
Appearing in IEEE Symposium on Computer Arithmetic (ARITH 2013), April 7–10, 2013

Accurate Parallel Floating-Point Accumulation

Edin Kadric, Paul Gurniak, and André DeHon
Dept. of Electrical and Systems Engineering

University of Pennsylvania
Philadelphia, PA, USA

Email: ekadric@seas.upenn.edu

Abstract—Using parallel associative reduction, iterative re-
finement, and conservative termination detection, we show how
to use tree reduce parallelism to compute correctly rounded
floating-point sums in O(logN) depth at arbitrary throughput.
Our parallel solution shows how we can continue to exploit
Moore’s Law scaling in transistor count to accelerate floating-
point performance even when clock rates remain flat. Empirical
evidence suggests our iterative algorithm only requires two tree
reduce passes to converge to the accurate sum in virtually all
cases. Furthermore, we develop the hardware implementation
of a 250 MHz pipelined, native, residue-preserving IEEE-754
double-precision, floating-point adder on a Virtex 6 FPGA that
requires only 48% more area than a standard adder without
residue. Finally, we show how this module can be used as the
base of a streaming accurate floating-point accumulation unit
that can be tuned to consume m summands every cycle.

Keywords-Floating-Point Arithmetic, IEEE-754, Parallel, Ac-
cumulation, Accurate, Rounding, FPGA

I. INTRODUCTION

Microprocessor clock speeds have grown exponentially
throughout the VLSI era until the mid 2000’s. Limits to
pipelining [1] and power density ended processor clock scal-
ing [2], [3]. Nonetheless, Moore’s Law feature size scaling
continues to deliver an exponential growth in transistors
per Integrated Chip (IC) or dollar. The focus has now
shifted to increasing parallelism in computations rather than
clock speed, leaving us with the question of how we can
turn increased transistors into increased performance without
increasing clock speeds.

The end of frequency scaling presents a particular chal-
lenge for floating-point (FP) arithmetic. While we can typ-
ically perform algebraic transforms that change the order
of operations to increase instruction-level parallelism (ILP)
for integer operations, changing the evaluation order of
FP operations can lead to different results. In this paper,
we focus on the problem of summing N double-precision
FP values. With integer arithmetic, we can exploit the
associativity of addition to reorder the sum into a tree of
depth O(logN). For large N , this provides ample ILP
and even opportunities for core-level parallelism without
changing the result. However, since FP addition is not
associative, performing a similar reordering for the FP sum
would produce a different result.

As a result, FP addition must normally be performed
sequentially as originally specified in the source code. This
is a choice to sacrifice parallelism in order to maintain the
determinism of the answer, an approach that not only fails
to address the current need for increased parallelization,
but also fails to provide guarantees on the accuracy of the
answer. Although the sequential sum operation will always
give the same result, it may still be an inaccurate one.

In this paper, we develop an algorithm based on [4] for
parallelizing FP addition while still guaranteeing a perfectly
accumulated and correctly rounded deterministic result. That
is, we simultaneously address parallelism, accuracy and
determinism, by formulating the basic summation as one
that computes a correctly rounded result. We use an it-
erative, convergent summation that avoids discarding any
components of the original sum until we can prove that
they are not needed to correctly round the final summation
(Sec. IV). Our convergence test is significantly simpler than
the one suggested in [4], which requires 2 extra FLOPs
(FLoating-point OPerations) per summand. We prove that
the algorithm always terminates (Sec. V-C) and provide
evidence that it is extremely fast in virtually all cases—
usually completing in only two iterations (Sec. VI-A). Our
algorithm has O(logN) depth, providing a significant speed
improvement over the commonly used sequential summation
technique, with only twice the delay of the non-deterministic
parallel one. Finally, we show how our algorithm can be
efficiently pipelined and tuned to consume m FP summands
every cycle (Sec. VII-C).

II. BACKGROUND

A. Correct Rounding

Given N floating-point numbers xi, our goal is to compute
the correct rounding Sc of the exact sum Sr =

∑N
i=1 xi.

By correct rounding, we mean that if Sr is a floating-point
number, then Sc will be its exact value, whereas if it is not,
Sc will be the nearest of the immediate FP neighbors of Sr.
That is, Sc is the value we would get if we computed Sr with
infinite precision, then rounded it to the appropriate nearest
FP number. If Sr falls halfway between two FP numbers, the
appropriate one is still chosen deterministically, for example
using the “tie to even” approach in the IEEE754 standard.
Note that correct rounding defines correctness of the result

http://www.arithsymposium.org

not in terms of the order of operations but in terms of the
error introduced into the final result. This gives us freedom
to transform the computation for additional parallelism as
long as we can guarantee to achieve the correctly rounded
result. A faithful rounding of Sr is similar to the correct
rounding, except that when Sr falls between two neighboring
FP numbers, either one could be chosen. The literature
shows sequential software algorithms that compute both
faithfully and correctly rounded sums using standard IEEE-
754 double-precision FPUs (e.g., [5]–[7]).

B. Residue Preserving Addition

Most of the accurate accumulation software algorithms
such as [5]–[7] rely on the same basic building block that
is studied in detail by Kornerup et al. [8], a floating-point
adder with residue (FPAR), which computes:

s = IEEE754Round(a+ b), (1)
r = (a+ b)− s. (2)

This returns the sum of two FP numbers (s)—the same sum
one would get from a normal FP add—as well as the error
(r) resulting from the operation, which is known to also be
representable as a floating-point value [9].

The FPAR building block can be implemented on a
standard IEEE-754 FP unit. Kornerup et al. [8] show that
the algorithm introduced by Knuth [10] is minimal, both
in terms of number of operations (six) and depth of the
dependency graph (five). Furthermore, they argue that algo-
rithms with fewer floating-point operations that also require
branching are inferior (e.g., [9]), due to possible drastic
performance losses after a wrong branch prediction causing
the instruction pipeline to drain.

Shown below is Knuth’s implementation that requires no
branching and does not require a priori knowledge of the
ordering of the two inputs a and b.

