
Appearing in IEEE International Conference on Field-Programmable Technology (FPT 2013), December 9–11, 2013

Exploiting Partially Defective LUTs:
Why You Don’t Need Perfect Fabrication

André DeHon
Department of Electrical and Systems Engineering

University of Pennsylvania, Philadelphia, PA 19104
Email: andre@ieee.org

Nikil Mehta
Tabula, Inc.

3250 Olcott St Ste 300, Santa Clara, CA 95054
Email: nmehta@tabula.com

Abstract—Shrinking integrated circuit feature sizes lead to
increased variation and higher defect rates. Prior work has shown
how to tolerate the failure of entire LUTs and how to tolerate
failures and high variation in interconnect. We show how to use
LUTs even when they are partially defective—a form of fine-
grained defect tolerance. We characterize the defect tolerance
of a range of mapping strategies for defective LUTs, including
LUT swapping in a cluster, input permutation, input polarity
selection, defect-aware packing, and defect-aware placement. By
tolerating partially defective LUTs, we show that, even without
allocating dedicated spare LUTs, it is possible to achieve near
perfect yield with cluster local remapping when roughly 1%
of the LUT multiplexers fail to switch. With full, defect-aware
placement, this can increase to 10–25% with just a few extra
rows and columns. In contrast, substitution of perfect LUTs to
dedicated spares only tolerates failure rates of 0.01–0.05%.

I. INTRODUCTION

As integrated circuit feature sizes continue to shrink, we
will see increasing levels of transistor variability and increasing
rates of device failure. To achieve net benefits from future
technologies, we must find inexpensive ways to exploit the
resulting, imperfect components. Prior work (Sec. II-B) has
shown that FPGAs provide the opportunity to avoid defective
logic and interconnect elements by sparing at the level of
interconnect segments [1] and LUTs [2]. This, creates a
discrepancy in granularity. An interconnect segment only needs
a few transistors and memory bits to be functional, whereas a
k-LUT requires 2k memory bits and 4×

(
2k − 1

)
multiplexer

transistors (Fig. 1). Assuming 6 transistor memory cells, this
is over 150 transistors for a 4-LUT. If we demand that we only
use defect-free LUTs, the rate of LUT failure will be much
higher than the rate of interconnect failure, meaning LUT yield
could become the limiter. This could drive us to smaller LUT
sizes (40 transistors for a 2-LUT), but we know that small
LUTs are not the most efficient for implementing logic [3].

By using partially defective LUTs, we can effectively
achieve finer-grained resource sparing, allowing us to continue
to use LUT sizes that are efficient for logic. In particular,
we show that the most common, variation-induced failures
in LUTs is for the LUT multiplexers to fail to switch but
still be able to hold a constant value (constant multiplexer
failure, Sec. III) and that most logic functions can tolerate
these failures (Sec. IV). Furthermore, we show transforms
that allow us to change how the logic function is mapped
to the LUT multiplexer, increasing the probability that the
LUT function can be successfully implemented on the partially
defective LUT. We introduce, catalog, and characterize a range

of remapping strategies (Sec. VI) that tolerate fine-grained
LUT multiplexer failures. The simplest schemes are limited
to local exchanges within the cluster that can be performed
quickly, while the most powerful schemes exploit full LUT
placement.

Our novel contributions include:

1) Characterizing variation-induced LUT failure modes,
identifying the constant multiplexer failure model,
and formulating the partially defective LUT mapping
problem for the constant-multiplexer failure model
(Sec. III)

2) Identifying mitigating transformations to tolerate con-
stant multiplexer failures in an island-style cluster
FPGA architecture (Sec. IV)

3) Cataloging a range of mapping strategies that exploit
these transformations (Sec. VI)

4) Introducing the first defect-aware clustering algorithm
(Sec. VI-C)

5) Quantifying the constant multiplexer failure defect
tolerance achievable with a range of mitigation tech-
niques (Sec. VII)

II. BACKGROUND

A. FPGA Logic

The logic in FPGAs is implemented with a small LookUp-
Table (LUT). For a k-input logic function, this is simply a
k-input, 1-output memory and is typically implemented as 2k

LUT configuration memory bits followed by a 2k:1 multiplexer
(Fig. 1b). Any logic function of k inputs can be implemented
by storing its truth table into the LUT configuration memory
bits. The impacts of LUT size on delay, energy, and area
has been an area of active research, determining that 4-LUTs
are the most area [3] and energy [4] efficient, with larger
LUTs (e.g., 6-LUTs) providing the lowest latency [5]. Modern,
commercial FPGAs (e.g., [6]) make the LUTs decomposible
and augment them with hardwired logic.

Rather than simply using a uniform mesh to interconnect
individual LUTs, modern FPGAs will cluster a number of
LUTs together into a logic block (Fig. 1a). The LUTs within
a cluster share a limited number of inputs from the mesh
interconnect and are internally connected with a local, intra-
cluster crossbar. Connections within the cluster go through
a single stage of switching and are faster than inter-cluster
connections. Prior work has studied the impact of cluster size
on area, delay, and energy of the FPGA (e.g., [7], [4], [5]).

c© 2013 IEEE

L
U

T

L
U

T

L
U

T

L
U

T

Cluster Outputs

Cluster
 Inputs

(a) Island-Style Clustered
Logic Block

input 1

input 2

input 3

1 2 3 4 65 7 8

9 10 11 12

13 14

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

input 0

(b) 4-LUT Built from 2-input Multiplexers

Data 0

Data 1

/Select Select

Output

Select Transistors
Inverter

Vdd

gnd

(c) Transistor-Level Implementation for
2-Input Multiplexer Used in LUT

Fig. 1. FPGA Logic Block Composition

B. Prior Work on FPGA Defect and Variation Tolerance

A large set of prior work observes that FPGAs can tol-
erate defects by mapping to avoid the defective elements in
a particular chip. Perhaps the earliest full-scale exploitation
of this idea was Hewlett-Packard’s TERAMAC [8], which
used a combination of architecture design and full defect-
aware placement and routing. The custom, TERAMAC FPGA
architecture [9] was more richly interconnected than traditional
FPGAs, leaving questions as to how much benefit came from
the custom architecture and how much came from the defect-
aware mapping. On the PLASMA chip, 10.4% of the 6-LUTs
failed, a percentage over 3 times that of crossbar lines (3%
defect rate) and 7 times that of crossbar buffers (1.5% defect
rate), underscoring the concern that LUTs may fail at higher
rates than interconnect elements.

