
Appearing in International Symposium on Field-Programmable Gate Arrays (FPGA’03), Feb. 23–25, 2003

Design of FPGA Interconnect for Multilevel Metalization

Raphael Rubin
Dept. of CS, 256-80

California Institute of Technology
Pasadena, CA 91125

rafi@ugcs.caltech.edu

André DeHon
Dept. of CS, 256-80

California Institute of Technology
Pasadena, CA 91125

andre@acm.org

ABSTRACT
How does multilevel metalization impact the design of FPGA
interconnect? The availability of a growing number of metal
layers presents the opportunity to use wiring in the third-
dimension to reduce switch requirements. Unfortunately,
traditional FPGA wiring schemes are not designed to exploit
these additional metal layers. We introduce an alternate
topology, based on Leighton’s Mesh-of-Trees, which care-
fully exploits hierarchy to allow additional metal layers to
support arbitrary device scaling. When wiring layers grow
sufficiently fast with aggregate network size (N), our network
requires only O(N) area; this is in stark contrast to tra-
ditional, Manhattan FPGA routing schemes where switch-
ing requirements alone grow superlinearly in N. In practice,
we show that, even for the admittedly small designs in the
Toronto “FPGA Place and Route Challenge,” the Mesh-of-
Trees networks require 10% less switches than the standard,
Manhattan FPGA routing scheme.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network Topology ; B.7.1 [Inte-
grated Circuits]: Types and Design Styles—VLSI

General Terms
Design, Experimentation, Theory

Keywords
Mesh-of-Trees, Hierarchical, Multi-level Metalization, FPGA,
Interconnect

1. INTRODUCTION
How should FPGA interconnect be designed to exploit mul-

tilevel metalization?
VLSI technology has advanced considerably since the first

FPGAs [7]. Feature sizes have shrunk, die sizes and raw ca-
pacities have grown, and the number of metal layers avail-
able for interconnect has grown. The most advanced VLSI

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’03,February 23–25, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-651-X/03/0002 ...$5.00.

processes now sport 7–9 metal layers, and metal layers have
grown roughly logarithmically in device capacity [5].

How should this shift in available resources affect the way
we design FPGAs?

One can view multi-level metalization, and particularly
the current rate of scaling, as an answer to the quandary
that interconnect requirements for typical designs (Rent’s
Rule [13] p > 0.5) grows faster than linearly with gate count
[10] [9]. If we can accommodate the growing wire require-
ments in the third dimension using multiple wire layers, then
we may be able to maintain constant density for our de-
vices. Alternately, if we cannot do this, the (2D) density of
our devices necessarily decreases as we go to larger device
capacities.

The existence of additional metal layers is not sufficient,
by itself, to stave off this problem. We must further guaran-
tee that we can contain the active silicon area to a bounded
area per device (e.g. an asymptotically bounded number of
switches per gate) and that we can topologically arrange to
use the additional metalization.

We show that the dominant, traditional, Manhattan style,
interconnect scheme is not directly suited to exploiting multi-
level metalization (Section 2). Its superlinear switch require-
ments preclude it from taking full advantage of additional
metal layers. The density of these architectures ultimately
decreases with increasing gate count.

We introduce an alternative topology, based on Leighton’s
Mesh-of-Trees [15] [14] which exploits hierarchy more strictly
while retaining the two-dimensional interconnect style of the
Manhattan interconnect (Section 3). We show that this
topology has an asymptotically constant number of switches
per endpoint and that it can be arranged to fully exploit
additional metal layers. As a result, given a sufficient inter-
connect layer growth rate, the gate density remains constant
across increasing gate counts.

In Section 4, we summarize a set of empirical compar-
isons which place our Mesh-of-Trees design relative to stan-
dard Manhattan routing topologies and explore a few of the
important design parameters available to this topology.

2. MANHATTAN INTERCONNECT

2.1 Base Model
Figure 1 shows the standard model of a Manhattan (Sym-

metric [6], Island-style [4]) interconnect scheme. Each com-
pute block (LUT or island of LUTs) is connected to the
adjacent channels by a C-box. At each channel intersection
is an S-box. In the C-box, each compute block IO pin is con-

S−Box

C−Box

C
−B

ox

Compute
 Block

S−Box

C−Box

C
−B

ox

Compute
 Block

S−Box

C−Box
C

−B
ox

Compute
 Block

S−Box

C−Box

C
−B

ox

Compute
 Block

S−Box

C−Box
C

−B
ox

Compute
 Block

S−Box

C−Box

C
−B

ox

Compute
 Block

S−Box

C−Box
C

−B
ox

Compute
 Block

S−Box

C−Box

C
−B

ox

Compute
 Block

S−Box

C−Box

C
−B

ox

Compute
 Block

Figure 1: Manhattan Interconnect Model (W = 6,
I = 2 shown)

nected to a fraction of the wires in a channel. At the S-box,
each channel on each of the 4 sides of the S-box connects to
one or more channels on the other sides of the S-box.

Early experiments [6] considered the number of sides of
the compute block on which each input or output of a gate
appeared (T), the fraction of wires in each channel each of
these signals connected to (Fc), and the number of switches
connected to each wire entering an S-box (Fs). Regardless
of the detail choices for these numbers, they have generally
been considered constants, and the asymptotic characteris-
tics are independent of the particular constants chosen.

To keep this general, let’s simply assume each side of the
compute block has I inputs or outputs to the channel. If we
are thinking about a single-output k-LUT as our compute

block, then I = T×(k+1)
4

. The number of switches in a C-box
is:

Csw = 2 · Fc · I ·W (1)

W is the width of the channel. Each S-box requires:

Ssw =

(
4

2

)
· Fs ·W = 2 · Fs ·W (2)

On average, each compute block adds two connection boxes
and one S-box (as shown highlighted in Figure 1). So, the
total number of switches per compute block is:

Bsw = 2 · Csw + Ssw = 2W (2 · Fc · I + Fs) (3)

Dropping the constants we get:

Bsw = O(W) (4)

That is, we see that the number of switches required per
compute block is linear in W , the channel width.