(s, r) = Knuthfpar(a, b):
s = a+ b
b′ = s− a
a′ = s− b′; δb = b− b′
δa = a− a′
r = δa + δb

Previous work suggested that a hardware implementation of
an FPAR module could be significantly faster with only a mi-
nor area overhead [11], [12], as it avoids some inefficiencies
in Knuth’s algorithm, where residual bits computed early on
are discarded and then recomputed during later stages.

C. Exploiting Hardware

There have been previous attempts at accelerating
floating-point accumulation using specialized, pipelined
hardware. For example, Luo and Martonosi do so by im-
plementing delayed addition techniques [13]. They perform
an associative transform of the addition operations but do

not address the fact that the results would be different from
the original summation (as well as inaccurate).

In contrast, Kapre and DeHon demonstrate that an iter-
ative approach can be used to exploit parallelism and still
generate the same result as a sequential sum [14]. Although
this introduces determinism in the parallel approach, it
spends more time to reach a solution that is still inaccurate.

Our work addresses the accuracy and parallelism issues
at the same time: We speed up computations by exploiting
parallelism while guaranteeing that the provided result is
accurately accumulated and correctly rounded. We use a
tree-like structure in the spirit of Leuprecht and Oberaigner
[4] but with a much more efficient convergence test.

III. ADD WITH RESIDUE UNIT

This section describes the hardware design of a 7-stage,
pipelined, IEEE-754 compliant, double-precision Floating-
Point Adder (FPA) and its extension into an FPAR. We
implement both designs on a Virtex 6 FPGA and find that
the FPAR only occupies 48% more area than the FPA, while
still running at the same speed.

A. Floating-Point Adder

A 64-bit IEEE-754 double-precision number contains
1 sign bit, 11 exponent bits and 52 mantissa bits plus an
implicit leading 1 and handles denormalized numbers, zero,
infinity and Not A Number (NaN). The adder computes a
rounded IEEE-754 sum, s, according to Eq. 1.

Our FPA is divided into 7 pipeline stages. The yellow
part of Fig. 1 shows the general organization, which is
similar to the improved single-path floating-point adder in
[15], except that we use a Leading One Detector (LOD)
instead of a Leading One Predictor (LOP) in order to save
area. The datapath is as follows: First, the mantissas are
compared and the exponents subtracted (stage 1), before
being used to right shift the smaller one’s mantissa (stage 2).
During the right shift, the discarded bits are used to compute
rounding requirements in stage 4. Before that, the mantissas
are added together (stage 3) and the LOD determines the
resulting change in exponent (stage 4), which is then used
to determine rounding requirements (also stage 4), as well
as in stage 5 to normalize the mantissa. Stage 5 rounds
and shifts the number, which can be parallelized to improve
delay since the costly dynamic left shift is only needed when
a and b are completely overlapping, and thus no rounding is
needed. Otherwise the position of the mantissa’s MSB can
only change by at most one in either direction, so that in the
case where rounding is added, normalization is performed
with a much cheaper 1-bit right or left shift as suggested
in [15]. A multiplexer is then used to select the proper
case. Stage 6 checks if the result is zero (zero mantissa),
denormalized (negative exponent), and if it has overflowed to
infinity (maximum exponent), at the same time as computing
a denormalized version assuming the exponent is negative.

mux

exp

Special
case?

a.exp – b.exp

Sort and shift smaller

LOD

Round?

54b add

Special
case?

a b

Residue
bits

Denorm
shift

s

mux

Shift
residue

r

Stage 2

Stage 4

Stage 5

Stage 7

0 mant?
denorm?

inf?
Denorm

shift

Special
cases

0 mant?
denorm? Special

cases

Add
rounding

Add rounding
& 1-bit shift Left shift

mux

Sub6

mant
&

exp
mant

Compare
a.mant & b.mant

Stage 1

Stage 3

Stage 6

Round?

LOD

Figure 1. Structure of the FPAR unit.

Finally, stage 7 selects between the rounded normalized
number, its denormalized version, a 0 output, and a special
case number determined back in stage 1.

This hardware design was described in Bluespec [16] and
implemented on a Virtex 6 FPGA. It occupies an area of
1517 Lookup Tables (LUTs) and runs at 250 MHz (the
critical path delay is 3.996 ns after place and route). The
slowest and most area consuming operations are the dynamic
shifts, the additions, and the 54-bit comparison in stage 1.

B. Floating-Point Adder with Residue

The FPAR can be built by extending the FPA. Fig. 1
shows its organization, with the additional hardware shown
in orange. Stages 1, 2 and 3 are mostly the same, except for
the additional registers to communicate the residue bits to the
subsequent stages instead of discarding them. Unfortunately,
we cannot perform a leading 1 search on r at the same
time as s (stage 4) since we first need to know where the
s mantissa will end in order to know where to start the

search for r. Therefore, this step is moved to stage 5, and is
performed after residue rounding, moved to stage 4, which is
controlled by a rounding unit similar to the one for the sum:
adding 1 to the LSB of s is coupled with subtracting 1 one
position above the MSB of r and vice versa. However, we
only need to know whether the MSB of the sum has moved
by one bit at most in order to determine the position at which
the residue should be rounded, since moving by more than
one position would mean that a and b are cancelling each
other and that the residue is zero. This three-case check
can be performed at low cost during stage 4 even without
knowing the sum’s leading 1 information, and is followed by
an adder to compute the rounded residue. Stage 5 then per-
forms a leading 1 search on the residue. Stage 6 normalizes
and computes a denormalized version, both of which require
dynamic shifts, together with checking whether the residue
is 0 (0 mantissa) or denormalized (this time checking for a
negative normalized exponent expnorm = exp − LOindex,
where LOindex is the index of the leading 1). Finally, during
stage 7, a second multiplexer is added to choose between the
different possible residue outputs.

