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Abstract—Using parallel associative reduction, iterative refinement, and conservative early termination detection, we show how to use
tree-reduce parallelism to compute correctly rounded floating-point sums in OðlogNÞ depth. Our parallel solution shows how we can
continue to exploit the scaling in transistor count to accelerate floating-point performance even when clock rates remain flat. Empirical
evidence suggests our iterative algorithm only requires two tree-reduce passes to converge to the accurate sum in virtually all cases.
Furthermore, we develop the hardware implementation of two residue-preserving IEEE-754 double-precision floating-point adders on
a Virtex 6 FPGA that run at the same 250 MHz pipeline speed as a standard adder. One adder creates the residue by truncation,
requires only 22 percent more area than the standard adder, and allows us to support directed-rounding modes and to lower the cost of
round-to-nearest modes. The second adder creates the residue while directly producing a round-to-nearest sum at 48 percent more
area than a standard adder.

Index Terms—Floating-point arithmetic, IEEE-754, parallel, accumulation, accuracy, correct rounding, FPGA
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1 INTRODUCTION

MICROPROCESSOR clock speeds grew exponentially dur-
ing the VLSI era until the mid 2000’s. Limits to pipelin-

ing [1] and power density ended processor clock scaling [2],
[3]. Nonetheless, Moore’s Law feature size scaling continues
to deliver an exponential growth in transistors per integrated
chip. To increase performance, we now also have to increase
parallelism instead of simply increasing clock speed.

The end of frequency scaling presents a challenge for
floating-point (FP) arithmetic. In this paper, we focus on
the problem of summing N floating-point values. With
integer arithmetic, we can exploit the associativity of
addition to reorder the sum into a tree of depth OðlogNÞ
that admits significant parallelism. However, since float-
ing-point addition is not associative, performing a simi-
lar reordering for the floating-point sum would produce
a different result.

In consequence, floating-point addition must normally be
performed sequentially as originally specified in the source
code. This is a choice to sacrifice parallelism in order tomain-
tain the determinism of the answer, an approach that not
only fails to address the current need for increased parallel-
ism, but also fails to provide guarantees on the accuracy of
the answer. Although the sequential sum operation always
gives the same result, it may still be inaccurate.

We extend our preliminary work [4] where we developed
an algorithm for parallelizing floating-point addition while
still guaranteeing a correctly rounded result. That is, we
simultaneously address parallelism, accuracy, and determ-
inism, by formulating the basic summation as one that com-
putes a correctly rounded result. This directly addresses the
IEEE-1788-2015 requirement for correctly rounded sum and

dot-product reductions. We use an iterative, convergent
tree-reduce summation that distills the sum (Section 3). Dis-
tillation reduces the original sequence to a lossless represen-
tation of the sum using a constant number of non-zero
floating-point values (Section 4). Using a novel bound on
residues, we can almost always determine the correctly
rounded result long before the distillation completes (Sec-
tion 5)—completing in only two iterations in virtually all
cases (Section 8.1). We prove that the algorithm always ter-
minates (Section 6.2). Our algorithm has OðlogNÞ depth,
providing a significant speed improvement over the com-
monly used sequential summation technique, with only
twice the delay of the non-deterministic parallel one. Our
contributions include:

(1) efficient early termination detection for accurate par-
allel reduction for all IEEE-754 rounding modes;

(2) residue feedback structure for the parallel reduction
that guarantees eventual distillation;

(3) residue-preserving floating-point adder using only
22 percent more area than a standard floating-point
adder;

(4) generalization of approach to arbitrary floating-point
precision and exponent range;

(5) proper handling to avoid spurious overflows;
(6) characterization of the iterations required for conver-

gence based on the condition number of the sum.

2 BACKGROUND

2.1 Non-Associativity of Floating-Point
Floating-point addition is non-associative since the informa-
tion lost after each operation depends on the order of the
operations. Hence, compilers, high-level synthesis tools and
modern implementations are often forbidden from trans-
forming floating-point operations to avoid producing a dif-
ferent result from the source program. Unfortunately, the
original versions were often written as sequential summa-
tions because it was most straightforward to capture the
summation as a loop, and when hardware was more expen-
sive, there was little concern for parallelism.
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2.2 Correct Rounding
Given N floating-point numbers xi, our goal is to compute

the correct rounding, Sc, of the exact sum Sr ¼
PN

i¼1 xi. Cor-
rect rounding means that if Sr is a floating-point number,
then Sc will be its exact value, and if it is not, Sc will be one
of the immediate floating-point neighbors of Sr, chosen
according to the rounding mode used. That is, Sc is the
value we would get if we computed Sr with infinite preci-
sion, then rounded it to the appropriate floating-point num-
ber. Note that correct rounding defines correctness of the
result not in terms of the order of operations but in terms of
the error introduced in the final result. This gives us free-
dom to transform the computation for additional parallel-
ism as long as we can guarantee to achieve the correctly
rounded result. Faithful rounding is similar, except that
when Sr falls between two neighboring floating-point num-
bers, either can be chosen. The literature shows sequential
software algorithms that compute both faithfully and cor-
rectly rounded sums using standard FPUs [5], [6], [7].

2.3 Residue-Preserving Addition
Most of the accurate accumulation software algorithms such
as [5], [6], [7] rely on the same basic building block that was
studied in detail by Kornerup et al. [8], a floating-point
adder with residue (FPAR), which computes:

s ¼ IEEE754RoundToNearestðaþ bÞ; (1)

r ¼ ðaþ bÞ & s: (2)

This returns the sum of two floating-point numbers, s—the
same sum one would get from a normal floating-point addi-
tion—as well as the error (or residue), r, resulting from the
operation, which is known to also be representable as a
floating-point value when rounding to nearest [9]. With the
residue preserved, the following invariant holds:

sþ r ¼ aþ b: (3)

To also support directed rounding, or simply to reduce
implementation costs when rounding to nearest, we con-
sider an FPAR with Truncation (FPART) and suggest per-
forming the addition operations with truncation until the
end of the summation algorithm. When a and b overlap, the
FPART performs addition with truncation, which means
that the pair ðs; rÞ is such that s carries the MSBs of aþ b,
and r carries the remaining bits (s and r have the same sign
when non-zero), and no effort is made to round s in a stan-
dard way based on the value of r. When a and b do not over-
lap, s gets the input with larger magnitude and r the
smaller. In either case, the invariant in Eq. (3) still holds.

The FPAR building block can be implemented on a stan-
dard IEEE-754 FPU, for instance with Møller-Knuth’s Two-
Sum algorithm [10]:

ðs; rÞ ¼ TwoSumða; bÞ: //implements FPAR
s ¼ aþ b
b0 ¼ s& a
a0 ¼ s& b0; db ¼ b& b0

da ¼ a& a0

r ¼ da þ db.