We can get a loose bound on channel width simply by
looking at the bisection width of the design. If a design
has a minimum bisection width BW , then we have a lower
bound on the channel width:

BW ≤
√
N ·W (5)

that is, we must provide at least BW bandwidth across the√
N row (or column) channels which cross the middle of the

chip. This allows us to solve for a lower bound on W :

W ≥ BW√
N

(6)

Compute
 Block

S−BoxC
−B

ox

C−Box Compute
 Block

S−BoxC
−B

ox

C−Box Compute
 Block

S−BoxC
−B

ox

C−Box

Compute
 Block

S−BoxC
−B

ox

C−Box Compute
 Block

S−BoxC
−B

ox

C−Box Compute
 Block

S−BoxC
−B

ox

C−Box

Figure 2: Segmentation in Manhattan Interconnect
Model (Example shows Lseg = 2)

Empirically, we find that the bisection width of a design can
often be characterized by the Rent’s Rule relation [13]:

BW = IO = cNp (7)

This now allows us to define a correspondence between W
and N :

W ≥ cNp

√
N

= O
(
N (p−0.5)

)
(8)

This is the same correspondence which one gets by combin-
ing the results of Donath [11] and El Gamal [12] for p > 0.5.
This means:

Bsw = O(W (N)) = O
(
N (p−0.5)

)
(9)

All together, this says that as we build larger designs, if
the interconnect richness is greater than p = 0.5, the switch
requirements per compute block is growing for the Manhat-
tan topology; this means the aggregate switching require-
ments grow superlinearly with the number of compute blocks
supported. Regardless of the metalization offered, our de-
signs will decrease in density with increasing gate count.

2.2 Segmentation
Modern designs, both in practice and in academic stud-

ies use segments which span more than one switchbox (See
Figure 2). For example, a recent result from Betz suggests
that length 4–8 buffered segments require less area than al-
ternatives [2]. The important thing to notice is that any
fixed segmentation scheme only changes the constants and
not the asymptotic growth factor in Equation 9. In partic-
ular, using a single segmentation scheme of length Lseg will
change Equation 2 to:

Ssw =

(
1

Lseg

)
(2)Fs ·W =

(
2

Lseg

)
Fs ·W (10)

In practice the W will be different between the segmented
and non-segmented cases, with the segmented cases requir-
ing larger W ’s, but the asymptotic lower bound relationship
on W derived above still holds. Similarly, a mixed segmen-
tation scheme will also change the constants, but not the
asymptotic requirements.

2.3 Hierarchical
A strictly hierarchical segmentation scheme might allow

us to reduce the switchbox switches. Consider, that we have
a base number of wire channels Wb, and populate the chan-
nel with Wb single length segments, Wb length 2 segments,
Wb length 4 segments, and so forth. Using Equation 10

with Wlb in for W and summing across the geometric wire
lengths, we see the total number of switches needed per
switchbox is:

Ssw =

 Nlevel∑
Lseg=1

(
1

Lseg

) (2)Fs ·Wb

=

(
1

1
+

1

2
+

1

4
+

1

8
+ · · ·

)
· 2 · Fs ·Wb

≤ 4 · Fs ·Wb (11)

The total wire width of a channel is now:

W = Nlevel ·Wb (12)

For sufficiently large Nlevel, we can raise W to the required
bisection width. Since Ssw in this hierarchical case does not,
asymptotically, depend on Nlevel, the number of switches
converges to a constant.

However, we should note this still does not change the
asymptotic switch requirements, since the switch require-
ments depend on both the C-box switches and the S-box
switches. As long as the C-box switches continue to connect
to a constant fraction of W and not Wb, the C-box contri-
bution to the total number of switches per compute block
(Equation 1) continues to make the total number of switches
linear in W and hence growing with N .

From this we see clearly that it is the flat connection of
block IOs to the channel which ultimately impedes scalabil-
ity.

2.4 Switch Dominated
Conventional experience implementing this style of inter-

connect has led people to observe that switch requirements
tend to be limiting rather than wire requirements (e.g. [2]).
Asymptotically, we see that an N -node FPGA will need:

Nswitch (N) = Bsw ·N = O
(
N (p+0.5)

)
(13)

With BW wires in the bisection, we will require at least

Awire (N) ≥
(
BW

L/2

)2

= O

(
N2p

L2

)
(14)

For a fixed number of wire layers (L), this says wiring re-
quirements grow slightly faster than switches (i.e., when
p > 0.5, 2p > p+ 0.5). Asymptotically, this suggests that if

the number of layers, L grows as fast as O(N(2p−1
4)), then

we will remain switch dominated. Since switches have a
much larger constant contribution than wires, it is not sur-
prising that designs require a large N for these asymptotic
effects to become apparent.

3. MESH OF TREES
The asymptotic analysis in the preceding section says that

it is necessary to bound the compute block connections to
a constant if we hope to contain the total switches per
compute block to a constant independent of design size.
Leighton’s Mesh-of-Trees (MoT) network [15] [14] is a topol-
ogy which does just that. Simply containing the switches to
a constant is necessary but not sufficient to exploit addi-
tional metal layers. Later in this section, we also show that
the MoT topology can be wired within a constant layout
area per compute block.

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

Figure 3: Basic Mesh-of-Trees (MoT) Topology

3.1 Basic Arrangement
In the MoT arrangement we build a tree along each row

and column of the grid of compute elements (See Figure 3).
For now, we will assume the tree is binary, but we can cer-
tainly vary the arity of the tree as one of the design param-
eters. The compute blocks connect only to the lowest level
of the tree. Connection can then climb the tree in order to
get to longer segments. We can place multiple such trees
along each row or column to increase the routing capacity
of the network. Each compute block is simply connected to
the leaves of the set of horizontal and vertical trees which
land at its site. We can parameterize the way the compute
block connects to the leaf channels in a manner similar to
the Manhattan C-box connections above.

We will use the parameter C to denote the number of
trees which we use in each row and column. The C-box
connections at each “channel” in this topology are made
only to the C wires which exist at the leaf of the tree.

Csw = 2Fc · I · C (15)

In the simplest sense, we do not have switch boxes in this
topology. At the leaf level, we allow connections between
horizontal and vertical trees. Typically, we consider allow-
ing each horizontal channel to connect to a single vertical
channel in a domain style similar to that used in typical
Manhattan switchboxes. This gives:

HVsw = C (16)

It would also be possible to fully populate this corner turn,
allowing any horizontal tree to connect to any vertical tree at
points of leaf intersection without changing the asymptotic
switch requirements.