We are thus able to exploit parallelism and switch the
order of operations to produce the residue without affecting
the clock frequency and number of pipeline stages. The
FPAR occupies an area of 2252 LUTs, only 48% more
than the FPA. It is also comprised of 7 pipeline stages
running at 250 MHz: The critical path delay is 3.999 ns.
While we quote specific results from our FPGA implemen-
tation, we expect a custom implementation would achieve
similar results—achieving the same latency as the base FPA
and requiring only fractionally more area. Manoukian and
Constantinides have implemented a single-precision FPAR
on a Virtex 6, also with no delay overhead, and 47% area
overhead compared to a base FPA unit [17].

C. Impact

Software accurate accumulators that use an FPAR unit in
their algorithm [5]–[7] usually implement it using multiple
FPA units as a building block (Sec. II-B). Compared to the 5
sequential instructions in Knuth’s algorithm [10], our FPAR
offers a 5x latency improvement over current solutions,
while occupying only 48% more area than a standard FPA
unit, a 75% total work reduction (6x area of an FPA for
previous work versus 1.5x for ours).

IV. PARALLEL ACCUMULATION STRATEGY

Pipelining the floating-point units does not actually help
a sequential summation, since we must wait for the result of
the previous addition to complete in order to add the next
value. We must extract parallelism in order to exploit the
throughput benefits of a pipelined floating-point adder.

Our basic strategy for performing an accurate parallel
summation, similarly to [4], is as follows:

t
t

b

s r

a

FPAR

R
t

R
2

R
4

R
6

R
8

R
10

R
12

R
14

R
15

R
1
R

2
R

3
R

4
R

5
R

6
R

7
R

8
R

9
R

10
R

11
R

12
R

13
R

14
R

15

R
t

S
t

R
1

R
3

R
5

R
7

R
9

R
11

R
13

Figure 2. Basic binary reduce tree structure for N = 16 summands.

1) Perform a parallel tree reduce sum on the summation
output of the FPAR with dlogNe stages and N −
1 nodes; keep the residue output of each FPAR for
potential refinement and error estimation (Fig. 2).

2) Perform the same parallel tree reduce on the FPAR
residues and compute a conservative upper bound on
the magnitude of the sum of residues, and, hence,
potential error in our calculation (Sec. V).

3) Iterate reducing the residues and adding their sum into
the overall sum, St, until our conservative upper bound
indicates the residues can be ignored.

In Fig. 2, Rt is the residue resulting from adding the sum
of the residues to the accumulating total sum St, and it is
updated after each iteration.

V. DETAILED ALGORITHM

In this section, we provide more details on the functioning
of our algorithm. We start by developing an expression
for efficiently computing convergence detection. We then
describe the detailed algorithm, and we finish by proving
two theorems that ensure its termination. Without loss of
generality, we assume the IEEE-754 standard “round to
nearest, ties to even” rounding mode throughout the section,
which requires the most care to achieve proper rounding and
is the default for binary floating-point.

A. Termination Condition

To determine when we have enough information to return
the correctly rounded result, we calculate a conservative
upper bound to the magnitude of the sum of the N − 1
remaining residues, rsb, the Residue Sum Bound. We
can then check for convergence by testing the condition
conv(St, Rt, rsb) (Tab. I). If the condition succeeds, we
conclude that even an upper bound on what is left in the tree
is not sufficient to influence the total accumulating sum, St,
and it can be returned as the final sum of the algorithm.

Before deriving an expression for rsb and conv more
precisely, we first define nzcnt as the number of non-

zero residues left in the tree and maxexp as the maximum
exponent of these residues, both of which can be trivially
computed during the summation tree reduction (Sec. VII-B).
We then write an upper bound on the sum of the residues:

|error| ≤ nzcnt× 2maxexp+1. (3)

By definition, rsb is an upper bound on |error|, hence:

rsb = nzcnt× 2maxexp+1 ≥ |error|. (4)

We can now approximate rsb as an exponent only:

rsb.exp = dlog(nzcnt)e+maxexp+ 1. (5)

Eq. 5 gives us an upper bound on the error.
Finally, we need to define conv(St, Rt, rsb). The func-

tion takes two non-overlapping inputs St and Rt, with
|St| ≥ |Rt|, as well as rsb (since St and Rt are outputs
from an FPAR, this relation always holds). Tab. I shows a
case analysis that helps us define and implement the conv
function. Based on the values of St, Rt and rsb, we are
able to decide whether St is the final converged sum (shown
with a green check mark), or whether other iterations of the
algorithm are required (red X). The conv function considers
convergence to be successful if and only if the following
condition is satisfied:

round(St +Rt + rsb) = round(St +Rt − rsb)

In the table, Rt patterns are shown assuming their MSB
starts right after the LSB of St. Also, we define a function
lco (Lowest in Chain of Ones), which gives the index of the
least significant 1 in the first chain of ones of a string—the
most significant of these chains when there are more than
one (e.g., Fig. 3). We define rsb.i (rsb index) to compare
how rsb aligns with Rt as

rsb.i = St.exp− 53− rsb.exp. (6)

As shown in Tab. I, if rsb.i < 0, then it overlaps with St

and convergence fails (a different result is obtained whether
rsb is added or subtracted). Otherwise, we continue by
looking at the Rt pattern and identify three cases:

A) There are two zeros after the LSB of St and before any
Rt bit is set (at indices 0 and 1). If rsb.i is not immediately
after the LSB of St (if rsb.i > 0), then neither Rt + rsb
nor Rt − rsb have large enough magnitudes to set the LSB
of St after rounding: convergence succeeded. Otherwise, if
rsb.i = 0, it acts as a tying bit and we must look at Rt:
if it is non-zero, we would round differently whether rsb is
added or subtracted: convergence failed. Otherwise, if Rt is
zero, this is a tie case: For the tie to even rounding mode,
we must look at the LSB of St, if it is 0, convergence has
been achieved; if it is 1 it has failed, since a positive or
negative rsb would make the number round to a different
even value.

B) There is a 1 at index 0. What follows the 1 must be all
zeros, by definition of the FPAR unit (another case would

Table I
THE conv(St, Rt, rsb) FUNCTION.

Yes X
No Rt pattern

00xxx..
√

Rt = 0?
No X
Yes

Yes √
No X

1xxx..
No Impossible
Yes

No X
Yes √

01xxx..
√
X

Rt pattern
01..10xxx..