Kornerup et al. [8] show that TwoSum is minimal, both
in terms of number of operations (six) and depth of the

dependency graph (five). They argue that algorithms with
fewer floating-point operations that also require branching
(e.g., [9]) are inferior, due to possible drastic performance
losses after a mispredicted branch causing the instruction
pipeline to drain. Previous work suggested that a hardware
implementation of the FPAR could be faster with only a
minor area overhead [11], [12], as it avoids the overhead of
TwoSum due to FPUs, where residual bits computed early
are discarded and then recomputed during later stages.
Manoukian andConstantinides [13] showed an FPGA imple-
mentation of the FPAR for single-precision arithmetic. In
Section 7, we provide a fast, native hardware implementa-
tion of the FPAR and FPARTmodules for double-precision.

2.4 Exploiting Hardware
There have been previous attempts at accelerating floating-
point accumulation using specialized hardware. For exam-
ple, Luo and Martonosi implement delayed addition techni-
ques [14]. They reorder the addition operations but do not
address the fact that the results would be different from the
original summation (as well as inaccurate). Kapre and
DeHon demonstrate that an iterative approach can be used
to exploit parallelism and still generate the same result as a
sequential sum [15]. This introduces determinism in the par-
allel approach, but it spends more time to reach a solution
that is still not correct. Demmel and Nguyen’s schemes [16],
[17] also guarantee determinism, but not correctness. They
trade off computation efficiency and accuracy. Leuprecht
and Oberaigner [18] use a parallel reduce tree and recycle
residues to compute an accurate sum, employing two full
floating-point operations per sum per iteration to compute
upper and lower bounds on the sum to detect convergence.

Similar to [18], our work addresses the accuracy and par-
allelism issues at the same time: We speed up computations
by exploiting parallelism in what is commonly thought to
be a non-parallel operation while guaranteeing that the
computed result is correctly accumulated and rounded. We
use a tree-like structure in the spirit of Leuprecht and Ober-
aigner [18] but with a more efficient convergence test that
can be adapted for all IEEE-754 rounding modes.

3 PARALLEL ACCUMULATION STRATEGY

Fig. 1 is a high-level illustration of our strategy for accurate
parallel summation; it works as follows:

1) Use the truncation-based, floating-point adder
(FPART) (Section 7.3) to perform additions preserv-
ing residues; this produces both a sum output s and
a residue output r.

2) Perform a parallel tree-reduce sum on the sum out-
put of the FPART with dlogNe stages and N & 1
nodes; keep the residue output of each FPART for
potential refinement and error estimation.

3) Perform the same parallel tree reduce on the FPART
residues and compute an early termination condi-
tion—a conservative upper bound on the magnitude
of the sum of residues, and, hence, potential error in
our calculation (Section 5).

4) Iterate reducing the residues and refining the most
significant output until our early termination condi-
tion indicates that the residues can be ignored.
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Fig. 2 shows our summation strategy using an N ¼ 8
input example with mantissa of size p ¼ 3. In this example,
a sequential software sum yields the inaccurate result of
1.00e4. A simple parallel reduce tree yields 1.00e5, a differ-
ent, also inaccurate, result. Our approach yields the accurate
result of 1.10e5. Our early termination detection allows us to
determine that the non-zero residues left in the tree (1:00e0
and &1:00e0) are too small to affect the sum of the main out-
puts of the two tree-reduce steps (1.00e5+1.00e4=1.10e5).
We thus converge after two iterations.

We arrange the feedback of residues in the tree to guaran-
tee that they are eventually distilled (Section 4.1) to a fixed-
length sequence of floating-point values that will perfectly
represent the sum to provide more easily provable guaran-
tees on convergence (Section 4.2). We also identify difficult,
but typically uncommon, cases that are not resolved with
our conservative upper bound, and we organize the sum to
guarantee their eventual resolution (Section 5.2).

4 DISTILLATION AND REDUCTION

In this section, we describe the structure of the parallel
reduce tree that also performs distillation. We first intro-
duce a distill chain that accumulates the exact sum by repre-
senting the complete sum as a collection of floating-point
values, the distillation [19], [20]. We argue that the distill
chain will always converge, and we identify loose bounds
on the cycles required for convergence (Section 4.1). We
then show that we can integrate distillation into a reduce
tree (Section 4.2).

To make our results general, we use p to define the num-
ber of mantissa bits (53 for IEEE double-precision floating-
point, 24 for single-precision, including the implicit 1) and e
to define the number of exponent bits (11 for double-preci-
sion and 8 for single-precision).

4.1 Distill Chain
We can completely represent any sum of floating-point val-
ues, within the limits of the floating-point precision range,
using a set of non-overlapping floating-point values:

Sum ¼
X

0'i <Ld

D½i): (4)

In the worst case, we need enough mantissa bits to cover the
entire floating-point range. The range is from the p bits at
the minimum exponent, emin, of &2e&1 þ 2 to the maximum
exponent, emax, of 2e&1 & 1, for a total of 2e þ p& 3mantissa
bits. Each floating-point value provides p bits, so we can
cover the entire range with Ld floating-point numbers:

Ld ¼
2e þ p& 3

p

! "
¼ 2e & 3

p

! "
þ 1: (5)

For IEEE double-precision floating-point, Ld ¼ 40.
Claim. We can distill any sequence of N floating-point

numbers into Ld floating-point numbers using the distill
chain (Figs. 3 and 4).

The distill chain is arranged as an odd-even transposition
sort [21] using FPART units to sort by exponent instead of sort
units. When the mantissa ranges of the inputs to the FPART

Fig. 1. Parallel accumulation strategy: accumulate using a reduce tree
and feed back residues (errors): no information is discarded until the end.

Fig. 2. Example summation through our reduce tree (p ¼ 3).

Fig. 3. Distill chain.
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do not overlap, (max(A:exp, B:exp))&(min(A:exp, B:exp))>
p& 1, the FPART will simply sort the results by the magni-
tude of the exponent. The sort is arranged to eventually order
the components from largest exponent (D½0)) to smallest
(D½N & 1)). It uses N FPARTs to perform distillation with
N&1
2

# $
in a first stage and N

2

# $
in a second stage as shown in

Fig. 3. The first stage pairs odd elements, 2iþ 1, with their
larger even neighbor at 2ðiþ 1Þ, while the second stage pairs
odd elements, 2iþ 1, with their smaller even neighbor at 2i.
Fig. 4 defines the operation of the distill chain.

To understand how the chain works, we can first think
of it as an exponent sorter. On each cycle, two neighbors
are compared. If they are in the appropriate order, the
exponent of the value in the smaller position is larger
than the exponent of the value in the larger position: they
remain in the same position. If they are out of order, the
positions are swapped to place them in order. The two
stages guarantee that each cycle through the distill chain
will compare each value with its left and right neighbors,
allowing it to move one position to the left or right in
each cycle. If the elements are properly ordered, then no
values change positions in a cycle. In the worst case, a
value moves from one end of the chain to the other, a
total of N positions.