1) Logic: Lach [10] first showed that FPGAs could pre-
allocate spares and be locally reconfigured to avoid defective
logic. He suggested reserving spares in an m×m region of an
FPGA and providing a set of mappings to avoid any single or
combination of defects within that region. Nonetheless, Lach
only showed how to tolerate failures in logic. With the advent
of the modern island-style cluster architecture, Lakamraja [2]
showed how to tolerate logic faults by allocating a spare LUT
in a cluster. Neither Lach nor Lakamraja evaluated the impact
of using partially defective LUTs.

2) Interconnect: Lakamraja [2] also showed that intercon-
nect failures can be tolerated by rerouting the design to avoid
defective interconnect segments. In our previous work [1], we
showed that it is necessary to tolerate defective switches to
operate near the minimum-energy operating point for the high-
variation technologies between now and the end of the semi-
conductor roadmap. Using delay-aware routing, we tolerate
around 1% unusable interconnect switches, allowing FPGAs
to operate at half the energy required for a delay-oblivious
mapping. In that previous work, we focussed on interconnect
switches, leaving LUT variation and defects for future work,
which this paper now addresses.

III. LUT FAILURES

A. Multiplexer Model

For concreteness, we assume the LUTs are built as a tree
of multiplexers (Fig. 1b). We further assume each 2-input
multiplexer is implemented using 4 transistors as an NMOS
only pass-gate multiplexer followed by an inverter (Fig. 1c).
There are, of course, a variety of implementation options
for the LUT multiplexer, including using complementary pass

gates, flattening the multiplexers, and cascading multiple pass-
gate stages before CMOS restoration. We choose the imple-
mentation in Fig. 1c since it is compact and simple to analyze,
and we believe the high-level insight that arises from it will be
valid across implementation options. Note that the individual
2-input multiplexer is comparable in complexity to the S-box
switch in a direct-drive architecture [11] that was assumed in
[1].

B. Multiplexer Failure

The most common failure mode in this model is that a
LUT multiplexer will fail to switch in the case where one of
its inputs is zero and the other is one, but it will correctly
drive a zero or one on its output if its two data inputs are both
zero or one. Consequently, we identify this particular failure
mode as the constant mulitplexer failure mode. Intuitively,
it is easy to understand why this failure mode is common
by considering what happens when each of the transistors in
multiplexer fails or switches slowly. If any of the 4 transistors
in the multiplexer switches slowly, the output will always hold
the correct value when the two data inputs are the same. The
output of the multiplexer is charged after configuration, and it
never needs to switch during operation. If one but, not both,
of the NMOS select transistors switches fails to switch, the
output of the pass-transistor stage cannot be controlled by the
data input to that select transistor. However, since the other
pass transistor can drive the output, it will charge the output
to the correct output whenever it is “on”, which happens to
be the same value that would be driven by defective select
transistor. So, the output will remain charged at the correct,
constant value. If one or both of the NMOS select transistors
are stuck “on”, it will also correctly transfer the non-changing,
identical data inputs to the multiplexer output. If an inverter
transistor fails completely such that it can only drive high or
only drive low, the multiplexer may only be able to produce a
particular constant. For variation-induced failures, these cases
are significantly less common as described below.

We abstract the above observation into a constant mul-
tiplexer failure model. Each multiplexer behaves in one of
two ways: (1) fully functional – the multiplexer can proper
pass either of its data inputs in a timely fashion; (2) constant
multiplexer – the multiplexer performs properly only if both
of its inputs are configured to always be the same value.

C. Variation-Induced Failure

We discovered the constant multiplexer failure model while
studying the impact of high random Vth variation on FPGA

circuit elements [12]. Numerous manufacturing effects are
statistical in nature and lead to high variation in transistor
characteristics. In particular, random dopant fluctuation [13],
line-edge roughness [14], and fluctuations in critical dimension
such as oxide thickness [15], lead to high variation in the
Vth of the transistor [16]. As such, in modern processes, Vth
is best modeled as a Gaussian random variable with a mean
and variation, σVth

[17]. In Table DESN10, the International
Technology Roadmap for Semiconductors (ITRS) [18] reports
the expected variation that will be seen by a minimum sized
device in future processes. The value reported in the ITRS
table is 3σVth

and suggests that we are already seeing one
sigma variation around 14% of the nominal Vth value and that
this may grow to 26% over the next decade. This variation can
be reduced by increasing the size (width, W or length, L) of
the transistors in the circuit (Eq. 1), which vendors already do.

σVth
∝ 1√

WL
(1)

This reverse-scaling of feature sizes increases area and energy
in devices. If we can tolerate high variation, we can reduce
the necessary reverse-scaling at more advanced technologies.

High variation means we will see a large range of Vth
values in the individual transistors in a design. The Gaussian
distributions suggest that one in 1000 transistors will have a
Vth outside of Vth± 3σVth

and one in a million will have Vth
outside of Vth± 5σVth

. With over 150 transistors in a 4-LUT,
we should expect to see LUT transistors that are 3σVth

out
in most clusters and transistors that are 5–6σVth

in 10,000–
1,000,000 LUT FPGAs.

Since transistor drive current in the saturation region is
driven by the difference between the gate voltage and Vth
(Eq. 2), variation in Vth can result in low drive current and
hence slow transistors (Eq. 3).

Idsat = WvsatCox

(
Vgs − Vth −

Vd,sat
2

)γ
(2)

τp = CVdd/Idsat (3)

When Vgs drops below Vth the transistor moves into the
subthreshold region where current is small but exponentially
dependent on Vgs − Vth. For normal FPGA operation, we use
this as the off-region for the devices. Vgs will be at most
the supply voltage, Vdd for the logic. When using NMOS pass
transistors, the output of the pass transistor can drive at most
Vgs = Vdd − Vth into the inverter. This potentially has a
composite effect on the drive speed of the inverter, lowering its
Vgs when its Vth may also be raised. For low Vdd and extreme
variation, it is even possible to have inverters where the “on”
drive current, Idsat, for the PMOS or NMOS transistor is lower
than the “off” current of the complementary transistor. In such
cases, the inverter will never switch.