No X
Yes

Yes √
No X

rsb.i<0

rsb index
rsb.i > 0
rsb.i = 0

St.lsb=0?

Xxx.. = 000..

rsb = 0?

rsb index
rsb.i > Rt.lco
0≤rsb.i<Rt.lco
rsb.i = Rt.lco

xxx.. = 000..

St.lsb=0?

have caused rounding that would have been absorbed into
the sum and would have returned a residue with a 0 in place
of the 1 at index 0). If rsb is 0, we know how to round the
final sum depending on St.LSB. Otherwise, if rsb is non-
zero, adding or subtracting it will make the tie deviate in a
different direction, thus failing the convergence test.

C) Index 0 is zero and index 1 is set:
1) If rsb.i > Rt.lco, then neither Rt + rsb nor Rt − rsb

can cause a carry that will set index 0, and we have
converged.

2) If 0 ≤ rsb.i < Rt.lco, then Rt + rsb and Rt − rsb
have a different effect on index 0: In one of the cases
it would be zero, and in the other it would be one.
Either way, at least one bit would be set after index
0, so that convergence fails.

3) If rsb.i = Rt.lco, we are in a similar situation as in
(B), but now we also need to check whether there is
a bit set after index 0. If there is, then convergence
fails just as in (B). If no other bit is set, then one of
Rt + rsb or Rt − rsb (the one that sets index 0) will
become a tie, which is dealt with similarly to case 1):
If St.LSB is even, then both the Rt+rsb and Rt−rsb
cases suggest no rounding: convergence is achieved;
otherwise one of them suggests no rounding while the
other is a tie suggesting a rounding away from the odd
value: convergence fails.

B. Algorithm

The complete accurate parallel accumulation algorithm is
shown in Fig. 4. The loop calls a tree reduction on every

1001010111001
1111100110011

St
Rt

00 1111100110011 Rt pattern000000...
Rt.lco = 6

rsb

St.lsb = 1

1000000000000

rsb.i = 10

Increasing indices

Figure 3. Example of an input configuration in the conv function.

iteration, before checking for convergence and returning the
result. If convergence fails, we proceed with another iteration
until it is successful. However, we also need to check for
specific rare cases such as the one shown next for a reduced
mantissa length of 4 and assuming rsb is set by the only
residue remaining in the tree:
St = 1.1010e27, Rt = 1.0000e22, rsb = 1.0000e10
St +Rt + rsb = 1.1011e27, St +Rt − rsb = 1.1010e27

In this example, while convergence is not achieved, Rt is
non-overlapping with the remaining residue and no reduction
can be performed. This is why our algorithm shown in Fig. 4
performs another check when convergence fails:

(rsb.exp < Rt.exp)

If the latter condition succeeds after convergence fails we
say that we have reached a “Big Tie”. A Big Tie means that
only the LSB of St can now be affected by what is left in the
tree (plus potential carry), and that we can thus simplify our
convergence condition in order to resolve cases such as the
one shown in the previous example. Theorem 1 in Sec. V-C
proves that either convergence or a Big Tie must be reached
by the algorithm.

In order to resolve a Big Tie, we start by subtracting a 1
right after the LSB of St (index 0 in Fig. 3). This way, we
have removed the tying bit, and we then only check for the
following condition:

sign(Rt + rsb) = sign(Rt − rsb)
Indeed, we now only need to know whether what is left in
the tree is positive or negative to determine whether it will
shift the tie up or down, and hence whether it will affect
the LSB of St or not. Doing this prevents clogging the tree
and allows smaller values to interact and resolve. Theorem
2 in Sec. V-C proves that if a Big Tie is reached, it will be
resolved, and thus that our algorithm is complete and always
terminates.

In fact, this handling of a Big Tie deals with the case that
Kornerup et al. use to prove the impossibility of correctly
rounding the sum of three or more FP numbers using a
“Round to nearest tie to even” approach with depth less
than 1939 double-precision IEEE-754 operations [8]. We are
able to cover such a depth with limited resources because
repeated iterations allow us to dynamically increase the DAG
depth until termination, exceeding 1939 if needed.

Init: St = 0; BigT ie = False;
while True do

Compute Reduce Tree (Fig. 2) on initial values for the
first pass, on residues for subsequent passes;
Obtain nzcnt, maxexp, rsb, St, Rt;
if !BigT ie then

if conv(St, Rt, rsb) then
return St;

else
if rsb.exp ≥ Rt.exp then

Continue; //will resolve to another case (Th. 1)
else

//Residues can only affect the LSB of St

BigT ie = True;
Rts = Rt.sign;
Subtract 1 right after the LSB of St;

end if
end if

else
//Resolving a Big Tie
if sign(Rt + rsb) = sign(Rt − rsb) then

if sign(Rt ± rsb) > 0 then
return (Rts > 0)?rnd up(St) : St

else if sign(Rt ± rsb) < 0 then
return (Rts > 0)?St : rnd down(St)

else if sign(Rt ± rsb) = 0 then
return round(St with tying bit);

end if
else

Continue; //will resolve to previous case (Th. 2)
end if

end if
end while

Figure 4. Correctly Rounded Sum Algorithm.

C. Convergence proofs

In this section, we prove two theorems. Theorem 1 ensures
that the algorithm in Fig. 4 will either converge to the result,
or to a Big Tie case where only the LSB of the sum is
unknown. Theorem 2 ensures that if a Big Tie is encountered
it will always be resolved. First, let us establish two lemmas.

Lemma 1: log(nzcnt) eventually reduces to 40.
Proof: Assuming N ≤ 240, it is trivially true that
log(nzcnt) ≤ log(N − 1) ≤ 40. For larger sums we can
guarantee that nzcnt will reduce with a suitable residue
feedback structure (carefully ordering the residues back into
the first stage of the reduce tree so that cancellations occur).
However, as we shall see in Sec. VIII, it is likely this sum
would follow an operation that reduced the number of inputs
well below 240.