Now consider the FPART units instead of sort units. On
each cycle, we add two floating-point values. If the values
do not overlap, the FPART simply sorts the values by the
exponent. When the values overlap, the FPART adds the
values and the sum output, s, has a larger exponent than
the residue output, r, so the outputs are also in sorted order.
However, unlike a sorter, the values that come out can be
very different from the ones that went in. Due to cancella-
tion, they could both have smaller exponents. When the
signs of the values are the same, we can end up with a larger
exponent for the s output and a smaller one for r. Either case
may leave the results unsorted within the distill chain.
However, if we continue to cycle the chain, the values will
be moved to their proper position where they will poten-
tially interact to produce a new sum and residue.

To get a weak bound on the number of cycles until the
distill chain converges, we can reason about the sum of the
exponents in the distill chain and the maximum number of
cycles to sort the values into order or into a position that
allows overlap and hence intersection. We establish conver-
gence by arguing that one of two things occurs on every
cycle: either there is an overlap that results in a reduction in
the total weighted exponent sum, or there is no overlap and
the distill chain makes progress on sorting the values. If the
distill chain manages to only sort the values for N cycles
with no overlaps, the distill chain has converged.

We define the weighted exponent sum, ESUM, as:

ESUM ¼
X

0'i<N

ð1& 2emin&D½i):expÞ: (6)

This has the property that the cost of an exponent grows
with its magnitude (elements with exponent=emin have
value 0, while elements with exponent=emax have value
almost 1), so the sum reduces as magnitudes reduce. It
also has the property that smaller exponents, when
reduced by one, provide a larger reduction than increas-
ing a large exponent by one. This means that, if we trans-
form from AþB to sþ r with A:exp > B:exp, such that
s:exp ¼ A:expþ 1 and r ¼ B:exp& 1, there is a net reduc-
tion in ESUM

DESUM ¼ ESUMðsþ rÞ &ESUMðAþBÞ (7)

¼ ð1& 2emin& A:expþ1ð ÞÞ þ ð1& 2emin& B:exp&1ð ÞÞ
% &

& ð1& 2emin&A:expÞ þ ð1& 2emin&B:expÞ
' (

¼2emin&A:exp&1 & 2emin&B:exp:

(8)

This is negative since A:exp > B:exp.
Each FPART will do one of three things:
1) (maxðA:exp;B:expÞ &minðA:exp;B:expÞ < p& 1): s

will have an exponent at most max(A:exp,B:exp)þ1 and r
will have an exponent less than or equal to min
(A:exp,B:exp)&1, resulting in a reduction in ESUM.

2) (maxðA:exp; B:expÞ &minðA:exp;B:expÞ ¼ p& 1): the
r exponent reduces by at least one compared to
minðA:exp;B:expÞ. The s result may be equal to maxðA:exp;
B:expÞ, be reduced, or be one larger. Even in the case when
r:exp is only one smaller than the minimum exponent and
s:exp increases the maximum exponent by one, ESUM is
reduced as shown above (Eq. (8)).

3) (maxðA:exp;B:expÞ &minðA:exp;B:expÞ * p): the val-
ues will be sorted by the exponents, and ESUM will remain
unchanged.

Consequently, on every cycle one of two things happens.
Either ESUM is reduced, or the distill chain performs
a cycle of sorting the values. To get a weak upper bound
on the number of times a reduction can occur, we note
that all reductions are larger than 2emin&emax. If we take
DESUMmin ¼ 2emin&emax ¼ 23&2e and note that the worst
case is reducing ESUM from all values at emax (ESUM
slightly below N) to all values at emin (ESUM ¼ 0), the
bound on the number of reduce operations is:

Treduce <
N

2&2e
¼ 22

e
N: (9)

Fig. 4. Distill chain.
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This is the maximum number of times our N sort steps can
be interrupted, giving us:

Tdistill converge ' N + Treduce ' 22
e
N2: (10)

This weak bound can likely be tightened considerably by
exploiting the fact that the minimum reduction is actually
much larger than assumed above. Since we avoid running
the distill chain to convergence in the results that follow,
thanks to early termination detection (Section 5), we leave
tightening this result as an open question for future work.

4.2 Distillation Tree
Ignoring residues, a parallel reduce tree computes the
sum in log ðNÞ depth. We can feed the residues back into
the tree to sum the residues. What is less obvious is (a)
where to route the residues in the tree, and (b) how to
guarantee that the residues in the tree will reduce. This is
important to our early termination detection (Section 5).
The distill chain provides guidance for arranging the resi-
due feedbacks in the tree and guarantees of convergence.
The idea is to perform the tree reduce on the s output of
the FPART units and arrange the residue connections to
guarantee that each pair of passes through the tree per-
forms an odd-even sort step similar to the distill chain.
As a result, the tree acts like a distill chain, eventually
sorting all the non-zero residues to the low position so
that they interact and are sorted into decreasing exponent
order. The reduce tree portion accelerates the production
of the most significant floating-point residue as with any
tree reduce. To achieve the sorting, the basic step is two
reduce trees offset by one so that one interacts residues
with their nominally larger position neighbor and one
with the nominally smaller similar to the odd-even trans-
position sort in the distill chain (Figs. 5 and 6). Worst
case, this will converge like the distillation chain. When
there are no changes in values between the input and out-
put of the FPARTs, the distillation tree has converged.

5 EARLY TERMINATION DETECTION

While the details above show that the distill chain and tree
will converge in a bounded amount of time, it could take a
long time to completely converge. However, we can almost
always determine the converged value for the accurate
sum long before the distill tree has converged. Section 8
shows cases where early termination detection reduces
the number of iterations from 73 down to 2 (Table 1a,
d ¼ 1;500, Data1).

5.1 Termination Condition
To determine when we have enough information to return
the correctly rounded result, we look at St and Rt, the larg-
est two values in the distillation (D½0), D½1) when con-
verged) and gross summary information on the remaining
residues in the distill tree to calculate a conservative upper
bound to the magnitude of the sum of the remaining resi-
dues, rsb, the Residue Sum Bound. We can then check for
convergence by testing the condition CONVðSt; Rt; rsbÞ
(Fig. 8). If the condition succeeds, we conclude that even an
upper bound on what is left in the tree is not sufficient to
influence the most-significant floating-point values, St, Rt,
and they can be rounded to determine the accurate sum.
CONV also identifies a third case, which we call undet, where
it will not be possible to determine convergence by only
examining St, Rt, and rsb, and a fourth case where we must
modify St and Rt to drive convergence. We show how to
handle these cases in Sections 5.1.4 and 5.2.

Fig. 5. Distilling tree.