Raising the operating voltage, Vdd, can reduce the sensitiv-
ity to variation (Fig. 2) at the cost of higher switching energy
since switching energy scales as CV 2. Since today’s designs
are energy limited, it is desirable to lower Vdd rather than
to raise it. The most energy efficient operating points are at
or below the threshold voltage [19]. However, if we cannot
tolerate the failures that result from high variation, it will not
be viable to operate at these energy-desirable operating points.

 0.01

 0.1

 1

 10

 100

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

D
e
fe

c
t
R

a
te

Vdd

Constant Multiplexer Failure

Fig. 2. LUT Multiplexer Failure Rates vs. Vdd Using 22 nm Low Power
PTM Model Assuming σVth

= 12%

 0.1

 1

 10

 100

 0 5 10 15 20 25 30

D
e
fe

c
t
R

a
te

Sigma (percentage of Vth)

Slow (3x) @ Vdd=300mV
Slow (3x) @ Vdd=500mV
Slow (3x) @ Vdd=800mV

Fail @ Vdd=300mV
Fail @ Vdd=500mV
Fail @ Vdd=800mV

Fig. 3. LUT Multiplexer Failure Rates vs. Variation σ Using 22 nm Low
Power PTM Model

To understand the impact of variation on the LUT mul-
tiplexer shown in Fig. 1c, we performed a series of Monte
Carlo SPICE experiments on the multiplexer [12]. We used
the predictive technology models (PTM) from Arizona State
University [20] to model the transistors. The Monte Carlo
simulation selects the Vth for each of the four transistors in
the multiplexer independently from the Gaussian distribution
according to a particular σVth

. At each σVth
, we generated

10,000 4-transistor Vth tuples and simulated the circuit in
SPICE to determine its operational characteristics, failure
modes, and speed of operation. Over the 10,000 samples, we
saw no failures when the data inputs to the multiplexer were
both zeros or ones. Fig. 2 shows how constant multiplexer
failures increase with decreasing voltage. Fig. 3 shows how
this failure increases with increasing σVth

to capture both the
effects of technology scaling that results in increased σVth

at
smaller feature sizes and transistor sizing (Eq. 1) that also
results in increased variation at smaller sizes. “Slow (3x)” in
Fig. 3 indicates the multiplexer switched at three times or more
the nominal delay.

D. Configuration Robustness

SRAM failures due to variation are already a yield concern
in industry. In normal memory arrays, the most likely SRAM
failures modes under variation are read and access time fail-
ures [21]. However, FPGA SRAM configuration bits are not
loaded by a large, common bitline and consequently are never
read in the way SRAM bits in an array are. Consequently,
they cannot have read related failures. Write failures can be
avoided by overdriving the write voltage to the cell, which is
reasonable since this only occurs during configuration and can
be performed slowly compared to operation. Hold failures are
the least likely of the common SRAM failure modes, and they
may occur in FPGA SRAMs if the threshold voltages on the
memory cell is such that the cell cannot hold a proper value—
that is, one or both of the static restoration inverters fails to
switch. We performed 10,000 Monte Carlo simulations for 6-
T SRAM cells in the 22 nm Low Power PTM model and saw
no failures for Vdd of 150mV or higher. At 100mV, we saw 2

failures, suggesting the failure rate is three orders of magnitude
lower than the constant multiplexer failure rate [12].

E. Partially Defective LUT Mapping

We characterize the defect syndrome, D, of every LUT by
a bit vector with one bit per multiplexer in the LUT (Fig. 1b).
A one bit represents a constant multiplexer failure, while a zero
bit represents a fully functional multiplexer. A LUT function F
can tolerate a defective multiplexer j when all the configuration
bits F [i] that may pass through the multiplexer are either zero
or one. For the numbering in Fig. 1b:

Tol(F, j) ≡



1 ≤ j < 9 : F [2j − 1] = F [2j − 2]
9 ≤ j < 13 : F [4j − 37] = F [4j − 38]

= F [4j − 39] = F [4j − 40]
j ∈ {13, 14} : F [8(j − 13)− 1]

...
= F [8(j − 13)− 8]

j = 15 : F [0] = F [1] = . . . = F [15]

A LUT function F tolerates a defect syndrome D when it
tolerates all the multiplexer failures, D[j] = 1.

Tolerate(F,D) = ((D[1] = 0) OR Tol(F, 1)) AND

((D[2] = 0) OR Tol(F, 2)) AND

...
((D[15] = 0) OR Tol(F, 15)) (4)

The partially defective LUT mapping problem is to identify
a mapping, π, that uniquely maps each LUT m in the design to
a different physical LUT q on the chip with defect syndrome,
Dq , such that Tolerate(Fm, Dπ(m)).

IV. OPPORTUNITY

Our key point of leverage is that most functions do not need
all of the multiplexers to be fully functional. Many common
functions do have paired zeros and ones in the LUT function
configuration meaning that these functions can tolerate some
constant multiplexers. Furthermore, we can often transform
the mapping to control how tolerable constant multiplexers in
the LUT function align with the constant multiplexers in the
fabricated, partially defective LUT.

A 4-input AND gate is an example function that only needs
four fully functional multiplexers. The LUT function for an
AND will have 15 zeros in the LUT configuration bits and
a single one. This means that only one multiplexer in each
row of multiplexers (Fig. 1b) must be fully functional. All the
other multiplexers will see constant inputs. Specifically, for an
AND4, configuration bit 15 will hold a one, while all the other
configuration bits will be zero. Multiplexers 8, 12, 14, and 15
must be functional, while the remaining multiplexers can be
constant multiplexers. Of course, some functions are harder to
map than others. The 4-input XOR, for example, will require
that all fifteeen multiplexers be fully functional.

