/cya_trets2011.html
http://ic.ese.upenn.edu/abstracts/cya_trets2011.html
http://dx.doi.org/10.1109/cvpr.1999.784637
http://www.bluespec.com
http://www.sciencedirect.com/science/article/pii/S0026271410004804
http://www.sciencedirect.com/science/article/pii/S0026271410004804
http://ic.ese.upenn.edu/abstracts/lwc_fccm2014.html