Fig. 6. Iterative distillation tree.
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To derive an expression for rsb and CONV, we first define
nzcnt as the number of non-zero residues left in the tree and
maxexp as the maximum exponent of these residues, both
of which can be trivially computed during the summation
tree reduction (see end of Section 7.1). We then write an
upper bound on the sum of the residues:

jerrorj ' nzcnt+ 2maxexpþ1: (11)

By definition, we want rsb to be an upper bound on jerrorj:

rsb ¼ nzcnt+ 2maxexpþ1 * jerrorj: (12)

We can now approximate rsb as an exponent only:

rsb:exp:ub ¼ log 2ðnzcntÞd eþmaxexpþ 1: (13)

rsb:exp:ub is an upper bound on the exponent of rsb: the
smallest integer k such that 2k * rsb.

The function CONVðSt; Rt; rsbÞ is shown in Fig. 8. It takes
two non-overlapping inputs St; Rt FPART(D½0),D½1)) with
jStj * jRtj (since St and Rt are outputs from an FPART fol-
lowing each distill tree step (see Fig. 14), this relation always
holds), as well as rsb. Based on the values of St, Rt, and rsb,
we are able to decide whether we can round St and make it
the final converged sum, or whether other iterations of the
algorithm are required. Convergence is achieved if and only
if the following condition is satisfied:

roundðSt þRt þ rsbÞ ¼ roundðSt þRt & rsbÞ: (14)

Furthermore, when convergence fails, CONV distinguishes
cases that may converge with additional iterations from
“undetermined” (undet) cases. An undet case means that
rsb is low enough that St would not change by more than
1 ULP (Units in the Last Place), and that it is so low that it
may not be able to interact with Rt. Undet cases may not
resolve simply by continuing to iterate residue reduction on
the distill tree. When an undet case is reached, we modify
the values in the summation and change our convergence
condition (Section 5.2). We show example strings that cause
undet cases in Fig. 9 (with p ¼ 13).

To better describe the conditions in Figs. 8 and 9, we
introduce a few more definitions. In Fig. 8, jRtj patterns, patt
(jRtj), are shown assuming their MSB starts right after the
LSB of St (that is, they start at 1/2 ULP); we conceptually
pad jRtj so that it immediately follows St. We also define a
function lco (Lowest in Chain of Ones), which gives the
index of the least significant 1 in the first chain of ones of a
string—the most significant of these chains when there are
more than one (see Fig. 9). Note that the indices are assumed

to increase towards the right, with the first bit not included
in St being at index 0, the second at index 1, and so on.

rsb:i (rsb index) compares how rsb:exp:ub aligns with
Rt:exp:

rsb:i ¼ St:exp& p& rsb:exp:ub; (15)

rsb:i marks the dividing line between sum bits that have
been resolved and bits that have not. The bits more signifi-
cant than rsb:i are resolved in that they will at most change
due to a carry from the resolution of bits at or below rsb:i.

5.1.1 CONV Algorithm

Certainly, when rsb is zero, there is no residue to impact
the result, so we converge. Otherwise, as shown in Fig. 8,
if rsb:exp:ub*Rt:exp, a different result may be obtained if
rsb is added or subtracted, so convergence fails (i). When
rsb:exp:ub<Rt:exp, we know that we have resolved
everything up to the most significant bit of Rt, except for
a potential carry. We further require rsb:i * 3, so at least
the first three bits past St are resolved (1/2, 1/4 and 1/8
ULP), except for a potential carry (ii); we could relax this
requirement but it would complicate the case analysis
that follows. With rsb:i * 3, we can reason about jRtj pat-
terns that include the top three bits of Rt since we know
those bits are resolved and can only be impacted by a
carry into the low bit. We distinguish between two round-
ing mode families: round-to-nearest (Section 5.1.2), and
directed rounding (Section 5.1.3). We must also resolve
the special case where rounding can reduce the St expo-
nent (Section 5.1.4).

5.1.2 Round to Nearest Modes

Assuming we do not need to address a reduction in the St

exponent, we identify four cases from the jRtj pattern.
patt(jRtj)=00xxx. There are two zeros after the LSB of St

and before any jRtj bit is set (at indices 0 and 1). The zero at
index 1 is a squash bit that stops carries from propagating
into index 0. Hence, no carry can propagate into St, and the
round bit cannot be set: we can round to nearest (iii).

patt(jRtj)=11xxx. If Rt is positive, Rt & rsb is greater than
1/2 ULP so we round up. Rt þ rsb is also greater than 1/2
ULP and may carry into St but then would leave the
remainder below 1/2 ULP, so we round up in this case as
well: we converge (iv). A similar reasoning applies if Rt is
negative, but we round down.

patt(jRtj)=01xxx. Here we have two cases. If rsb:i >
lcoðjRtjÞ, then neither Rt þ rsb nor Rt & rsb can cause a carry

TABLE 1
Experimental Results
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that will set the bit to the left of the chain of ones: we con-
verge (v-a). Otherwise, if rsb:i ' lcoðjRtjÞ, then Rt þ rsb and
Rt & rsb may or may not cause a carry that changes index
0 in a different way: convergence fails (v-b); this leads to an
undet case.

patt(jRtj)=10xxx. Again we have two cases: either rsb:i is
greater than the index of the first 1 of jRtj after the 1 in the
most significant bit, in which case neither Rt þ rsb nor
Rt & rsb would have an effect on that 1, and the tie is
resolved in the same way: we converge (vi-a). Otherwise,
Rt þ rsb would make the tie deviate in a different way than
Rt & rsb, so convergence fails (vi-b), leading to an undet case.

5.1.3 Directed Rounding Modes

Directed rounding modes round in a specific direction
(toward 0, toward þ1, toward &1). In directed rounding,
we first check if rsb ¼ 0. If it is, we know how to round
based on Rt, and we converge (x). Otherwise (rsb 6¼ 0) we
check the jRtj pattern:

patt(jRtj)=0xxx. If there is a zero at index 0, then conver-
gence is achieved (xi), since the zero acts as a squash bit,
preventing the sum of residues to propagate into St. Fur-
thermore, because rsb:exp:ub < Rt:exp, we know that the
sum of residues, including Rt, will not be zero.

patt(jRtj)=1xxx. If there is a one at index 0, we do the
same check as above for round-to-nearest: Either rsb:i >
lcoðjRtjÞ, in which case there will be no overflow into St,
and we know how to round (xii-a), or rsb:i ' lcoðjRtjÞ, in
which case there could be an overflow, so convergence fails
(xii-b). This leads to an undet case.

5.1.4 DROPEXP

As described above, round-to-nearest modes look at the bit
immediately below St (index 0, 1/2 ULP), the round bit, to
determinewhether to round up or round down, except in the
exceptional casewhenSt is a power of two andhas a different
sign fromRt. In this case, the St exponent may drop by 1 due
to cancellations in the residues, so we call it DROPEXP (Fig. 7).
A similar DROPEXP issue can arise for directed rounding
modes. We thus first check if we have a DROPEXP case and
transform the DROPEXP case into a non-DROPEXP case so it can
be resolvedwith the same steps as the general cases above.