We can also change the way the LUT function is mapped to
change where the constant multiplexers occur. For example, if
we can invert the polarity of input 3 for the AND4, we change
the location of the necessary fully functional multiplexers to

TABLE I. LUT FUNCTIONS TOLERANT TO SPECIFIED DEFECTS

Transformation
Constant Input Input Permute

Multiplexer(s) None Permute Invert & Invert
mux1 4096 4096 16926 16926
mux9 4096 15096 16926 16926

mux13 4096 11712 16926 16926
mux3+mux11 512 17408 1694 19968

Number in table is the number of LUT functions (out of a total of
224=65536) that are tolerant to constant multiplexers in the identified
positions when using the specified transformation.

TABLE II. TOLERABLE CONSTANT MULTIPLEXERS DISTRIBUTION

Tolerable Constant Multiplexers 0 1 2 3 4 5 6 7 8 9 10 11
LUT Count (clma) 0 0 0 0 0 0 193 3 62 115 16 3619

LUT Count (des) 26 0 0 1 0 0 369 5 25 64 105 637

4, 10, 13, 15, allowing us to tolerate constant multiplexers
in 8, 12, and 14. For functions with mixed polarity inputs,
like a · b · c · d, input assignment will change the location
of the non-zero in the LUT configuration and change the set
of multiplexers that must be fully functional. For example, if
we assign a to input 0, b to 1, c to 2, and d to 3, the one
is in configuration bit 13, and the required fully functional
multiplexers are 7, 12, 14, 15. If instead we assign a to 1, b
to 3, c to 0, and d to 2, the one is in configuration bit 7 and
the required fully functional multiplexers are 4, 10, 13, 15.
To illustrate how these transformations allow LUT functions
to tolerate more defects, Table I considers all 224

=65536
LUT functions and counts the number that can tolerate a
constant multiplexer in the specified position(s) without any
transformations, with input permutation alone, with inversion
alone, and with both input permutation and inversion.

The examples of the 4-input AND and 4-input XOR gates
illustrate that different LUT functions are more or less tolerant
to constant multiplexers. We can roughly characterize the
difficulty we will have in mapping a LUT function to a
partially defective LUT by counting the number of constant
tolerable multiplexers for each function after accounting for
potential input inversions and permutations. To understand how
well this rough characterization performs, we map the des
design from the Toronto 20 benchmarch set [22] to 4-LUTs
using ABC [23] and, for each mapped LUT function, we
both count the number of tolerable constant multiplexers and
determine the number of defect syndromes the LUT function
can tolerate. Fig. 4 shows the high correlation between these
counts. All non-constant LUT functions will require at least
4 non-constant multiplexers, so in the best case there are
11 tolerable constant multiplexers. Some require all 15 to
function, so can tolerate no constant multiplexers. It is much
less expensive to count tolerable constant multiplexers than to
compare the LUT function with all defect syndromes, making
this count a useful approximation for LUT hardness for use
in mapping tools. Using the same ABC mapping of des and
an ABC maping of clma, Table II shows the distribution of
tolerable constant multiplexers for the LUT functions. Very
few functions are completely intolerant to constant multiplex-
ers, and most functions tolerate many constant multiplexers.
The mean number of tolerable constant multiplexers is 10 for
clma and 9 for des.

●●●●●

●●●●●●●●●●●●

●●●

●●

●

●●

●

●●

●

●

●

●●●●●●●

●

●●

●

●● ●

●

●●●●●●●●● ●●

●

●●●●● ●●●●● ●●●●●●

●

●

●

●●●

●

●●●●

●

●

●

●●●●●● ●●

●●●●

●
●

●●

●●

●

●

●●

●

●

●

●●
●●

●
●

●●●

●
●

●

●
●

●●

●

●●●●●●

●
●●

●

●

●

●●●

●

●

●

●

●

●
●

●

●●●●●●●●●

●

● ●

●
●

●●●●●●

●

●

●
●

●
●

●

●●●●●

●
●

●

●●●●●

●●
●

●

●●●

●●
●

●
●

●

●

●

●●

●
●

●
●

●●●●

●

●

●
●

●

●●●●

●

●

●●●

●
●

●

●●●●

●●●
●

●

●●●●●●●●●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●
●

●●●●●

●●●
●

●

●●●●●●

●●

●●●
●●

●●●●●●

●●●●●●
●

●●●

●●

●

●●●●●

●●●
●

●

●●●●●●

●

●●●

●

●●●
●

●●●●●●

●●●
●

●●

●●●
●

●● ●●●

●●●
●

●

●●●
●

●●●
●

●

●●●

●●

●●●
●

●●●
●

●●●

●

●●●

●

●●●

●

●●●
●

●●●●●●● ●

●●●

●●

●

●● ●

●●●
●

●

●●●●●

●

●

●
●

●

●●●

●

●●●●●

●

●●●

●●●●●●●●●

●●

●●●

●●

●●●●●●●●●

●●

●●●

●●

●●●

●

●●●●●●

●

●●●

●

●●●

●

●

●

●●●

●●

●●●
●

●●

●●●

●

●●●

●

●●●●●●●●●

●●

●●●

●●

●●●●●●
●●

●●●

●●

●●●

●●

●●●

●

●●●●●●●●●●
●

● ●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●●●
●

●●●●
●

●●●●●●

●

●●

●

●●●●

●

●●●●●●●●

●

●●●●●●●●●●

●

●●●●●
●

●●●●
●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●●●●●●●●●●●●●

●

●

●●●●
●

●
●

●
●

●●●●●●●●●●●●●●●●

●

●

●

●

●
●

●●●●●●

●

●●

●

●●●●
●

●●●●●●●●●●●●
●

●

●●

●●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●

●●●

●

●●●●●●●●●●●●
●

●

●●●

●

●●
●●●●●●●●●●●●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●●●●●●●●●●

●●

●

●
●●●●●

●

●

●

●

●●
●●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●

●
●

●●●●●●●●●●●●●●●

●

●●●●

●

●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●

0 2000 4000 6000 8000

4
6

8

Defect Syndromes Tolerated

C
o
n
s
ta

n
t

M
u
lt
ip

le
xe

rs

Fig. 4. Correlation of Cost Function that Counts Tolerable Constant
Multiplexers and Count of Defect Syndromes Tolerated for des

V. MODELS

A. LUT Multiplexer Defects

For the experiments that follow, we generate constant
multiplexer failures independently and randomly at a specified
constant multiplexer failure rate of Pconst, setting each LUT
multiplexer 1–14 (Fig. 1b) in each LUT in the FPGA to either
fully functional or constant. We do not generate failures for the
output multiplexer, 15. Rather, we assume that this multiplexer
is sized up (larger W , Eq. 1) so that it does not fail. This is
the multiplexer that must drive into the interconnect, so it is
typically sized up for performance. We sweep across different
values of Pconst to represent different technologies or sizing
choices. In this manner, we generated defect maps for 100
“chips” at each Pconst defect rate and used them across all
benchmarks and mapping variants.