Lemma 2: If maxexp > Rt.exp − 53, then the residue
that set maxexp will be reduced, thus reducing maxexp.

Proof: Consider two cases:
• maxexp is set by a uniquely largest exponent. Since
Rt has 53 bits, if maxexp is larger than Rt.exp-53, it
will interact with Rt and be reduced.

• maxexp is not set by a uniquely largest exponent. The
two residues setting maxexp will be combined into
one. A process that repeats until maxexp is set by a
uniquely largest exponent (the previous case).

In either case, Rt is reduced.
We can now conclude the following two theorems.
Theorem 1: Eventually, rsb.exp < Rt.exp.

Proof:
Eq. 5: rsb.exp = dlog(nzcnt)e+maxexp+ 1
Lemma 1: Eventually, log(nzcnt) ≤ 40
Lemma 2: Eventually, maxexp ≤ Rt.exp− 53
Combining Lemmas 1 and 2 into Eq. 5: Eventually,

rsb.exp ≤ Rt.exp− 12 < Rt.exp. (7)

Theorem 1 shows that rsb will become smaller than Rt,
in which case only the LSB of St can still be affected by
the combined effect of Rt and rsb. As shown in Fig. 4, this
forces the algorithm to either converge or reach a Big Tie,
which Theorem 2 addresses.

Theorem 2: Eventually, sign(Rt − rsb) = sign(Rt +
rsb).
Proof:
By Theorem 1: Eventually, rsb.exp < Rt.exp

⇒ rsb < 2Rt.exp ≤ |Rt|, (8)
⇒ |Rt| − rsb ≥ 0. (9)

Since rsb is nonnegative, Eq. 9 implies

sign(Rt − rsb) = sign(Rt + rsb). (10)

Theorem 2 proves that a Big Tie will always be re-
solved since its convergence condition (sign(Rt + rsb) =
sign(Rt−rsb)) must eventually be met. Together, Theorems
1 and 2 show that the algorithm always terminates.

VI. EXPERIMENTAL RESULTS

A. Experimental setup and results

In order to test the speed and practicality of our algorithm,
we perform software simulations using several different
datasets. To measure how much the sum can change with
respect to a small change in the summands, we define the
condition number of the N xi datapoints similarly to [18]:

κ =

∑N
i=1 |xi|

|
∑N

i=1 xi|

For low κ, the data is said to be well-conditioned, and
the algorithm should easily converge, whereas for high κ,
it is said to be ill-conditioned and is expected to make
convergence more difficult.

We generate datasets similar to those used by Zhu and
Hayes [19]. Data #1 contains randomly generated positive
floating-point numbers, so that the condition number is
κ = 1. Data #2 is similar except that it contains both
positive and negative numbers, resulting in a low condition
number. Data #3 is similar to Anderson’s ill-conditioned
data [5]: we first generate data #2, then compute the mean
using standard floating-point arithmetic (thus introducing
some error), before subtracting it from each data point. This
results in ill-conditioned data with a high κ. Finally, data
#4 contains half randomly generated positive floating-point
numbers, together with their exact opposites in the second
half, such that the exact sum is 0, and κ =∞.

In addition to the uniformly distributed random data used
in previous work (e.g., [5], [19]), we also use an exponential
one. We define an exponential distribution as one where the
individual bits of the IEEE-754 representation are randomly
picked from a uniform distribution, thus tending to produce
numbers with all allowed exponent values instead of concen-
trating them on the highest positive and negative exponents.
This prevents the numbers from being too close together
and reduces mantissa overlap, resulting in data that does not
reduce as efficiently as a uniform distribution.

We define the parameter δ as the maximum possible
difference in exponent ranges in the original summands,
which is taken into account when generating the random
data. We use 212 as the number of summands in the
dataset (as suggested in Sec. VIII), and we repeat each
experiment 1000 times. Tabs. II-a and II-b show results
when the numbers are generated with an exponential and
a uniform distribution respectively. Both tables report the
average number of iterations the algorithm takes before the
convergence condition is met, together with the associated
standard deviation from that average. Then, the average
number of non-zero values remaining in the tree when
convergence is met is shown, followed by the average
percentage error when computing the sum using a simple
sequential software non-exact summation.

B. Discussion of the results

We observe that in most cases, the algorithm always takes
exactly 2 iterations to converge (with a 0 standard deviation
in number of iterations), no matter how ill-conditioned
the data is, except for the extreme case of κ = ∞ and
exponentially distributed data. This empirically validates our
inexpensive convergence test since we get the same number
of iterations suggested in [4], whose termination detection
was much more expensive (two full FP additions per tree
node). We also note that the highly unlikely Big Tie case
was never encountered with any of these datasets.

Fig. 5 illustrates why exactly two iterations are needed
most of the time. As shown, after two numbers a and b
are fed into an FPAR unit, they come out as two new
numbers with non-overlapping mantissas, where the MSB

FPAR

53bits

Mantissa range, δ + 53

s ra
b

TREE

max
max

S
t

R
t

maxexp

TREE

max maxexp

Iteration 1

Iteration 2max maxexp

R
t

R
t

S
t

Figure 5. Effects of the algorithm on the mantissa ranges.

has typically only shifted by a few bits at most: a major shift
of m positions is extremely unlikely for randomly chosen
bits, in the order of 2−m. Therefore, with extremely high
probability, the final sum St at the end of the tree will
occupy the 53 bits to the immediate left of the final residue
Rt, whereas Rt will occupy the same bits as several other
residues remaining in the tree, including the largest one that
determines maxexp. Hence, since rsb.exp = log(nzcnt) +
maxexp + 1 (Eq. 5), rsb easily overlaps with St and the
convergence test fails. However, after a second pass in the
tree, the new Rt still occupies the bits to the immediate right
of St, but this time the remaining residues and maxexp
occupy the bits to the immediate right of Rt, making it
extremely unlikely that log(nzcnt) would be large enough
to cause an overlap with St. A dataset needs to be carefully
designed to get more than two iterations, as was done with
the exponentially distributed dataset #4. In that case, major
cancellations throughout the tree translate into a maxexp
that is often larger than St, thus failing the convergence test.
Therefore, in order to see more than two iterations, we had
to define extremely ill-conditioned cases that are unlikely to
occur in practice (condition number κ→∞). We conclude
that our algorithm is extremely fast and reliable.