The problem here is the different signs, so our strategy is
to resolve St and Rt to the same sign, which we can do by
borrowing a low bit from St when Rt is sufficiently large. If
Rt is small (patt(jRtj)=000xxx and rsb:i * 3), both
St þRt þ rsb and St þRt & rsb round the same way due to

the squash bit at index 2 (1/8 ULP), so we converge (vii).
Otherwise, we subtract Z ¼ 2St:exp&pþ1 from St if St is posi-
tive, Z ¼ &2St:exp&pþ1 if St is negative, i.e., we subtract the
least significant bit of St, such that it is not a power of two
any more—the new St has an exponent that is lower by 1,
and all 1’s in the mantissa, except the least significant bit, to
which we assign the value Y , defined below. We also
update (Rt,r0) FPART(Z, Rt), which flips the sign of Rt, so
St and Rt now have the same sign. If the new Rt has expo-
nent St:exp& pþ 1 (if the new St and Rt overlap), we trans-
fer the most significant bit of Rt to the least significant bit of
St: we set Y ¼ 1, and we update Rt accordingly. Otherwise,
if the new Rt has exponent less than St:exp& pþ 1, we set
Y ¼ 0, and we do not update Rt. Fig. 9 shows an example of
this, where (viii-a) gets transformed into (viii-b). The 1 bit
shown in red is r0, an extra residue that we may have dis-
placed from Rt by this addition. We add r0 to the current set
of residues. At this point we do not have a DROPEXP case any
more. Note that r0 will be at most one bit, which can happen
when patt(jRtj)=00xxx. For it to be 2-bit wide, it would need
to come out of the patt(jRtj)=000xxx case, but that is a con-
vergence case.

5.2 Handling Undetermined Cases (Undet)
As Fig. 8 notes, there are a few cases that cannot be directly
resolved by examining only St, Rt, and rsb. These are cases
where we could perform faithful rounding based on the
information in St, Rt, and rsb, but correct rounding demands

Fig. 7. Function to resolve special case when rounding.

Fig. 8. Early convergence detection function: CONVðSt;Rt; rsbÞ:
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that we know the resolution of bits that are below the ones
we have resolved in St and Rt. We call these “undet” since
we cannot break the tie between rounding up or down
based on the information available. If the undet cases are
not treated, the early convergence check may always fail
once we reach the undet condition, forcing us to (a) run
until the distill tree converges and (b) look at all the distilled
values to determine the final rounded result.

Consider the following example corresponding to failure
(vii-b) in Fig. 8, with p ¼ 5 and assuming rsb is set by the
only residue remaining in the tree:

St ¼ 1:1010e27; Rt ¼ 1:0000e22; rsb ¼ 1:0000e10
roundðSt þRt þ rsbÞ ¼ 1:1011e27
roundðSt þRt & rsbÞ ¼ 1:1010e27

While convergence is not achieved, Rt is non-overlap-
ping with the remaining residue and no reduction can be
performed. Indeed, 1:0000e10 and 1:0000e22 could be the
only non-zero values in the tree other than St and they can-
not combine. 1:0000e22 is ultimately summed with the pre-
vious total 1:1010e27, and again, we end up with:

St ¼ 1:1010e27; Rt ¼ 1:0000e22; rsb ¼ 1:0000e10

That is, we really need to know if the residue sum will be
negative, leading to a round down, or positive, leading to a
round up. Knowing that would demand that we resolve
bits or distilled values lower than Rt, but our simple defini-
tion for rsb does not capture that. We could define a more
complicated termination condition that kept track of con-
vergence of other elements of the distillation (D[2], D[3],...)
and move the approximation in the residue sum to the suf-
fix. However, these cases can be handled more compactly
by modifying the sum and keeping a few additional bits of
state. This allows us to keep the convergence check simple,
looking at only a small, constant number of bits.

Undetermined cases are resolved differently depending
on the rounding mode chosen.

5.2.1 Round-to-Nearest

In round-to-nearest, we start by subtracting a 1 right after
the LSB of St (index 0 in Fig. 9). That is, we add &2St:exp&p to
the set of distillation residues if Rt is positive, 2St:exp&p if Rt

is negative. This way, we remove the round bit, and we
then only check for the following condition:

signðRt þ rsbÞ ¼ signðRt & rsbÞ:

Indeed, we now only need to know whether what is left
in the tree is positive or negative to determine whether it
will shift the tie up or down, and hence whether it will
affect the LSB of St or not. This prevents the distillation
from being clogged, allowing smaller values to interact
and resolve within Rt. Fig. 10 shows the complete algo-
rithm for resolving the undet case in round-to-nearest
mode.

In fact, this handling of undet conditions deals with the
case that Kornerup et al. use to prove the impossibility of
correctly rounding the sum of three or more floating-point
numbers using a round-to-nearest, ties-to-even approach
with depth less than 1,939 double-precision IEEE-754 oper-
ations [8]. We are able to cover such a depth with limited
resources because repeated iterations allow us to dynami-
cally increase the DAG depth until termination, exceeding
1,939 if needed.

Fig. 9. Example input configurations in the CONV function.

Fig. 10. Nearest rounding undet resolution.
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5.2.2 Directed Rounding

The problem in the undet directed rounding case (xii-b) is
that we may have a chain of ones following St and into Rt at
least up to the position that could be affected by the rsb. So,
if St and Rt are positive and rsb is the maximum possible
positive value, it is possible there will be a carry into St, but
if rsb is the maximum possible negative value, there will not
be. As a result, we cannot determine the rounding. Even if
we continue distillation, the chain of 1’s could extend
through many distilled terms.

The question here is whether or not Rt and the remaining
residues carry a 1 into St. We can use a similar trick to the
nearest rounding case by assuming the carry and adding a 1
to the LSB of St. To determine if this was correct, we com-
pensate by adding a &1 LSB to the residue. If the residue
sign is positive, it turns out we were correct to treat the
carry, and keep it. However, if the residue sign comes out
negative, we know that Rt and the residue would not have
generated the carry, so we remove it. Thus, this case, too,
can be reduced to determining the sign of the residue.

6 DETAILED ALGORITHM AND CONVERGENCE

The last three sections have described all the components
of our accurate summation. This section addresses the tech-
nicalities of how it all works, showing how the components
come together (Section 6.1), proving that this full formula-
tion will converge (Section 6.2), and dealing with the case of
potential overflow (Section 6.3).

6.1 Algorithm
The complete, correctly-rounded parallel accumulation
algorithm is shown in Figs. 7 and 8, and Figs. 10 through 14.
The main loop in Fig. 14 calls a tree reduction (Fig. 12) and
residue computation (Fig. 13) on every iteration, before
checking for convergence (Fig. 8) and returning the result. If
convergence fails, we proceed with another iteration until it
is successful. It also identifies the undet conditions and han-
dles their resolution separately (Figs. 10 and 11).