B. Architecture Model

For these experiments, we map to a baseline architecture
with four 4-LUTs in each cluster and 4 input or output pads
in each periphery I/O cluster. For the sparing experiments, we
add a fifth 4-LUT to the logic clusters that we leave empty
during clustering and potentially use during final mapping.
This spare 4-LUT is identifical to the baseline 4-LUTs and its
multiplexers fail at the same rates. These logic clusters have
10 inputs following the VPR5 release 4x4-LUT architecture
(k4-n4.xml) [24] and the Toronto recommendations [7]. We
do not model any specific population of the intra-LUT cross-
bar (Fig. 1a) or Connection-Box connections. For matching
and permutation, we assume we have full freedom to move
LUTs within the cluster and permute LUT inputs. That full
freedom might not exist when using a depopulated intra-LUT
crossbar [25], [26] or might demand that routing change to
accommodate the transforms necessary for LUT mapping. As
such, the full input transform cases serve as an upper bound
on what might be possible, with a depopulated case coming
somewhere between the transforms that assume full freedom
and the more restricted transforms.

VI. REPAIR ALGORITHMS

In this section, we catalog a range of mitigation optimiza-
tions to address the constant multiplexer mapping problem.
We illustrate trends with the ABC mapping of the Toronto20
benchmark clma on the four 4-LUT per cluster architecture
introduced in the previous section.

A. Baseline Cluster

For baseline mapping, we start with a greedy clustering
program in the spirit of Toronto’s vpack/t-vpack [27]. This

 0

 20

 40

 60

 80

 100

 1e-05 0.0001 0.001 0.01 0.1 1

Y
ie

ld

Pconst

Yield vs. Constant Multiplexer Defect Rate

Perfect
Tolerate Defects

Perfect+Spare
Tolerate+Spare

Match-only
Match-only+Spare

Match LUTs + Input(Permute)
Match LUTs + Input(Polarity)

Match LUTs + Input(Permute+Polarity)
Match LUTs + Input(Permute+Polarity)+Spare

Fig. 5. Comparison of Criteria and Transform Cases for Greedy (Defect-
Unaware) Clustering for clma

greedy mapping attempts to minimize the number of clusters.
Its key challenge is selecting a set of LUTs that will meet
the limited number of inputs to the cluster. Consequently, the
greedy packer creates clusters by successively selecting one of
the unpacked LUTs that least increases the total inputs into the
cluster. Once a cluster is full with four LUTs or there is no
unpacked LUT that can be packed into the cluster and meet
the input limit, the cluster is considered complete and a new
cluster is started. This greedy packer is a little less aggressive
than t-vpack, achieving cluster counts that are within 7% of
those produced by t-vpack.

B. In-Clusters Repair

The first set of repairs we consider are all based on local
remapping within the cluster. We use the baseline greedy
packer that has no specific concern for defects (Sec. VI-A).
Local remapping within the cluster is potentially fast since
clusters are small, meaning there are few options to explore,
and each cluster can be repaired independently. These repairs
are all linear in the number of clusters on the chip. Some are
super-linear in the number of LUT inputs or the number of
LUTs in a cluster.

1) Substitute Spare LUT: For comparison to prior work
on full LUT sparing, we consider the case where the only
transform is the substitution of the single spare LUT in the
cluster with a defective LUT that has been assigned to a logical
LUT. That is, we map each LUT in the packed cluster to
a specific corresponding LUT in the physical cluster. If the
physical LUT is defective, we try to remap the logical LUT
to the single spare in the physical cluster. We show two cases
in Fig. 5. The “Perfect+Spare” case demands that we only
use perfect LUTs, while the “Tolerate+Spare” case allows a
LUT to use a partially defective physical LUT if the LUT
function can tolerate its constant multiplexer defects. These
curves illustrates the benefit of using partially defective LUTs
in the most primitive manner. Using the “Tolerate+Spare” case,
with one spare, we can achieve over 90% yield for defect rates
up to 0.05%, while the “Perfect+Spare” can only exceed 90%
yield at 0.01%.

2) Match LUT in Cluster: Instead of simply performing a
direct mapping between LUT functions and physical LUTs,
we compute a partially defective LUT mapping (Sec. III-E)
between the LUT functions in a cluster and the physical LUTs.

 0

 20

 40

 60

 80

 100

 1e-05 0.0001 0.001 0.01 0.1 1

Y
ie

ld

Pconst

Yield vs. Constant Multiplexer Defect Rate

Match-only greedy pack
Match-only cost limit

Match-only greedy pack+Spare
Match-only cost limit+Spare

Match LUT+Input(Permute+Polarity) greedy pack
Match LUT+Input(Permute+Polarity) cost limit

Match LUT+Input(Permute+Polarity) greedy pack+Spare
Match LUT+Input(Permute+Polarity) cost limit+Spare

Fig. 6. Impact of Defect-Aware Clustering on clma

This can be done efficiently by using a bipartite matching
algorithm such as Hopcroft-Karp [28]. Since our illustration
architecture only has four LUT functions and four or five
physical LUTs, we generate all possible function to physical
LUT mappings and check if the mapping tolerates the specific
set of constant multiplexer defects. The “Match-only” curve in
Fig. 5 shows that this has some yield increase even without a
spare, and the “Match-only+Spare” curve shows how the full
matching allows more defect tolerance than simple sparing,
exceeding 90% yield up to 0.1% defect rates.