HVsw = C2 (17)

Within each row or column tree, we need a switch to connect
each lower channel to its parent channel. This can be as
simple as a single pass transistor and associated memory
cell. Amortizing across the compute blocks which share a
single tree, per compute block we need a total of:

Tsw = 1 +
1

2
+

1

4
+ ... < 2 (18)

The horizontal channel holds C such trees, as does the ver-
tical channel. Thus, each compute block needs:

Bsw = Csw +HVsw + 2 · C · Tsw (19)

< Csw +HVsw + 4 · C

Leaf Switches Switches
Span Wires per Wire per Endpoint

1 1 2 2
2 2 1 1
4 2 2 1
8 4 1 1

2

16 4 2 1
2

32 8 1 1
4

64 8 2 1
4

...
...

...
...

Table 1: Switches/Node for p = 0.75 MoT

Using the linear corner turn population (Eq. 16):

Bsw < 2 · Fc · I · C + 5 · C (20)

< (2 · Fc · I + 5) · C

Assuming we can hold C bounded with increasing design
size, this leaves us with a constant number of switches per
compute block.
Tree Growth The strict binary tree we have shown
correspondents to p = 0.5. To accommodate larger p values,
it is necessary to grow the number of parents in the tree.
Returning to Equation 8, we need W = CN (p−0.5). We
can arrange to support a larger p with the mesh of trees by
increasing the stage-to-stage growth rate.

For example, if alternate tree levels double the number
of parent segments, we can achieve p = 0.75 (See Figure 7).
The number of tree levels is log2 of the length of each row or

column, which is
√
N . The number of channels composing

the root level of each tree will thus be:

Nch(N) = 2(log2 (
√
N)/2) = 2(log2 (4√

N)) =
4
√
N (21)

The total bisection width at this level is the aggregate chan-
nel capacity across all

√
N channels across the chip:

Wbisect =
√
N ·Nch(N) (22)

In this case that becomes:

Wbisect =
√
N · 4
√
N = N0.75 (23)

That is, this growth is equivalent to providing: p = 0.75.
Note, however, that even though we increased the rate of

wire growth, the total number of switches per node remain
asymptotically constant (See Table 1):

Tsw = 2 + 1 + 1 +
1

2
+

1

2
+

1

4
+

1

4
... < 6 (24)

Which makes:

Bsw(p = 0.75) < (2 · Fc · I + 13) · C (25)

This property holds for any p < 1.0. That is, given suffi-
ciently large N , we can approximate any p by programming
the stage-to-stage growth rate, and the number of switches
per compute block remains asymptotically constant. The
particular constant grows with p as this example suggests.
For arbitrary design bisection width, we can pick a p that
is equal or greater to the design p, and a network with con-
stant switches per endpoint can provide that much bisection
bandwidth.

We are thus able to satisfy the lower bound relationship
(Equation 8) introduced in the previous section with con-
stant switches per compute block. However, the lower bound

relationship only guarantees that we have sufficient wires in
the bisection, if we can use them. The population scheme
will determine whether or not enough of the wires can be
used to keep C bound to a constant. At this point, we have
no proof of the sufficiency of the population, so we employ
empirical experiments, reported in Section 4, to assess the
sufficiency of this population scheme.

3.2 Basic Layout
Constant switches per endpoint was necessary to show

that we could layout the network in area linear in the num-
ber of compute blocks. However, it is not sufficient to show
that we can use additional wire layers to achieve a compact
layout. For unconstrained logic, it is not clear that more
wire layers will always be usable. For example, [17] argues
that wiring on an upper layer metal plane will occupy 12-
15% of all the layers below it. Integrating this result across
wire planes, this argues a useful limit of 6–7 wiring levels.
The MoT wiring topology, however, is quite stylized with
geometrically increasing wire lengths. Consequently, it does
not exhibit the same saturation effect which we would get
with unconstrained netlists. In fact, we can show that a de-
sign which needs O(f(N)) bisection bandwidth can be layed

out with only O(max(f(N)/
√
N, 1)) wiring layers.

Binary Tree (p = 0.5) To build intuition, let us focus
initially on the binary tree case (p = 0.5). The key observa-
tion is that we can layout each binary tree along its row (or
column) using O(log(lrow)) wiring layers in a strip which is

O(1) wide and runs the length of the row (lrow =
√
N).

Figure 4 shows how the row (column) tree is mapped into
a one-dimensional layout with O(log(N)) wiring layers. It is
important to notice that each subtree layout leaves one free
switch location for an upper level switch. When we com-
bine two subtrees, we can place the switch connecting them
in one of the two free slots, leaving a single slot free in the
resulting subtree. In this manner, the recursive composition
of subtrees can continue indefinitely; the geometrically in-
creasing via spacing allows it to avoid ever running out of
via area on the lower levels of metalization. As shown, each
new tree level simply adds one additional wire run above the
existing wires. This p = 0.5 case requires Θ(log(N)) metal
layers, which is asymptotically optimal to accommodate the
log(N) wires which each tree contributes to each row or col-
umn. Note that if we make the width of the column as wide
as a via and a wire, we can bring all the wires up to the
appropriate metal layer without interfering with the column
wire runs (See the “Top View” in Figure 4).

In practice, the width of a switch is likely to be several
wire pitches wide, consequently, we can place several tree
levels in a single metal layer and run them within the width
of the switch row; this means that the number of wire lay-
ers we need for each row (or column) layout in practice is

log2(
√
N)/r where r is the ratio of the switch width to wire

pitch (strictly speaking one less than that to accommodate
the via row). For example if the switch width is 50λ and
the wire pitch is 8λ, we can put 6 wires within the width
of the switch. If we use one track for vias, this means we
can place 5 tree levels on each wire layer, so the number
of layers needed to accommodate the row (column) tree is⌈
log2(

√
N)/5

⌉
.