6.2 Termination Condition Convergence
In this section we prove the theorem that establishes that the
early termination detection conditions defined in Section 5.1
and used in the correctly rounded sum algorithm (Fig. 14)
and the undet resolution algorithms (Figs. 10 and 11) will
always be met, eventually. The bound on the convergence
of the distillation tree (Section 4.2) provides a bound on the
number of iterations it requires to reach these conditions.

Since the tree distills its inputs, we know that the largest
exponent, maxexp, outside of the most significant two val-
ues, St and Rt, will eventually not overlap with Rt. So, we
know the following will eventually hold:

maxexp ' Rt:exp& p: (16)

Here, if Rt is a subnormal, we take Rt:exp as the exponent of
the most significant 1.

Also due to distillation, the total number of non-zeros
will be at most Ld. Excluding St and Rt, this leaves:

nzcnt ' Ld & 2: (17)

Theorem 1. If p > eþ 3, eventually, rsb:exp:ub < Rt:exp& 2.

Fig. 11. Directed rounding undet resolution.

Fig. 12. Distill tree step.

Fig. 13. Residue summary.
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Proof. By definition (Eq. (13)):

rsb:exp:ub ¼ log 2ðnzcntÞd eþmaxexpþ 1:

Combining the bounds onmaxexp and nzcnt:

rsb:exp:ub ' log 2ðLdÞd eþRt:exp& pþ 1:

rsb:exp:ub < Rt:exp& 2will hold as long as:

log 2ðLdÞd e& pþ 1 < &2; (18)

log 2
2e & 3

p

! "
þ 1

) *! "
& pþ 3 < 0:

Since p * 1, the first term can be bounded as:

log 2
2e & 3

p

! "
þ 1

) *! "
' log 2 2e & 3þ 1ð Þd e ' e: (19)

Substituting Eq. (19) into Eq. (18), this gives:

e& pþ 3 < 0:

This final equation reduces to p > eþ 3. tu

Together with distillation convergence and the treatment
for undet cases, this guarantees that we will always be
able to detect convergence by looking at St, Rt, nzcnt and
maxexp. rsb:exp:ub < Rt:exp& 2 guarantees that the
rsb:i * 3 condition eventually holds, so we can safely wait
on it to become true before making an undet decision.

Note that both IEEE single- and double-precision meet
the p > eþ 3 requirement. IEEE half-precision (binary16,
e ¼ 5 and p ¼ 11) and quadruple-precision (binary128,
e ¼ 15 and p ¼ 113) also meet the p > eþ 3 requirement.
In general, the other binary interchange formats also meet
the p > eþ 3 requirement since IEEE 754-2008 requires
e ¼ roundð4log 2ðkÞÞ& 13 where k ¼ pþ e (k * 128). For
floating-point number systems where p ' eþ 3, this just
means that we must examine more residues as part of the
largest residue, Rt. The generalization is to separate out k
values, Rt0; Rt1; . . . ; Rt k&1ð Þ. maxexp and nzcnt are com-
puted on the residues smaller than Rt k&1ð Þ, and the
revised CONV must look at all k of the Rti values. k is set

such that k ¼ eþ3
p

l m
.

6.3 Special Case: Overflow
Although the FPA, FPAR and FPART modules we describe
in Section 7 support infinity, the algorithm we have detailed
so far does not handle intermediate overflows. In particular,
an unfortunate ordering of the inputs could cause an inter-
mediate sum to overflow to infinity, driving the final sum to
infinity in cases where the accurate sum is finite and can be
represented in the given floating-point system.

Using the distill tree, we can handle this case as follows:
When the addition of two numbers would overflow, instead
of producing ,1, we make the FPART return the outputs
in sorted order (larger input as s, smaller input as r). This
way, no information is lost. The distillation and sorting con-
tinue. If the distillation eventually produces values that
would cancel with these values, the sorting would bring
them together, cancellation would occur, and the distillation
can converge normally. Our early convergence detection
scheme will work once proper cancellation of these large
values is allowed to occur. However, if we reach a steady
state where all numbers are in stable, sorted order and there
are still adjacent entries that would overflow, we know that
no cancellation will occur—every pair of adjacent numbers
has gone through an FPART, meaning there must be no
adjacent, overlapping numbers with opposite signs. In this
steady state, we can correctly determine that the result is
,1. We can detect this by having each FPART provide an
output signal to indicate when it has performed a sort to
avoid overflow. If we reach the distillation tree termination
condition and any of the FPARTs has asserted this signal,
we can conclude that a real overflow has occurred. These
intermediate overflows cause more iterations on average.
This technique allows us to provide correct operation in all
cases, without complicating the implementation. In typical
usage, we expect this to be an uncommon case.

7 ADD WITH RESIDUE UNIT

The key operation in our tree reduce is the FPART unit. For
completeness, this section describes the design of the
FPART unit and quantifies its resources. We start by
describing the base FPA design and its extension to an
FPAR that supports “round-to-nearest, ties-away-from-0”,
the most complex of the IEEE-754 rounding modes. Inde-
pendent of our development of the FPAR [4], other groups
have developed FPAR units with similar resource require-
ments [13], [22].

Fig. 14. Correctly rounded sum algorithm.
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7.1 Floating-Point Adder
A 64-bit IEEE-754 double-precision number contains
1 sign bit, 11 exponent bits (e ¼ 11), and 52 mantissa bits
plus an implicit leading 1 (p ¼ 53), and handles subnor-
mal numbers, zero, infinity and Not-A-Number (NaN).
The adder computes a rounded IEEE-754 sum, s, accord-
ing to Eq. (1).

Our FPA is divided into seven pipeline stages. The white
part of Fig. 15 shows the general organization, which is sim-
ilar to the improved single-path floating-point adder in [23]
(Fig. 8.8, p. 428), except that we use a Leading One Detector
(LOD) instead of a Leading One Predictor (LOP) in order to
save area. The datapath operates as follows: First, the man-
tissas are compared and the exponents subtracted (stage 1),
before being used to shift right the smaller one’s mantissa
(stage 2). During the right shift, the bits that would have
normally been discarded are saved and used to compute
rounding requirements in stage 4. Before that, the mantissas
are added together (stage 3) and the LOD determines the
resulting change in exponent (stage 4), which is then used
to determine rounding requirements (also stage 4), as well
as in stage 5 to normalize the mantissa. Stage 5 rounds and
shifts the number, which can be parallelized to improve

delay since the costly dynamic left shift is only needed
when a and b are completely overlapping, and thus no
rounding is needed. Otherwise, the position of the man-
tissa’s MSB can only change by at most one in either
direction, so that in the case where rounding is added, nor-
malization is performed with a much cheaper 1-bit right or
left shift as suggested in [23]. A multiplexer is then used to
select the proper case. Stage 6 checks if the result is zero
(zero mantissa), subnormal (negative exponent), and if it
has overflowed to infinity (maximum exponent), at the
same time as computing a subnormal version assuming
the exponent is negative. Finally, stage 7 selects among the
rounded normalized number, its subnormal version, a 0
output, and a special case number determined in stage 1.