Tab. II-a shows that, even when there are many non-zeros
left in the tree (datasets #1 and #2), our algorithm is able to
determine that they will not be sufficient to affect the final
sum, so that it can discard them and converge faster. Tab. II
also reminds us that the non-accurate summation error can
become intolerably large (datasets #3 and #4).

VII. COMPARISONS

A. Asymptotic Performance

Our algorithm achieves the asymptotically optimal FLOP
count Θ(N). This is the same as simple summations that
ignore precision and other efficient correctly rounded ap-
proaches (e.g. [6], [20]). With sufficient parallelism, our

Table II
EXPERIMENTAL RESULTS FOR EXPONENTIAL (A) AND UNIFORM (B) DISTRIBUTIONS OF DATA.

a) Exponential distribution of data
Data 1 Data 2 Data 3 Data 4

% non-0
s/w seq

% non-0
s/w seq

% non-0
s/w seq

% non-0
s/w seq

% error % error % error % error
10 2, 0 0.000 1.45E-13 2, 0 0.000 6.34E-13 2, 0 0.000 5.5909 2, 0 0.000 ∞
100 2, 0 42.129 2.28E-13 2, 0 41.760 4.14E-13 2, 0 0.000 137.4309 3, 0 0.000 ∞
1000 2, 0 93.850 3.54E-14 2, 0 93.581 9.94E-14 2, 0 0.000 4855.618 20, 0.17 0.000 ∞
2000 2, 0 96.856 2.54E-14 2, 0 96.698 1.39E-13 2, 0 0.000 86870.63 39, 0.045 0.000 ∞

b) Uniform distribution of data
Data 1 Data 2 Data 3 Data 4

% non-0
s/w seq

% non-0
s/w seq

% non-0
s/w seq

% non-0
s/w seq

% error % error % error % error
10 2, 0 0.000 1.26E-13 2, 0 0.000 5.93E-13 2, 0 0.000 2.881778 2, 0 0.000 ∞
100 2, 0 0.000 1.28E-13 2, 0 0.000 5.61E-13 2, 0 0.000 3.044484 2, 0 0.000 ∞
1000 2, 0 0.000 1.24E-13 2, 0 0.000 6.49E-13 2, 0 0.000 1.993717 2, 0 0.000 ∞
2000 2, 0 0.000 1.24E-13 2, 0 0.000 7.62E-13 2, 0 0.000 1.822635 2, 0 0.000 ∞

κ = 1 κ = 78.0 on average κ = 6.33e16 on average κ→ ∞

δ # its, σ # its, σ # its, σ # its, σ

κ = 1 κ = 330 on average κ = 1.59e17 on average κ → ∞

δ # its, σ # its, σ # its, σ # its, σ

Table III
FLOP COUNT COMPARISON.

Accumulation Algorithm FLOPs/summand Depth
iFastSum [6] 12 O(N)

with our FPAR 3
Simple, inaccurate 1 O(logN)
Optimistic Sequential [14] 40 O(logN)
Leuprecht and Oberaigner tree [4] 14 O(logN)

with our FPAR 5
This Work 3 O(logN)

design can achieve O(logN) latency, which is superior to
traditional correctly rounded summations including Dem-
mel’s Radix sort [20] and Zhu’s convergent summation [6],
both of which are Θ(N). Only Leuprecht and Oberaigner’s
correct summation algorithm achieved O(logN) latency
[4]. Furthermore, our O(logN) latency is the same as a
precision-ignoring sum, and Kapre and DeHon’s sequential-
semantics-preserving sum [14].

B. Floating Point Operation Count

Tab. III compares the FLOP counts of the major, repre-
sentative algorithms, including the revision of prior work
using our FPAR. We count 1.5 FLOPs for our FPAR due
to its area (Sec. III). All three correct rounding algorithms
(iFastSum, Leuprecht and Oberaigner, and ours) take 2
iterations in almost all cases. We estimate Kapre and DeHon
as 8 iterations with 5 FLOPs per iteration. Leuprecht and
Oberaigner use two FLOPs per tree node for convergence
detection. We do not count our termination computation as
a FLOP since it takes less than 4% of the area of the FPA
(see mn unit in Sec. VII-C). Our algorithm achieves a lower
FLOP count than previous algorithms, tying only with [6],
which has depth O(N) instead of our O(logN) depth.

C. Concrete, Tunable Streaming Accumulation

In this section, we show how our algorithm can be
efficiently implemented in limited area using a fixed number
of FPAR modules. Our unit is a “streaming” accumulator
because it deals with inputs as they are presented to it on
every cycle. Furthermore, we show how it can be tuned to
consume several inputs every cycle.

Fig. 6-a shows the basic building block that we use to
achieve this. We call it a Tree Streaming Block (TSB).
The TSB instantiates one FPAR module and functions with
two phases. During phase 1, the FPAR computes the sum
of floating-point values already present in the A1 and B1
FIFOs, storing the results in A2 and B2. At the same time,
as new inputs are presented to the TSB unit, they are inserted
into A1 and B1, which can both store N/2 values. For N
inputs to our algorithm, phase 1 takes N/2 cycles, it captures
half the inputs to the algorithm into A1 and B1, and uses
the FPAR to compute the first tree level (N/2 operations).

Once phase 1 completes, we switch to phase 2, which
uses the FPAR in order to compute the sum of the data
in A2 and B2 and feed it back to A2 and B2 again, each
of which can store N/4 values. Phase 2 can thus compute
level 2 of the tree (N/4 cycles), followed by level 3 (N/8
cycles), and so on, until it has computed all tree levels in a
total of N/2 cycles, plus p × log(q) −

∑log(q)−1
i=0 2i due to

the pipelining of the FPAR, where p is the pipeline depth
and q = 2dlog(p)e. Hence, phase 2 also takes roughly N/2
cycles to complete, a time during which it can write the
second half of the N inputs into A1 and B1, so that when
we switch back to phase 1, the buffers are already full and
the FPAR can be used right away. Throughout both stages,
the residues are sent outside of the TSB module.