The full MoT structures requires both row and column
trees. We must space out the row and column switches to

CB 132 2 CB 1CB 1 CB 1 CB 132 2 CB 1CB 1 CB 1

Routing Row
Via Row

Top View:

Side View:

CB CB CB CB

3

2 2

1 1 11

CB CB CB CB

3

2 2

1 1 11

Logical Tree:

Metal
Layers

Figure 4: One-Dimensional Binary Tree Layout

Compute
 Block

column
switches

 row
switches

corner
 turn
switch

CB CB CB CB

CB CB CB CB

CB CB CB CB

CB CB CB CB

Figure 5: Minimal MoT Layout

accommodate the cross switches. Further, we must assign
separate wire layers for the rows and columns. Together, this

means we will need
⌈
2 · log2(

√
N)/r

⌉
layers for wiring. In

practice, additional wiring layers will be needed for power,
ground, and clock routing.

Figure 5 shows a minimal layout with a single tree in each
row and column channel. In practice, we will typically use
several trees (C > 1) in each row and column and require
C-box switches. Figure 6 shows the base tile for a larger
network configuration.
Fatter Trees (p > 0.5) This same basic layout scheme
works for the case where 0.5 ≤ p < 1.0. We will not always
have exactly half as many switches on each immediately suc-
cessive tree level. However, as long as p < 1.0, there are a
number of tree stages over which the number of switches
will be half the number of switches in the preceding group
of tree stages. By grouping the switches into these groups,
we can use the same strategy shown for the binary tree case.

Figure 7 shows the switch arrangement for the aforemen-
tioned p = 0.75 case. It should be clear from the layout
tree diagrams that the switches can be shuffled to the base
layer as in Figure 4. Here, we will, asymptotically, end up

Compute
 Block C−Box

Switches

 C−Box
Switches

 Corner
 Turn
Switches

 Row
Switches

Column
Switches

Figure 6: MoT Tile with C = 4 and I = 2

with 6 switches between every pair of compute blocks (Equa-
tion 24). Up to a span of 16 endpoints, we need 5 switches
(Table 1). Beyond that, each pair of stages contributes half
as many switches as the previous pair of stage, resulting in
a total of one more switch per endpoint. You can begin to
see that as we compose each additional pair of stages we
end up leaving half of the remaining slots in each span with
space for switches from the next span. This filling can con-
tinue indefinitely just as the p = 0.5 filling we have already
seen. Further notice that the total number of metal layers
is asymptotically optimal. That is, for p > 0.5, the number

of layers required is Θ
(
N (p−0.5)

)
.

3.3 Variations
Upper Level Corner Turns We can add some corner
turns at higher levels of the tree hierarchy, but we must be
careful to maintain the property that each compute block
tile contains a constant number of switches independent of
the design size. If we allow every level to connect at every
switch box, we will clearly ended up with too many switches
(O
(
N2p

)
per compute block when p > 0.5).

We can, however, afford to place corner turns between the
wire segments whose switch connection are associated with
the same endpoint node. That is, we have already guaran-
teed that we can distribute the switches in each row and
column such that there are a constant number of switches
associated with each leaf node. Now, if we simply connect
among those segments which switch at the same node, we, at
most, increase the constant switch count at each node (See

Figure 7: Row/Column Tree Growth to Achieve p = 0.75

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

Figure 8: MoT with Non-Leaf Corner Turns

Figure 8). Likely, we would simply place a single switch be-
tween the horizontal and vertical segments in the same tree
domain making up links at this stage; this way we have only
three switches where we had two before. This makes our
switch equation now:

Bsw = Csw +HVsw + 3 · C · Tsw (26)

Shortcuts The breaks between tree segments create dis-
continuities in the array where leaves are physically close but
logically in different subtrees. It also leads to bandwidth dis-
continuities along each row and column. For p > 0.5, these
discontinuities do not affect the asymptotic wiring require-
ments, but may affect the practical wiring requirements by
a constant factor. For example, returning to our p = 0.75
example, the root bandwidth for a row or column tree grows
as 4
√
N (Equation 21). Now, if we consider all the channels

at all levels, we simply have:

Ntotal(N) = Nch(N) +Nch

(
N

4

)
+Nch

(
N

16

)
+ · · ·

=
4
√
N +

4

√
N

4
+

4

√
N

16
+ · · ·

=
4
√
N

(
1 +

1√
2

+
1

2
+

1

2
√

2
+ · · ·

)
≤ Nch(N)

(
1

1− 1√
2

)
< 3.5Nch(N)

As this shows, it can be a non-trivial constant factor. Short-
cuts can also shorten wire runs.

We can add a single switchpoint between each pair of ad-
jacent segments in the same tree at the same level of the
hierarchy without changing the asymptotic switch require-

ments (See Figure 9). Note that we simply add one shortcut
switch next to each tree switch, so our established layout
scheme serves to accommodate these switches as well. From
this it is clear that the shortcut switches simply add another
Tsw horizontal and vertical switches to each compute block.
Once added, all things which are physically close are also
logically close and there are no bandwidth discontinuities in
the array. It seems unlikely, however, that these shortcuts
are needed on all trees in a row and column and on all tree
levels. Staggering the trees within the same row or column
may also reduce the need for shortcut connections.
Islands We can group multiple LUTs into each leaf com-
pute block in the Island Style [4]. This does not change the
asymptotic switching and wiring requirements for either the
Manhattan or MoT wiring topology, but it may change the
switching constants in important ways.
Buffered/Registered Switchpoints It is also possible
to use buffered or registered switch points with this topol-
ogy without harming the asymptotic switching and wiring
requirements established above. We can group together chil-
dren, shortcut, and parent connections into a single, local
switching block. We can thus drive point-to-point signals
between blocks. The switching blocks can be placed so we
have a single such block per compute block and the number
of wiring layers remains the same as in the unbuffered case.

3.4 Switch Dominated
The asymptotic reduction in switching requirements com-

pared to the Manhattan topology makes wiring requirements
more likely to be a limiting factor. At the same time, how-
ever, this topology allows us to maximally use additional
metal layers. As a consequence, the MoT designs will al-
ways be switch area dominated when given sufficient layers
of interconnect.

3.5 Delay
Note that switch delay is asymptotically logarithmic in

distance between the source and the destination. A route
simply needs to climb the tree to the appropriate tree level
to link to the destination row or column, then descend the
tree. It is also worthwhile to note that the stub capacitance
associated with each level of the tree is constant. That is,
there are a constant number of switches (drivers or receivers)
attached to each wire segment, regarless of its length. This is
an important contrast with the flat, Manhattan connection
scheme where the number of switches attached to a long wire
is proportional to the length of the wire. An added benefit
of the strict hierarchy is that it manages to minimize the
switch capacitance associated with long wire runs.