3) Input Optimization: We can further considering per-
muting the LUT inputs, selecting LUT input polarity, or
perhaps both in order to move tolerable constant multiplex-
ers to align with physical constant multiplexer failures. The
curves annotated with “Input(Polarity)”, “Input(Permute)”, and
“Input(Permute+Polarity)” show the impact of adding these
transformations during matching. In practice the polarity op-
timization is easy if it can be coordinated between all the
consumers of a LUT—we just invert the programmed LUT
function for that LUT. The exploration here makes the more
generous assumption that each LUT input can be indepen-
dently inverted. We show this range of input optimization
in part because, once we add constraints due to depopulated
inputs and consistent net polarity, the reality is likely to be
somewhere between the extremes of no input optimizations
and full input optimization.

C. Defect-Aware Clustering for In-Cluster Repair

In this section, we refine the packing algorithm to enhance
the likelihood that the design can be mapped using cluster-
local transformations.

We noted earlier (Sec. IV) that different LUT functions
have different hardness. Clusters that have a large number of
hard functions (e.g. four XOR4’s) will be the least likely to
yield. A defect-aware clustering would avoid creating such
hard clusters. Rather, it might pair easy functions (e.g. AND4)
with hard functions. The generalization of this idea is a form
of load balancing. We would like to balance the number of
tolerable constant multiplexers so that no cluster ends up
with an excessively small number. The tolerable multiplexers
distributions shown in Tab. II suggests we have room to
perform this kind of constant multiplexer tolerance balancing.

To do this, we make two changes to the greedy mapping: (1)
we break ties among LUT functions with equal I/O count by
selecting one of the LUT functions that maximizes the number
of tolerable multiplexers in the cluster, and (2) we set a limit
on the number of non-tolerable constant multiplexers in the
cluster, rejecting a candidate LUT for clustering if it drops the
number of tolerable constant multiplexers in the cluster too
low. Furthermore, we try to choose as large a limit as possible
while still allowing the design to be packed into a targeted
number of clusters (See Alg. 1).

Algorithm 1 Defect-Aware Packing

mintol← CLUSTER LUTS ×
(
2k − 1

)
loop
clusters← emptyClusterSet
LUTs to pack ← all LUTs
while not(empty(LUTs to pack)) and
clusters.size < MAX CLUSTERS do
cluster ← clusters.newCluster()
cluster.add(LUTS to pack.getNext())
repeat
best← none
for l ∈ LUTS to pack do
tmp← cluster.extend(l)
if tol mux(tmp) ≥ mintol and
cluster io(tmp) < CLUSTER INPUTS
then

if cluster io(tmp) < cluster io(best) then
best← tmp

else if cluster io(tmp) = cluster io(best)
and tol mux(tmp) > tol mux(best) then
best← tmp

end if
end if

end for
cluster.add(best)
LUTS to pack.remove(best)

until cluster.size = CLUSTER LUTS or best =
none

end while
if empty(LUTs to pack) then

return clusters
end if
mintol = mintol − 1

end loop

Fig. 6 shows the improvements offered by using this defect-
aware clustering as compared to the simpler greedy clustering
algorithm. Note that the defect-aware packer has its biggest
impact in raising the yield to 100% for some defect rates. It is
the unfortunate cases where a relatively non-tolerant cluster
happens to be mapped to a particularly defective physical
cluster that causes this yield loss. The tolerance balancing
makes it more likely all clusters will tolerate the most defective
physical cluster on the chip. With a spare, this allows us to
achieve over 90% yield for defect rates up to 5%.

D. Defect-Aware Placement

Abandoning the benefits of cluster-local repairs, we can
perform full, defect-aware placement to tolerate even higher

 0

 20

 40

 60

 80

 100

 1e-05 0.0001 0.001 0.01 0.1 1

Y
ie

ld

Pconst

Yield vs. Constant Multiplexer Defect Rate

Match LUTs+Input(Permute+Polarity)+Spare
Match-only Place +1 row/col
Match-only Place +2 row/col
Match-only Place +3 row/col

Match LUTs+Input(Permute+Polarty) Place +1 row/col
Match LUTs+Input(Permute+Polarty) Place +2 row/col
Match LUTs+Input(Permute+Polarty) Place +3 row/col

Fig. 7. Impact of Defect-Aware Placement on clma

defect rates. With full placement, instead of forcing a LUT to
find a match within the cluster, we open up the possibility for
it to find a tolerable physical LUT anywhere on the chip. This
creates a larger set of match candidates making it much more
likely we can tolerate a set of defects. Yield will no longer be
limited by a few particularly defective clusters.

Our defect-aware placement begins with an initial assign-
ment of LUT functions to specific clusters that is similar to
clustering. In the placement case we know the exact defect
patterns in each cluster, so we can make sure we never assign
a set of LUTs to a cluster that cannot tolerate its defects. Once
we succeed with an initial placement, we perform incremental
improvement to reduce wirelength using simulated annealing.
During the simulated anneal we only swap LUTs if the clusters
continue to tolerate defects after the swap.

Since we know the exact location of the defects, we can
avoid defects as long as there are enough physical LUTs from
which to select. We characterize the defect rate achievable for
0–3 extra row and column pairs (Fig. 7) compared to the
defect-aware packer with a spare LUT. The initial packing
for the greedy clustering case required an extra row and
column, so we show that along with two and three extra
rows and columns. This shows that defect-aware placement
can reasonably tolerate 25% constant multiplexer failures. We
did not test defect rates above 25%. The probability of a
LUT being perfect when each of 14 multiplexers fail with
probability 25% is (0.75)14 =1.8%, or, equivalently, this
represents a perfect LUT failure rate of over 98%.

The full placement results also serve to bracket the tolera-
ble defect rates with simpler schemes. Between only allowing
matching within a cluster and allowing matching across the
entire chip there are a range of intermediate approaches. For
example, we might restrict matching to adjacent clusters in the
array, or, more generally, clusters within a specified Manhattan
distance. These limited techinques could be used to handle
lower defect rates while limiting the per component runtime
needed to perform the placement.

VII. RESULTS

Tab. III shows the result of mapping the Toronto20 bench-
marks using a selection of the mapping strategies detailed in
the previous section. For compactness, we simply show the
highest percentage of defects that can achieve over 90% yield
for each mapping scenario. This shows that the illustrative

trends for clma presented in the previous section are typical
of the entire benchmark suite.