We described this hardware design in Bluespec System-
Verilog [24] and implemented it on a Virtex 6 FPGA
(xc6vlx240t, speed grade of -1). It occupies an area of 1517
Lookup Tables (LUTs) and runs at 250 MHz (the critical
path delay is 3.996 ns after place and route). The slowest
and most area consuming operations are the dynamic shifts,
the additions, and the 54-bit comparison in stage 1. Com-
puting an update to nzcnt andmaxexp from a single residue
(Section 5.1) has a critical path of 2.378 ns and only costs 53
LUTs, making the rsb calculation small compared to the
floating-point additions.

7.2 Floating-Point Adder with Residue
The FPAR can be built by extending the FPA. Fig. 15 shows
its organization, with the additional hardware shown in
gray. Stages 1, 2 and 3 are mostly the same, except for
the additional registers to communicate the residue bits to
the subsequent stages instead of discarding them. Unfortu-
nately, we cannot perform a leading-1 search on r at the
same time as s (stage 4) since we first need to know where
the s mantissa will end in order to know where to start the
search for r. Therefore, this step is moved to stage 5, and is
performed after “residue adjustment”, which is moved to
stage 4. Residue adjustment is the process of subtracting
from the residue the number that is added to the sum due
to rounding; it is controlled by a rounding unit similar to
the one for the sum: adding 1 to the LSB of s is coupled
with subtracting 1 one position above the MSB of r and vice
versa. However, we only need to know whether the MSB of
the sum has moved by one bit at most in order to determine
the position at which the residue should be adjusted, since
moving by more than one position would mean that a and b
are canceling each other and that the residue is zero. This
three-case check can be performed at low cost during stage 4
even without knowing the sum’s leading-1 information
and is followed by an adder to compute the rounded resi-
due. Stage 5 then performs a leading-1 search on the resi-
due. Stage 6 normalizes and computes a subnormal version,
both of which require dynamic shifts, together with check-
ing whether the residue is 0 (0 mantissa) or subnormal
(this time checking for a negative normalized exponent
expnorm ¼ exp& LOidx, where LOidx is the index of the lead-
ing 1). Finally, in stage 7, a second multiplexer chooses
among the different possible residue outputs.

We are thus able to exploit parallelism to produce the
residue without affecting the clock frequency and number
of pipeline stages. In particular, since we are able to

Fig. 15. Structure of the FPAR unit.
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determine the index at which the residue must be adjusted
one cycle earlier than for the sum, we can change the order
of operations while maintaining a similar delay: first round,
then search for the leading-1. During stages 6 and 7, the
final checks can also be performed in parallel, and because
the FPAR already performs costly dynamic shifts for the
subnormal cases, performing another dynamic shift for the
common residue case in parallel does not impact the delay
(except for extra routing). This parallelization also works
because even though expnorm must be computed, that result
is not required by the dynamic shifters in stage 6, but only
by the comparator of stage 7 to check whether the result is
subnormal. Indeed, if the number is subnormal then only
the exponent information is needed to shift the mantissa
properly (not the leading-1’s position). When it is not sub-
normal then only the leading-1 information is needed to
shift the mantissa (not the exponent).

The FPAR requires 2252 LUTs, only 48 percent more than
the FPA. It also uses seven pipeline stages running at
250 MHz. The critical path delay is 3.999 ns. Manoukian
and Constantinides implemented a similar single-precision
FPAR on a Virtex 6, also with no delay overhead, and 47
percent area overhead [13]. Nathan et al. implemented a
custom chip for a similar unit with 54 percent area overhead
[22]. These comparable overheads from independent imple-
mentations confirm that they are a good estimate of the
required resources.

7.3 FPART
We observe that the FPAR unit can be simplified if it only
truncates the sum. We thus introduce the FPART (FPAR
with Truncation), which “PARTitions” the exact sum into
two parts: the sum and the residue. This does not give an
IEEE-754 compliant sum for every operation but still yields
an information-preserving sum and residue (Eq. (3)) that is
adequate for the algorithm described in the previous sec-
tions, where we only round once at the end.

The FPART is similar to the FPAR, except that it does not
contain any of the rounding modules, shown in Fig. 15 with
a dotted contour. Therefore, the sum portion of the compu-
tation can determine all of its bits simply by summing the
aligned a and b mantissas and detecting the leading 1; there
is no need to know the shape of the discarded bits. How-
ever, the residue portion of the computation still needs the
LOD information from the sum portion before it can per-
form an LOD on its own mantissa. The LOD information is
needed because a shift in the sum’s exponent will change
the index of the first bit considered part of the residue,
although it will not change the shape of the residue bits;
that is, no bit is added or subtracted.

The FPART occupies an area of 1,851 LUTs, only 22 per-
cent more than the FPA. It is also comprised of seven pipe-
line stages running at 250 MHz: The critical path delay is
3.994 ns.

While we quote specific results from our FPGA imple-
mentation, we expect a custom implementation would
achieve similar results—The FPAR should achieve the same
latency as the base FPA and require only fractionally more
area, either an extra half if it rounds at every step or only an
extra quarter otherwise. The custom implementation of
FPAR in [22] supports this expectation.

8 EXPERIMENTAL RESULTS

8.1 Experimental Setup and Results
In order to evaluate the expected number of iterations of our
CorrectRound algorithm (Fig. 14), we implemented and sim-
ulated it. We use different datasets, which can be more or
less suited to the algorithm depending on the amount of
cancellation that occurs. For example, if all the numbers are
small except for two large opposite numbers whose sum is
zero, this will force an additional iteration over the case
where those numbers are not there. To measure how much
the sum can change with respect to a small change in the
summands, we define the condition number of the N xi

datapoints similarly to [25], [26]:

k ¼
PN

i¼1 jxij
j
PN

i¼1 xij
:

For low k, the data is said to be well-conditioned, and the
algorithm should easily converge, whereas for high k, it is
said to be ill-conditioned and is expected to make conver-
gence more difficult.

We generate datasets similar to those used by Zhu and
Hayes [26]. Data #1 consists of random positive numbers, so
that k ¼ 1. Data #2 is similar except that it contains both pos-
itive and negative numbers, resulting in a low k. Data #3 is
similar to Anderson’s ill-conditioned data [5]: we first gen-
erate Data #2, then compute the mean using standard float-
ing-point arithmetic (thus introducing some error), before
subtracting it from each data point. This results in a higher
k. Half of Data #4 is randomly generated positive numbers,
and the other half is their exact opposites, such that the
exact sum is 0, and k ¼1.

In addition to the uniformly distributed random data
used in previous work (e.g., [5], [26]), we also use an expo-
nential one. We define an exponential distribution as one
where the individual bits of the IEEE-754 representation are
randomly picked from a uniform distribution, thus tending
to produce numbers with all allowed exponent values
instead of concentrating them on the highest positive and
negative exponents. This prevents the numbers from being
too close together and reduces mantissa overlap, resulting
in data that does not reduce as efficiently as a uniform
distribution.