Buffered switches are needed to achieve minimum delay
and to isolate each wire segment from the fanout that may
occur on a multipoint net.

3s

CB CB

1

2

s

s

1 s 1

CB CB

1

2

s

s

1 s

3 s

CB CB

1

2

s

s

1 s 1

CB CB

1

2

s

s

1 s

s = Shortcut Switch

Figure 9: One-Dimensional Binary Tree with Shortcuts

3.6 Long Wire Runs
Ultimately, we will need to buffer the long wire runs in

order to achieve linear delay with interconnect length and
minimize the delay travelling long distances. This will end
up forcing us to insert buffers at fixed distances which can
reduce the benefits of the convenient geometric switching
property identified. Technological advances that provided
linear delay with distance without requiring repeaters (e.g.
optical, superconducing wires) would obviate this problem.

3.7 Relation to Tree-of-Meshes
Both Agarwal [1] and Tsu [18] have previously described

hierarchical FPGA interconnect architectures. DeHon showed
that the Butterfly Fat-Tree style interconnect of the HSRA
could also be layed out in constant area given sufficient wire
layers for the p = 0.5 case [9]. These networks all build a
single, unified hierarchy and are closely related to the Tree-
of-Meshes topology [14]. In constract, the Mesh-of-Trees
used here is directly a two-dimensional structure building
hierarchical routing along each row and column. As such,
the MoT can be viewed as a hybrid between the strict, sin-
gle hierarchy of the Tree-of-Meshes and the non-hierarchical
Manhattan array. Fully understanding the implications of
the differences between the Tree-of-Meshes and the Mesh-
of-Trees remains a matter for future work.

4. EMPIRICAL EXPERIMENTS
In the previous section we demonstrated the favorable

asymptotic switching requirements for the MoT design as-
suming we can contain the number of required base-channels
to a suitably small constant. In this section we show em-
pirically that the base channel requirements are uniformly
small. Further, we show that even for the small sizes of
conventional FPGA benchmarks, the MoT scheme already
shows some practical advantages in reducing aggregate switch
requirements. We explore many of the design variations in-
troduces in Section 3.

4.1 Base Comparison
For a base level comparison, we use the benchmarks from

Toronto’s “FPGA Place and Route Challenge” [3] to com-
pare the channel, domain, and switch requirements between
the traditional Manhattan routing topology and our MoT
topology. We used the vpr422 challenge arch architecture
as the baseline mesh; this has single-length segments and a
single LUT per Island. We substitute a universal switch [8]
for the subset switch used in the vpr422 challenge because
the routed mesh designs using universal switches uniformly
require less switches than the subset-switch-based designs.
Each of the 4 LUT inputs appears on a single side of the
logic block (Tin = 1), and the output appears on two sides
(Tout = 2); both are fully populated (Fc = 1) (See Fig-
ure 10). We use VPR 4.3 to produce the placed designs
for both the Manhattan and MoT routing. We use the
channel minimizing VPR 4.3 router to route the Manhattan

LUT
 FF

Figure 10: Logic Block IO Structure from VPR422
Challenge (Shown W = 3)

designs. Since prior work suggested the superiority of longer
segments [2] [4], we also routed a uniform, length-4 segment
Manhattan case for comparison; all other parameters are
identical to the base length-1 Manhattan case.

For our overall comparison, we assembled a MoT design
with T = 1 (see Figure 11), upper-level corner turns, and
no shortcuts. We developed our own, Pathfinder-based [16]
router to route the MoT designs. To match the VPR-style
results, we let the number of base channels, C, float and
report the minimum number of channels required to route
the design for various p values.

Table 2 summarizes these basic results. For almost all de-
signs, the MoT routes with sufficiently small C as to require
fewer total switches than the Manhattan designs.
Small C’s The C’s are uniformly small, many being as
low as 3 for p = 0.75. Increasing IO population (Table 3),
shortcuts (Table 5), and staggering (Table 6) reduce most
of the remaining cases to 3 or 4 as well. The C required for
the design is driven by three things:
1. Bisection bandwidth
2. Number of distinct signals which must enter a channel
3. Domain coloring limitations
A sufficiently large p value can generally accommodate bi-
section needs (See Figure 12). For channel entrance, note
that a fully used k-LUT with a single output needs to have
k+ 1 potentially distinct signals enter one of the four chan-
nels which surrounds it. Further note that it shares each
of those channels with 2 other k-LUTs which have simi-
lar requirements. Consequently, the channel entrance lower
bound is:

Clb ≥
⌈

2 · (k + 1)

4

⌉
(27)

For k = 4, Clb = 3. Finally, since the Mesh-of-Tree de-
sign described here maintains the domain topology typical
of Manhattan FPGA interconnect, it could have colorabil-
ity limitations [19]. The routed results suggest that the
colorability issues are not a major issue in practice as we
achieve within one channel of the channel entrance lower
bound on all designs.

4.2 Variations
IO Population and Distribution We considered pop-
ulation schemes from fully connecting the IOs to each chan-

Design Manhattan (universal) Mesh of Trees
Lseg = 1 Lseg = 4 p = 0.67 p = 0.67 stagger p = 0.75