Demanding perfect LUTs, we cannot tolerate even 0.01%
multiplexer failure. This underscores why LUTs could be a
limit to running minimum size devices below about 400mV
even in 22 nm technology (Fig. 2). With defect-aware packing,
input transforms, and tolerance of constant multiplexer failures,
we can accommodate around 1% failures without adding
spares—enough to allow even minimum-sized devices to run
down to 300mV. With spares or modestly sized devices, these
techniques should be sufficient to guarantee that LUTs are not
the limitation for operation down to 200mV—the operating
point achieved for interconnect in [1].

VIII. FUTURE WORK

In this work, we have treated the logic mapping as given.
LUT covering could also be used to control the generation of
hard LUT functions, like XOR4, by, for example, rejecting any
LUT covers with too few tolerable constant multiplexers. A full
solution and characterization will need to combine interconnect
defect tolerance with LUT defect tolerance, including dealing
with the interaction between potentially depopulated C-box
and intra-LUT crossbars and LUT input permutation.

We have specifically demonstrated the techniques on 4-
LUTs. The strategy here extends to any sized LUTs and will
be even more important with larger LUTs. We have not dealt
with the more complex logic structures, such as Adaptive
Logic Modules [6] in Altera’s Stratix 2, or with carry chains
present in all commercial FPGA designs. These may restrict
the opportunities for LUT matching and present a need for
additional techniques for local remapping to tolerate LUT
multiplexer failures. Furthermore, the focus of this paper was
on demonstrating and characterizing techniques rather than
architectural optimization. Characterizing how defects and the
use of these techniques impact the best choice of architectural
parameters (e.g. LUT size, cluster size, population, segmenta-
tion) remains future work.

IX. CONCLUSIONS

Most LUT functions mapped to FPGAs can tolerate a few
constant multiplexer failures in the physical LUT. Leveraging
a few transformation we can exploit this fact to increase the
chance that a LUT function can be successfully mapped to
a partially defective physical LUT. We show that this both
allows us to handle a high rate of constant multiplexer failures
through local, within-cluster sparing without adding spares,
around 1% with defect-aware clustering, and that this also
increases the tolerable failure rate with spares to around 5%.
We also demonstrate that full defect-aware placement can
tolerate constant multiplexer failure rates in the 10–25% range.

X. ACKNOWLEDGMENTS

This research was funded in part by National Science
Foundation grant CCF-0904577 and DARPA/CMO contract
HR0011-13-C-0005. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not reflect the official policy or position of the
National Science Foundation, Department of Defense, or the
U.S. Government.

TABLE III. TOLERABLE PERCENTAGE OF CONSTANT MULTIPLEXER DEFECTS FOR 90% YIELD

Greedy Pack Defect-Aware Pack Defect-Aware Place
Design LUTs Clusters Perf Tol Tol Match Match Match Clusters ∆% Match Match Match Match Only

+Spare +Spare +Input +Input +Input +Input extra row/cols
+Spare +Spare +0 +1 +2 +3

alu4 1102 312 0.05 0.001 0.1 0.01 1 5 323 3 0.01 1 5 0 10 25 25
apex2 1303 361 0.05 0.001 0.1 0.005 1 2.5 393 8 0.005 1 5 2.5 25 25 25
apex4 1045 284 0.05 0.0025 0.25 0.01 1 5 292 2 0.005 1 5 0 25 25 25

bigkey 1327 337 0.025 0.001 0.05 0.001 0.5 2.5 577 71 0.1 5 10 25 25 25 25
clma 4008 1064 0.01 0 0.05 0.0025 0.25 1 1079 1 0.0025 0.5 5 0 5 20 25

des 1232 318 0.025 0.001 0.1 0.0025 0.025 0.5 841 164 1 1 2.5 25 25 25 25
diffeq 912 233 0.05 0.001 0.1 0.0025 0.05 1 263 12 0.005 1 2.5 10 20 20 25

dsip 1108 282 0.025 0.001 0.1 0.001 0.5 2.5 670 137 0.5 10 10 25 25 25 25
elliptic 2043 531 0.025 0 0.05 0.001 0.025 0.5 561 5 0.001 0.25 1 0 0.5 10 10
ex1010 3505 953 0.025 0.001 0.1 0.0025 0.5 5 954 0 0.005 0.5 5 0 0 0 20

ex5p 756 204 0.05 0.0025 0.1 0.01 1 5 214 4 0.01 1 5 0 20 25 25
frisc 2323 594 0.025 0 0.05 0.001 0.025 0.5 662 11 0.0025 0.5 2.5 0 10 10 20

misex3 1044 295 0.05 0.001 0.25 0.01 0.5 2.5 313 6 0.01 1 5 0 25 25 25
pdc 3004 828 0.025 0 0.05 0.0025 0.05 1 835 0 0.0025 0.25 1 0 10 20 25

s298 879 243 0.05 0.0025 0.25 0.01 1 5 254 4 0.01 1 5 0 10 25 25
s38417 3401 873 0.025 0 0.05 0.001 0.01 0.5 939 7 0.0025 0.25 1 10 20 25 25

s38584.1 3909 990 0.025 0 0.05 0.001 0.01 1 1045 5 0.0025 0.5 1 10 20 25 25
seq 1161 327 0.05 0.001 0.1 0.005 1 5 342 4 0.01 1 5 5 25 25 25

spla 2495 693 0.025 0 0.05 0.0025 0.1 1 709 2 0.005 0.5 2.5 0 0 10 25
tseng 778 199 0.05 0.0025 0.1 0.005 0.05 1 222 11 0.01 1 2.5 0 10 20 20

Based on discrete mappings at Pconst={0.00001, 0.000025, 0.00005, 0.0001, 0.00025, 0.0005, 0.001 0.0025, 0.005, 0.010, 0.025, 0.05, 0.10, 0.20, 0.25}

REFERENCES

[1] N. Mehta, R. Rubin, and A. DeHon, “Limit Study of Energy & Delay
Benefits of Component-Specific Routing,” in FPGA, 2012, pp. 97–106.

[2] V. Lakamraju and R. Tessier, “Tolerating operational faults in cluster-
based FPGAs,” in FPGA, 2000, pp. 187–194.