We have described the TSB in Bluespec and implemented
it on our FPGA, with memories wide enough to support N =

conv

a) TSB b) 2 iterations, 1 per cycle

c) Conv Fail Feedback d) 4 per cycle

TSB

A1 B1
A2 B2

split

FPAR maxexp
& nzcnt

split

phase

s r

input stream

residues sum

input stream

Final sum
Success flag

Big Tie flag

TSB

TSB

conv

input stream

Final sum

TSB

TSB

conv

input stream

Final sum

Iterate?

B1

res
mem

TSB

fpar fpar

fpar

fpar

fpar

C

fpar

flags

extract
final

TSB

maxexp
& nzcnt

mn

mn

mn

d1

mn

d2

mn

maxexp
& nzcnt

maxexp
nzcnt

a b

maxexp
nzcnt

Figure 6. Streaming Tree Reduce Configuration a) TS Block b) 1 value
per cycle c) Feedback for failed convergence d) 4 values per cycle.

212 floating-point inputs (Sec. VIII justifies this choice). It
was found to consume only 7% more area than the FPAR
module alone: The block was synthesized with a total of
2410 LUTs (plus the Block RAMs), and a critical path of
3.967 ns, thus still running at 250 MHz and only adding a
minor area overhead.

The TSB can in turn be used in several configurations
in order to implement our summation algorithm. First, in
Fig. 6-b we show how we can consume m = 1 floating-
point value every cycle using two TSBs and an additional
conv module which evaluates convergence as described in
Sec. V-A (as well as a “Big Tie” flag). In the simplest
case, the conv module can take the S information from
the two TSBs and compute their sum and residue, St and
Rt, which are used to determine convergence. In order to
save area, this final addition can also be performed on the
already instantiated FPAR module in the second TSB (the

mechanism for this is not shown in Fig. 6), with only a
minor latency overhead. Now the conv module also needs
to compute rsb, for which it needs the nzcnt and maxexp
information. Both of these are updated throughout the tree
after each FPAR operation: Whenever a residue is to be
discarded (or put on the side for subsequent iterations, shown
with dashed arrows), we update maxexp and nzcnt locally
and propagate the result to the next node, together with
the sum. The conv module then receives the maxexp and
nzcnt from the last level of the tree. We denote the module
updating maxexp and nzcnt by mn, and it performs the
following operations:

(maxexp, nzcnt) = mn(a, b,maxexpin, nzcntin):
maxexp = max(maxexpin, a.exp, b.exp)
nzcnt = nzcntin + (a 6= 0) + (b 6= 0)

Implementing the mn block on our FPGA, we measure a
critical path of 2.378 ns and only 53 LUTs used. For the
conv block, we have used four pipeline stages, for which we
find a critical path of 3.937 ns and 682 LUTs used. Putting
all of this together into the structure shown in Fig. 6-b, we
get a full design with a critical path of 3.986 ns and 5648
LUTs, only 17% more than two TSB modules alone.

We suggest implementing two TSB modules directly since
we have found that the algorithm generally takes only
2 iterations to complete. However, in order to deal with
convergence issues, we can also add a feedback path to store
the residues and use them in the first TSB block again during
subsequent iterations (Fig. 6-c). We do not show how to deal
with this nor Big Tie handling, since it can even be dealt
with using higher level software mechanisms.

Finally, Fig. 6-d shows how the design can be tuned to
consume m values every cycle (case m = 4 shown). In
order to achieve this, we add more FPAR units to build part
of the tree directly: m−1 FPAR units are arranged in a tree
to compute one sum and m−1 residues. The sum stream is
used as the input stream to the first TSB, whereas the m−1
residues are further added together using m−2 more FPAR
units, producing a sum of the residues saved in a “C” FIFO.
The residue outputs of the TSB are then summed with the
outputs from C using another FPAR module, before being
fed into the second TSB. This structure effectively directly
implements the first log(m) stages of the tree in hardware,
thus allowing the designer to trade off between the speed-
ups allowed by the tree structure and area consumption. Of
course, we also need to replicate the mn units, one for each
FPAR, and propagate them through additional “D” FIFOs as
shown in Fig. 6-d.

This shows how to implement our accurate accumulation
algorithm in limited area while maintaining a high through-
put of m values per cycle, a latency of 3N

m , and O(N) work.

VIII. EXTENSIONS

An interesting extension to our work would be to include
it as part of an even more general streaming algorithm able

to compute the sum of an arbitrary number of inputs (instead
of N previously) with constant memory, based on the accu-
mulator strategy presented by Demmel [20]. In particular, as
shown by Zhu and Hayes [19], if we use an algorithm such
as ours (or iFastSum in their case) as a building block for
an accumulator-based algorithm, our implementation only
needs to provide enough memory for computing the sum
of 212 numbers. The accumulator algorithm consists in first
reducing a large number of inputs into a limited number of
them using the fact that their exponent range is limited and
that they are forced to overlap. Then, once all the summands
have been compressed into 212 new ones, we can apply our
algorithm on those new summands, which can be done with
constant memory.

Furthermore, we could use our streaming unit with no
changes to support an accurate dot product, and therefore
several important linear algebra routines. We would need a
multiplier that produced the full 2×(mantissa width) result
and encoded that as two double-precision, floating-point
numbers to the sum. Since the output of the multipliers is
only 2N double-precision values, an accumulator on 2N
inputs will serve to perform the accurate reduction.

IX. CONCLUSIONS

We have shown how to perform parallel associative
floating-point summation and obtain a correctly rounded
result in O(logN) depth. We have also provided evidence
that our algorithm is fast and reliable, only requiring two
iterations in virtually all cases. Furthermore, thanks to our
FPAR hardware unit, we are able to directly improve the
running time and total work of other algorithms that were
proposed in the literature. We have implemented the unit as
an extension of a standard FPA, and because we were able
to perform all the additional computations in parallel with
already necessary operations, we were able to make the unit
run as fast as the standard FPA, while requiring only 48%
more area. Finally, we have shown how to implement our
summation algorithm based on a streaming floating-point
accumulation hardware that can be tuned to consume m
summands every cycle.