Circuit #LB W Bsw W Bsw C Bsw ∆% C Bsw ∆% C Bsw ∆%

alu4 1522 9 121 13 121 4 96 -21 4 102 -16 4 112 -7
apex2 1878 10 133 14 129 5 116 -9 5 125 -2 4 107 -17
apex4 1262 11 150 15 142 5 123 -13 5 134 -5 5 145 +1
bigkey 1707 6 79 10 91 3 67 -14 3 71 -9 3 77 -1
clma 8382 10 126 14 122 5 108 -11 4 89 -26 4 101 -17
des 1591 7 91 10 89 3 70 -22 3 71 -20 3 84 -6

diffeq 1497 6 81 9 84 4 97 +20 3 77 -5 3 86 +5
dsip 1370 6 79 10 91 3 67 -14 3 71 -9 3 77 -1

elliptic 3604 9 117 12 108 4 87 -18 4 92 -14 4 100 -7
ex1010 4598 10 129 13 115 5 114 -1 4 96 -17 4 108 -6
ex5p 1064 12 165 15 144 5 128 -10 5 140 -2 4 120 -16
frisc 3556 11 143 14 126 5 110 -12 4 92 -26 4 100 -20

misex3 1397 10 135 13 122 5 120 -1 4 104 -15 4 111 -8
pdc 4575 14 180 18 160 6 136 -14 5 121 -24 5 136 -14
s298 1931 6 80 10 92 4 92 +14 4 99 +23 3 80 0

s38417 6406 7 89 10 88 4 88 0 4 93 +5 3 78 -10
s38584.1 6446 7 89 10 88 4 88 0 4 93 +5 4 105 +19

seq 1750 10 134 13 121 5 118 -2 5 128 +6 4 108 -10
spla 3690 12 155 16 143 6 131 -8 5 116 -18 5 125 -12
tseng 1047 6 83 9 86 4 102 +22 3 83 0 3 90 +8

sum 179 2359 248 2262 89 2058 -9 81 1997 -11 76 2050 -9

[∆% is relative to the best of the two mesh cases.]

Table 2: Manhattan vs. Mesh-of-Trees

LUT
 FF

LUT
 FF

Figure 11: Distributed IO Population with T=1
[left] and T=4 [right] (Shown W = 3)

nel down to connecting each base channel domain only once.
That is, we decided to connect each input or output with
T × C switches, and to balance those switches over both
sides and base channel domains (See Figure 11). We also
considered the IO configuration used in the vpr422 chal-
lenge architecture [3] (See Figure 10). Table 3 summarize
the results for the p = 0.67 case. The T = 1 case where we
rotate the channel connections around the four sides of the
block generally achieves the minimum switch count. At the
expense of additional switches, the higher T values can be
used to reduce the number of base channels required by the
design.
Growth Rates As noted previously, larger p’s will imply
greater bisection bandwidth for a given base channel size and
greater switches. Increasing p will tend to decrease C. For
a given design the question is whether the decrease in base
channels is sufficient to compensate for the increased switch
requirements per channel for the larger p value. Tables 4
summarizes these effects for p = 0.50, p = 0.67, and p =
0.75. In general, we expect that exactly matching p for the
MoT with the p for the placed design will be the minimum
point. Since the designs likely have different placed p’s, it
is not surprising they are minimized by different p values.

C Switches
Design VPR Dist. T VPR Distributed T
Circuit chlg 1 2 3 chlg 1 2 3

alu4 5 4 4 4 128 96 119 142
apex2 5 5 5 4 124 116 145 138
apex4 6 5 5 5 156 123 152 182
bigkey 3 3 3 3 72 67 84 100
clma 5 5 5 4 115 108 134 128
des 4 3 3 3 99 70 86 103

diffeq 4 4 3 3 104 97 91 108
dsip 3 3 3 3 72 67 84 100

elliptic 5 4 4 4 117 87 109 131
ex1010 5 5 4 4 121 114 112 134
ex5p 6 5 5 5 162 128 158 188
frisc 5 5 4 4 118 110 110 132

misex3 5 5 4 4 128 120 119 142
pdc 7 6 6 6 169 136 169 201
s298 4 4 3 3 99 92 86 103

s38417 4 4 3 3 94 88 82 98
s38584.1 4 4 3 3 94 88 82 98

seq 5 5 5 4 126 118 147 139
spla 6 6 5 5 140 131 137 165
tseng 4 4 3 3 109 102 94 112

Table 3: Effects of LB IO Pop. and Dist. (p = 0.67)

Nonetheless, as Table 2 shows, both p = 0.67 and p = 0.75
are superior to the mesh layout for most designs.
Corner Turns Including upper level corner turns does
reduce the number of base channels required. However, the
total number of switches required is roughly the same in
both cases.
Shortcuts Including shortcuts will reduce the number
of base channels (Table 5), but the additional switches per
logic block are not sufficiently compensated by the reduction
in channels. Consequently fully populated shortcuts result

Shown here are 1D slices of a p = 0.75 MoT (top) and a Flat Manhattan (bottom) topology. The MoT
accommodates the bisection width of 4 using only a single base domain, while the Manhattan topology
requires at least one domain for every wire in the bisection; this demonstrates how the MoT can often get
away with a smaller C than the Manhattan channel width (W). Asymptotically, the MoT will require 6
switches per endpoint for this arrangement, while the Manhattan requires 8 to accommodate this channel
width of 4. For larger spans, the effect increases. For a span of 32 nodes, the MoT can accommodate a
bisection bandwidth of 8 while still using at most 6 switches per endpoint; the mesh with a bisection width
of 8 will require 16 switches per endpoint.

Figure 12: Bisection Width Comparison

C Switches
Design p p
Circuit 0.50 0.67 0.75 0.50 0.67 0.75

alu4 9 4 4 130 96 112
apex2 10 5 4 141 116 107
apex4 11 5 5 163 123 145
bigkey 4 3 3 54 67 77
clma 11 5 4 137 108 101
des 5 3 3 68 70 84

diffeq 6 4 3 88 97 86
dsip 5 3 3 68 67 77

elliptic 8 4 4 101 87 100
ex1010 10 5 4 127 114 108
ex5p 11 5 4 167 128 120
frisc 10 5 4 135 110 100

misex3 9 5 4 131 120 111
pdc 15 6 5 202 136 136
s298 6 4 3 84 92 80

s38417 6 4 3 79 88 78
s38584.1 7 4 4 93 88 105

seq 10 5 4 143 118 108
spla 12 6 5 151 131 125
tseng 5 4 3 76 102 90

Table 4: Effects of p for T = 1 Distributed Population

in a net increase in switching requirements.
Staggering In Table 6 we show the effects of staggering
the base channel domains with respect to each other. As
noted in Section 3.3, breaks between trees yield bandwidth
discontinuities. Since we have more than one base channel in
each row and column, we have the opportunity to offset them
from each other to minimize discontinuity effects. For 8 of
the designs, staggering saves a base channel, saving us 10-
20% in switch count. For other designs, tree alignment issues
end up costing us a couple of extra switches per domain.
An open question is whether or not it is possible to get the
benefits of staggering without paying this additional cost.