We define the parameter d as the maximum possible dif-
ference in exponent ranges in the original summands,
which is taken into account when generating the random
data. We use N ¼ 212 as the number of summands in the
dataset. The results are similar for other values of N , except
for very low ones such as N ¼ 4, where convergence some-
times happens after only 1 iteration, or after 3 iterations due
to an undet case. Tables 1a and 1b show results after repeat-
ing each experiment 1,000 times, for the round-to-nearest-
tie-to-even mode and the four basic datasets. The other four
rounding modes have similar results and they are not
shown here. We report both average and standard deviation
for the different metrics: the number of iterations the algo-
rithm takes before converging (with and without Early
Detection (ED) of termination), the percentage of non-zero
values remaining in the tree when convergence is achieved,
and the percentage error when computing the sum using a
simple sequential software, non-exact summation.
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8.2 Discussion of the Results
Table 1a shows that even when there are many non-zeros
left in the tree (Data #1 and #2), our algorithm is able to
determine that they will not affect the final sum, so that it
can discard them and converge faster, significantly reducing
the number of iterations before convergence. Table 1 also
reminds us that the non-accurate summation error can
become intolerably large (Data #3 and #4).

We observe that in virtually all cases, the algorithm takes
exactly two iterations to converge (with a 0 standard devia-
tion in number of iterations), no matter how ill-conditioned
the data is, except for the extreme case of k ¼1 and expo-
nentially distributed data. This empirically validates our
inexpensive convergence test since we get the same number
of iterations suggested in [18], whose termination detection
was much more expensive (two full floating-point additions
per tree node). We also note that the highly unlikely undet
case was never encountered in these experiments.

Fig. 16 illustrates why exactly two iterations are needed
most of the time. After two numbers a and b are processed
by an FPART unit, they come out as two new numbers with
non-overlapping mantissas, where the MSB has typically
only shifted by a few bits at most: a major shift of m posi-
tions is extremely unlikely for randomly chosen bits, in the
order of 2&m. Therefore, with extremely high probability,
the final sum St at the end of the tree will occupy the 53 bits
to the immediate left of the final residue Rt, whereas Rt will
occupy the same bits as several other residues remaining in
the tree, including the largest one that determines maxexp.
Since rsb:exp:ub ¼ log 2ðnzcntÞd eþmaxexpþ 1 (Eq. (13)),
rsb easily overlaps with St and the convergence test fails.
However, after a second pass in the tree, the new Rt still
occupies the bits to the immediate right of St, but this time
the remaining residues and maxexp occupy the bits to the
immediate right of Rt, making it extremely unlikely that
log 2ðnzcntÞwould be large enough to cause an overlap with
St. A dataset needs to be carefully designed to get more
than two iterations, as we did with the exponentially dis-
tributed Data #4. In that case, major cancellations through-
out the tree translate into a maxexp that is often larger than
St, thus failing the convergence test. In fact, we observe
empirically that in this case, the number of iterations is

about i - d
53 þ 1, 53 being the mantissa range of an IEEE-754

number. The exponent range d translates into dþ 53 bits
that can be covered by the dataset. We can then divide this
range into i equal parts of 53 bits each, where each part is
being resolved as zero during one iteration, thus taking i
iterations before convergence overall.

Therefore, in order to see more than two iterations, we
had to define extremely ill-conditioned cases that are
unlikely to occur in practice (condition number k!1). In
order to determine how large k must be to exceed two itera-
tions, we introduce Data #5, which is generated in the same
way as Data #4, except that we do not replicate a numbers
(a 2 ½0; N=2)). a ¼ 0 is equivalent to Data #4; a ¼ N=2 is
equivalent to Data #2. The a parameter allows us to explore
even larger k values than Data #3, before reaching k ¼1 in
Data #4. For d ¼ 1;500, we find that k > 1020 is required
before we need more than two iterations (see, Fig. 17).

9 COMPARISONS

Assuming a constant number of iterations, our algorithm
achieves the asymptotically optimal FLOP count QðNÞ—
the same as simple summations that ignore precision and
other efficient correctly rounded approaches ( e.g., [6], [20]).
With sufficient hardware, our design can achieve OðlogNÞ
latency, superior to traditional correctly rounded summa-
tions including iFastSum [6] and Demmel and Hida’s Radix
sort [20], both of which are QðNÞ. Only Leuprecht
and Oberaigner’s correct summation algorithm achieved
OðlogNÞ latency [18]. Our OðlogNÞ latency is the same as a
precision-ignoring sum, and Kapre and DeHon’s sequen-
tial-semantics-preserving sum [15].

Table 2 compares the FLOP counts of the major, repre-
sentative algorithms, including the revision of prior work

Fig. 16. Effects of the algorithm on the mantissa ranges.

Fig. 17. Average number of iterations versus k.

TABLE 2
FLOP Count Comparison

Accumulation Algorithm FLOP
/input
/iter

Expected
# of
iter

Expected
FLOP
/input

Depth

iFastSum [6] 6 2 12 OðNÞ
with our FPAR 1.5 2 3

Simple, inaccurate 1 1 1 OðlogNÞ
Optimistic Sequential [15] 5 8 40 OðlogNÞ
Leuprecht and Oberaigner [18] 7 2 14 OðlogNÞ

with our FPAR 2.5 2 5

This Work (FPAR) 1.5 2 3 OðlogNÞ
FPART 1.25 2 2.5
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using our FPAR. We count 1.5 FLOP for our FPAR and 1.25
FLOP for our FPART due to their area (Section 7). All three
correct rounding algorithms (iFastSum, Leuprecht and
Oberaigner, and ours) take two iterations in almost all cases.
We estimate Kapre and DeHon as eight iterations with 5
FLOP per iteration. Leuprecht and Oberaigner use two
FLOP per tree node for convergence detection. We do not
count our termination computation as a FLOP since it takes
less than 4 percent of the area of the FPA (see end of Sec-
tion 7.1). Our algorithm achieves a lower FLOP count than
previous algorithms, tying only with iFastSum, which has
depth OðNÞ instead of our OðlogNÞ depth.

To avoid OðNÞ area on the reduce tree, the strategy can
be adapted to support pipelined, streaming accumulations
consuming any number of inputs per cycle [4].

10 CONCLUSION

Floating-point values can be summed in parallel to pro-
duce a correctly rounded result in OðlogNÞ depth. We
have introduced a lightweight test for early termination
detection and provided evidence that our algorithm is
fast and predictable—only requiring two iterations in vir-
tually all cases—and a proof that it will terminate. We
have shown that our algorithm can support all five IEEE-
754 standard rounding modes using an FPART unit. We
implemented the FPART as an extension of a standard
FPA, performing all the additional computations in paral-
lel with already necessary operations; as a result, the
FPART runs as fast as the standard FPA, while requiring
only 22 percent more area.
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