ACKNOWLEDGMENT

Support for Paul Gurniak from the Rachleff Scholar’s Pro-
gram was instrumental in initiating this work. This material
is based in part upon work supported by the Office of Naval
Research (ONR) under Contract No. N000141010158. The
views expressed are those of the authors and do not reflect
the official policy or position of ONR or the U.S. Gov-
ernment. Valuable feedback from the anonymous reviewers
improved the clarity, precision, and presentation of the paper.

REFERENCES

[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger,
“Clock rate versus IPC: The end of the road for conventional
microarchitectures,” in ISCA, 2000, pp. 248–259.

[2] M. Horowitz, E. Alon, D. Patil, S. Naffziger, R. Kumar, and
K. Bernstein, “Scaling, power, and the future of CMOS,” in
IEDM, December 2005, pp. 7–15.

[3] S. H. Fuller and L. I. Millett, Eds., The Future of
Computing Performance: Game Over or Next Level?
The National Academies Press, 2011. [Online]. Available:
http://www.nap.edu/catalog.php?record id=12980

[4] H. Leuprecht and W. Oberaigner, “Parallel algorithms for
the rounding exact summation of floating point numbers,”
Computing, vol. 28, pp. 89–104, 1982.

[5] I. J. Anderson, “A distillation algorithm for floating-point
summation,” SIAM J. Sci. Comput, vol. 20, pp. 1797–1806,
1999.

[6] Y.-K. Zhu and W. B. Hayes, “Correct rounding and a hybrid
approach to exact floating-point summation,” SIAM J. Sci.
Comput., vol. 31, no. 4, pp. 2981–3001, July 2009. [Online].
Available: http://dx.doi.org/10.1137/070710020

[7] S. M. Rump, “Ultimately fast accurate summation,” SIAM J.
Sci. Comput., vol. 31, no. 5, pp. 3466–3502, September 2009.
[Online]. Available: http://dx.doi.org/10.1137/080738490

[8] P. Kornerup, V. Lefèvre, N. Louvet, and J.-M. Muller, “On
the computation of correctly rounded sums,” IEEE Trans.
Comput., vol. 61, no. 3, pp. 289–298, March 2012.

[9] T. J. Dekker, “A floating-point technique for extending
the available precision,” Numerische Mathematik, vol. 18,
pp. 224–242, 1971. [Online]. Available: http://dx.doi.org/10.
1007/BF01397083

[10] D. E. Knuth, The Art of Computer Programming: Seminumer-
ical Algorithms, 3rd ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1997, vol. 2.

[11] F. de Dinechin, J. Detrey, O. Cret, and R. Tudoran, “When
FPGAs are better at floating-point than microprocessors,”
ENS Lyon, Tech. Rep. ensl-00174627, 2007. [Online].
Available: http://prunel.ccsd.cnrs.fr/ensl-00174627

[12] W. Dieter, A. Kaveti, and H. Dietz, “Low-cost microarchitec-
tural support for improved floating-point accuracy,” Comp.
Arch. Lett., vol. 6, no. 1, pp. 13–16, January–June 2007.

[13] Z. Luo and M. Martonosi, “Accelerating pipelined integer and
floating-point accumulations in configurable hardware with
delayed addition techniques,” IEEE Trans. Comput., vol. 49,
no. 3, pp. 208–218, March 2000.

[14] N. Kapre and A. DeHon, “Optimistic Parallelization of
Floating-Point Accumulation,” in Proc. IEEE Symp. on Comp.
Arith., June 2007, pp. 205–213.

[15] M. Ercegovac and T. Lang, Digital Arithmetic, ser. The Mor-
gan Kaufmann Series in Computer Architecture and Design.
Morgan Kaufmann, 2003.

[16] Bluespec, Inc., “Bluespec SystemVerilog.” [Online].
Available: http://www.bluespec.com

[17] M. V. Manoukian and G. A. Constantinides, “Accurate
floating point arithmetic through hardware error-free
transformations,” in Proc. Intl. Conf. on Reconf. Comp.
Springer-Verlag, 2011, pp. 94–101. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1987535.1987550

[18] N. J. Higham, “The accuracy of floating point summation,”
SIAM J. Sci. Comput, vol. 14, pp. 783–799, 1993.

[19] Y.-K. Zhu and W. B. Hayes, “Algorithm 908: Online exact
summation of floating-point streams,” ACM Trans. Math.
Softw., vol. 37, no. 3, pp. 37:1–37:13, September 2010. [On-
line]. Available: http://doi.acm.org/10.1145/1824801.1824815

[20] J. Demmel and Y. Hida, “Accurate and efficient floating
point summation,” SIAM J. Sci. Comput., vol. 25, no. 4,
pp. 1214–1248, April 2003. [Online]. Available: http:
//dx.doi.org/10.1137/S1064827502407627

Web link for this document: <http://ic.ese.upenn.edu/abstracts/parallel fpaccum arith2013.html>

http://www.nap.edu/catalog.php?record_id=12980
http://dx.doi.org/10.1137/070710020
http://dx.doi.org/10.1137/080738490
http://dx.doi.org/10.1007/BF01397083
http://dx.doi.org/10.1007/BF01397083
http://prunel.ccsd.cnrs.fr/ensl-00174627
http://ic.ese.upenn.edu/abstracts/fpaccum_arith2007.html
http://ic.ese.upenn.edu/abstracts/fpaccum_arith2007.html
http://www.bluespec.com
http://dl.acm.org/citation.cfm?id=1987535.1987550
http://doi.acm.org/10.1145/1824801.1824815
http://dx.doi.org/10.1137/S1064827502407627
http://dx.doi.org/10.1137/S1064827502407627
http://ic.ese.upenn.edu/abstracts/parallel_fpaccum_arith2013.html