Design No Short Short
Circuit #LBs C Bsw C ∆% Bsw ∆%

alu4 1522 4 96 4 0 153 +60
apex2 1878 5 116 4 -20 148 +27
apex4 1262 5 123 4 -20 156 +26
bigkey 1707 3 67 3 0 108 +60
clma 8382 5 108 4 -20 138 +28
des 1591 3 70 3 0 113 +61

diffeq 1497 4 97 3 -25 117 +20
dsip 1370 3 67 3 0 108 +60

elliptic 3604 4 87 4 0 141 +61
ex1010 4598 5 114 4 -20 145 +28
ex5p 1064 5 128 4 -20 162 +26
frisc 3556 5 110 4 -20 132 +19

misex3 1397 5 120 4 -20 152 +26
pdc 4575 6 136 4 -33 145 +6
s298 1931 4 92 3 -25 111 +20

s38417 6406 4 88 3 -25 107 +21
s38584.1 6446 4 88 3 -25 107 +21

seq 1750 5 118 4 -20 149 +26
spla 3690 6 131 4 -33 141 +7
tseng 1047 4 102 3 -25 122 +19

Table 5: Effects of Shortcuts (p = 0.67)

5. SUMMARY AND FUTURE WORK
Using the Mesh-of-Trees topology, we can achieve better

scalability than a flat, Manhattan topology. Assuming the
number of base channels, C, remains constant for increasing
design size, the total number of switches per LUT in our
MoT converges to a constant [O(1)] independent of design
size; this should be contrasted with the O(Np−0.5) switches
per LUT required for a flat, Manhattan topology. Given
sufficient wiring layers, the MoT network layout can main-
tain a constant area per logic block as the design scales up.
Asymptotically, the number of switches in any path in the
MoT needs to only grow as O(log(N)). Our initial empiri-
cal experiments verify small C values that show no signs of
growing with design size, and total switch requirements that
are 10% smaller than those of conventional Mesh designs.

Design No Stagger Stagger
Circuit #LBs C Bsw C ∆% Bsw ∆%

alu4 1522 4 96 4 0 102 +6
apex2 1878 5 116 5 0 125 +7
apex4 1262 5 123 5 0 134 +8
bigkey 1707 3 67 3 0 71 +5
clma 8382 5 108 4 -20 89 -17
des 1591 3 70 3 0 71 +1

diffeq 1497 4 97 3 -25 77 -21
dsip 1370 3 67 3 0 71 +5

elliptic 3604 4 87 4 0 92 +5
ex1010 4598 5 114 4 -20 96 -15
ex5p 1064 5 128 5 0 140 +9
frisc 3556 5 110 4 -20 92 -16

misex3 1397 5 120 4 -20 104 -13
pdc 4575 6 136 5 -16 121 -10
s298 1931 4 92 4 0 99 +7

s38417 6406 4 88 4 0 93 +5
s38584.1 6446 4 88 4 0 93 +5

seq 1750 5 118 5 0 128 +8
spla 3690 6 131 5 -16 116 -11
tseng 1047 4 102 3 -25 83 -18

Table 6: Effects of Staggering (p = 0.67)

Future In this paper, we have explored many of the pa-
rameters associated with designing MoT networks but many
more design parameters deserve additional study. We lim-
ited ourselves to binary trees here; it will be useful to better
understand and quantify the tradeoffs associated with higher
arity trees. We limited these studies to logic blocks holding
a single LUT; it will be interesting to see how Island-style
clustering interacts with this topology. We expect larger
benchmarks will better demonstrate the scalability of this
architecture. A more careful review of timing effects would
also be beneficial.

6. ACKNOWLEDGMENTS
This research was funded in part by the DARPA Mo-

letronics program under grant ONR N00014-01-0651 and by
the NSF CAREER program under grant CCR-0133102.

7. REFERENCES
[1] A. A. Agarwal and D. Lewis. Routing Architectures

for Hierarchical Field Programmable Gate Arrays. In
Proceedings 1994 IEEE International Conference on
Computer Design, pages 475–478. IEEE, October
1994.

[2] V. Betz and J. Rose. FPGA Routing Architecture:
Segmentation and Buffering to Optimize Speed and
Density. In Proceedings of the 1999 International
Symposium on Field Programmable Gate Arrays
(FPGA’99), pages 59–68, February 1999.

[3] V. Betz and J. Rose. FPGA Place-and-Route
Challenge. <http://www.eecg.toronto.edu/
~vaughn/challenge/challenge.html>, 1999.

[4] V. Betz, J. Rose, and A. Marquardt. Architecture and
CAD for Deep-Submicron FPGAs. Kluwer Academic
Publishers, 101 Philip Drive, Assinippi Park, Norwell,
Massachusetts, 02061 USA, 1999.

[5] M. Bohr. Interconnect Scaling – The Real Limiter to
High Performance ULSI. In International Electron

Devices Meeting 1995 Technical Digest, pages 241–244.
Electron Devices Society of IEEE, December 1995.

[6] S. D. Brown, R. J. Francis, J. Rose, and Z. G.
Vranesic. Field-Programmable Gate Arrays. Kluwer
Academic Publishers, 101 Philip Drive, Assinippi
Park, Norwell, Massachusetts, 02061 USA, 1992.

[7] W. S. Carter, K. Duong, R. H. Freeman, H.-C. Hsieh,
J. Y. Ja, J. E. Mahoney, L. T. Ngo, and S. L. Sze. A
User Programmable Reconfigurable Logic Array. In
IEEE 1986 Custom Integrated Circuits Conference,
pages 233–235. IEEE, May 1986.

[8] Y.-W. Chang, D. F. Wong, and C. K. Wong. Universal
Switch-Module Design for Symmetric-Array-Based
FPGAs. In Proceedings of the 1996 International
Symposium on Field-Programmable Gate Arrays,
pages 80–86. ACM/SIGDA, February 1996.

[9] A. DeHon. Compact, Multilayer Layout for Butterfly
Fat-Tree. In Proceedings of the Twelfth ACM
Symposium on Parallel Algorithms and Architectures
(SPAA’2000), pages 206–215. ACM, July 2000.