[3] J. Rose, R. Francis, D. Lewis, and P. Chow, “Architecture of field-
programmable gate arrays: The effect of logic block functionality on
area efficiency,” IEEE Journal of Solid-State Circuits, vol. 25, no. 5,
pp. 1217–1225, October 1990.

[4] K. Poon, S. Wilton, and A. Yan, “A detailed power model for field-
programmable gate arrays,” ACM Tr. Des. Auto. of Elec. Sys., vol. 10,
pp. 279–302, 2005.

[5] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. M. Fang, and
J. Rose, “VPR 5.0: FPGA cad and architecture exploration tools with
single-driver routing, heterogeneity and process scaling,” in FPGA,
2009, pp. 133–142.

[6] D. Lewis, E. Ahmed, G. Baeckler, V. Betz, M. Bourgeault, D. Cashman,
D. Galloway, M. Hutton, C. Lane, A. Lee, P. Leventis, S. Marquardt,
C. McClintock, K. Padalia, B. Pedersen, G. Powell, B. Ratchev,
S. Reddy, J. Schleicher, K. Stevens, R. Yuan, R. Cliff, and J. Rose,
“The Stratix-II logic and routing architecture,” in FPGA, 2005, pp. 14–
20.

[7] V. Betz and J. Rose, “Cluster-based logic blocks for FPGAs: Area-
efficiency vs. input sharing and size,” in CICC, May 1997, pp. 551–554.

[8] W. B. Culbertson, R. Amerson, R. Carter, P. Kuekes, and G. Snider,
“Defect tolerance on the TERAMAC custom computer,” in FCCM,
April 1997, pp. 116–123.

[9] R. Amerson, R. Carter, W. B. Culbertson, P. Kuekes, and G. Snider,
“Plasma: An FPGA for million gate systems,” in FPGA, February 1996,
pp. 10–16.

[10] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, “Low overhead
fault-tolerant FPGA systems,” IEEE Trans. VLSI Syst., vol. 6, no. 2,
pp. 212–221, June 1998.

[11] G. Lemieux, E. Lee, M. Tom, and A. Yu, “Directional and single-driver
wires in FPGA interconnect,” in ICFPT, December 2004, pp. 41–48.

[12] N. Mehta, “An ultra-low energy, variation tolerant FPGA architecture
using component-specific mapping,” Ph.D. dissertation, California
Institute of Technology, 2013. [Online]. Available: http://resolver.
caltech.edu/CaltechTHESIS:10072012-230900231

[13] A. Asenov, “Random dopant induced threshold voltage lowering and
fluctuations in sub-0.1µm MOSFET’s: A 3-D “atomistic” simulation
study,” IEEE Trans. Electron Devices, vol. 45, no. 12, pp. 2505–2513,
December 1998.

[14] A. Asenov, S. Kaya, and A. R. Brown, “Intrinsic parameter fluctuations
in decananometer MOSFETs introduced by gate line edge roughness,”
IEEE Trans. Electron Devices, vol. 50, no. 5, pp. 1254–1260, May 2003.

[15] A. Asenov, “Intrinsic threshold voltage fluctuations in decanano MOS-
FETs due to local oxide thickness variation,” IEEE Trans. Electron
Devices, vol. 49, no. 1, pp. 112–119, January 2002.

[16] V. A. Sverdlov, T. J. Walls, and K. K. Likharev, “Nanoscale silicon
MOSFETs: A theoretical study,” IEEE Trans. Electron Devices, vol. 50,
no. 9, pp. 1926–1933, September 2003.

[17] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, S. R.
Nassif, E. J. Nowak, D. J. Pearson, and N. J. Rohrer, “High-performance
CMOS variability in the 65-nm regime and beyond,” IBM J. Res. and
Dev., vol. 50, no. 4/5, pp. 433–449, July/September 2006.

[18] “International technology roadmap for semiconductors,” <http://www.
itrs.net/Links/2011ITRS/Home2011.htm>, 2011.

[19] S. Hanson, B. Zhai, K. Bernstein, D. T. Blaauw, A. Bryant, L. Chang,
K. K. Das, W. Haensch, E. J. Nowak, and D. Sylvester, “Ultralow-
voltage, minimum-energy CMOS,” IBM J. Res. and Dev., vol. 50, no.
4–5, pp. 469–490, 2006.

[20] W. Zhao and Y. Cao, “New generation of predictive technology model
for sub-45 nm early design exploration,” IEEE Trans. Electron Dev.,
vol. 53, no. 11, pp. 2816–2823, 2006.

[21] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Modeling of failure
probability and statistical design of sram array for yield enhancement
in nanoscaled cmos,” IEEE Trans. Computer-Aided Design, vol. 24,
no. 12, pp. 1859–1880, December 2005.

[22] V. Betz and J. Rose, “FPGA Place-and-Route Challenge,” <http://www.
eecg.toronto.edu/∼vaughn/challenge/challenge.html>, 1999.

[23] A. Mishchenko, R. Brayton, J.-H. R. Jiang, and S. Jang, “Scalable don’t-
care-based logic optimization and resynthesis,” ACM Tr. Reconfig. Tech.
and Sys., vol. 4, no. 4, pp. 34:1–34:23, Dec. 2011.

[24] J. Rose et al., “VPR and T-VPack: Versatile Packing, Placement and
Routing for FPGAs,” <http://www.eecg.utoronto.ca/vpr/>, 2009.

[25] K. Fujiyoshi, Y. Kajitani, and H. Niitsu, “Design of minimum and uni-
form bipartites for optimum connection blocks of FPGA,” IEEE Trans.
Computer-Aided Design, vol. 16, no. 11, pp. 1377–1383, November
1997.

[26] G. Lemieux and D. Lewis, “Using sparse crossbars within LUT clus-
ters,” in FPGA, 2001, pp. 59–68.

[27] A. Marquardt, V. Betz, and J. Rose, “Using Cluster-Based Logic Blocks
and Timing-Driven Packing to Improve FPGA Speed and Density,” in
FPGA, February 1999.

[28] J. E. Hopcroft and R. M. Karp, “An n2.5 algorithm for maximum
matching in bipartite graphs,” SIAM Journal on Computing, vol. 2,
no. 4, pp. 225–231, 1973.

Web link for this document: <http://ic.ese.upenn.edu/abstracts/pdluts fpt2013.html>