[10] A. DeHon. Rent’s Rule Based Switching
Requirements. In Proceedings of the System-Level
Interconnect Prediction Workshop (SLIP’2001), pages
197–204. ACM, March 2001.

[11] W. E. Donath. Placement and Average
Interconnection Lengths of Computer Logic. IEEE
Transactions on Circuits and Systems, 26(4):272–277,
April 1979.

[12] A. E. Gamal. Two-Dimensional Stochastic Model for
Interconnections in Master Slice Integrated Circuits.
IEEE Transactions on Circuits and Systems,
28(2):127–138, February 1981.

[13] B. S. Landman and R. L. Russo. On Pin Versus Block
Relationship for Partitions of Logic Circuits. IEEE
Transactions on Computers, 20:1469–1479, 1971.

[14] F. T. Leighton. New lower bound techniques for VLSI.
In Twethy-Second Annual Symposium on the
Foundations of Computer Science. IEEE, 1981.

[15] F. T. Leighton. Introduction to Parallel Algorithms
and Architectures: Arrays, Trees, Hypercubes. Morgan
Kaufmann Publishers, Inc., 1992.

[16] L. McMurchie and C. Ebling. PathFinder: A
Negotiation-Based Performance-Driven Router for
FPGAs. In Proceedings of the ACM/SIGDA
International Symposium on Field-Programmable Gate
Arrays, pages 111–117. ACM, February 1995.

[17] G. A. Sai-Halasz. Performance Trends in High-End
Processors. Proceedings of the IEEE, 83(1):20–36,
January 1995.

[18] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker,
T. Tung, O. Rowhani, V. George, J. Wawrzynek, and
A. DeHon. HSRA: High-Speed, Hierarchical
Synchronous Reconfigurable Array. In Proceedings of
the International Symposium on Field Programmable
Gate Arrays, pages 125–134, February 1999.

[19] Y.-L. Wu, S. Tsukiyama, and M. Marek-Sadowska.
Graph Based Analysis of 2-D FPGA Routing. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 15(1):33–44, January 1996.

Web links for this document: <http://www.cs.caltech.edu/research/ic/abstracts/mot_fpga2003.html>

http://www.eecg.toronto.edu/~jayar/pubs/betz/fpga99betz.pdf
http://www.eecg.toronto.edu/~jayar/pubs/betz/fpga99betz.pdf
http://www.eecg.toronto.edu/~jayar/pubs/betz/fpga99betz.pdf
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.cs.caltech.edu/research/ic/abstracts/fold_spaa2000.html
http://www.cs.caltech.edu/research/ic/abstracts/fold_spaa2000.html
http://www.cs.caltech.edu/research/ic/abstracts/rentsw_slip01.html
http://www.cs.caltech.edu/research/ic/abstracts/rentsw_slip01.html
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://www.cs.berkeley.edu/projects/brass/documents/hsra_fpga99.html
http://www.cs.berkeley.edu/projects/brass/documents/hsra_fpga99.html
http://www.cs.caltech.edu/research/ic/abstracts/mot_fpga2003.html

APPENDIX

A. PROGRAMMING GROWTH RATES
In general, the easiest way to think about growth rates

for 2-ary trees (as we limit ourselves to in this paper) is to
allow each tree stage to have either one parent or two. If the
tree stage has one parent, the number of wires in the tree at
that stage is the same as the previous stage. If it has two,
there are twice as many wires. Section 3.1 gave an example
where alternating stages had two parents.

To design a particular growth rate, we choose a basic re-
peat sequence of 2-parent and 1-parent stages in the tree.
For the aforementioned example, the repeat sequence was
(2 1). By repeating this as needed [(2 1)*], we can build any
size array and provide p = 0.75. In general, let’s call the
repeat sequence length LR and the number of 2’s in the re-
peat sequence N2. For the (2 1)* sequence, we have LR = 2
and N2 = 1. For the (2 1 2 1 1)* sequence we have LR = 5
and N2 = 2.

We can generalize Equation 21, to be:

Nchannels(N) = 2

(
log2 (

√
N)
(
N2
LR

))
= 2

(
log2 (N)

(
N2

2·LR

))

= N
N2

2·LR (28)

This of course, is strictly true only at the boundaries of the
repeat sequence; most importantly it captures the asymp-
totic growth behavior. Combining with Equation 22, we get:

Wbisect =
√
N ·N

N2
2·LR (29)

Combining with the Rent Relationship (Equation 7) (and
dropping the constant we have been omitting), we have:

Wbisect = N

(
0.5+

N2
2·LR

)
= Np (30)

From which we can conclude:

p =
N2

2 · LR
+

1

2
(31)

We can use this to conclude, our (2 1 2 1 1)* example,
asymptotically provides p = 2

10
+ 1

2
= 0.7.

B. UPPER LEVEL CORNER TURNS
Table 7 compares the effects of including or excluding the

upper level corner turn.

Design Upper Base Only
Circuit #LBs C Bsw C Bsw

alu4 1522 4 96 6 109
apex2 1878 5 116 7 124
apex4 1262 5 123 7 130
bigkey 1707 3 67 4 68
clma 8382 5 108 7 115
des 1591 3 70 4 71

diffeq 1497 4 97 5 92
dsip 1370 3 67 4 68

elliptic 3604 4 87 6 101
ex1010 4598 5 114 6 103
ex5p 1064 5 128 7 135
frisc 3556 5 110 6 94

misex3 1397 5 120 6 109
pdc 4575 6 136 8 138
s298 1931 4 92 5 88

s38417 6406 4 88 5 84
s38584.1 6446 4 88 5 84

seq 1750 5 118 7 125
spla 3690 6 131 7 117
tseng 1047 4 102 4 77

Table 7: Upper-Level Corner Turn Effect (p = 0.67)

	Introduction
	Manhattan Interconnect
	Base Model
	Segmentation
	Hierarchical
	Switch Dominated

	Mesh of Trees
	Basic Arrangement
	Basic Layout
	Variations
	Switch Dominated
	Delay
	Long Wire Runs
	Relation to Tree-of-Meshes

	Empirical Experiments
	Base Comparison
	Variations

	Summary and Future Work
	Acknowledgments
	REFERENCES
	Programming Growth Rates
	Upper Level Corner Turns

