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Abstract—Despite the FPGA’s advantages over other hardware
platforms, long compilation time prevents FPGA engineers from
efficiently exploring the design space and discourages new users
who want to quickly iterate for debugging. To reduce compilation
time, this work adopts a divide-and-conquer approach using Par-
tial Reconfiguration with a Packet-Switched Fat-Tree network.
Partially reconfigured leaves in the packet-switched network are
independent from each other and can be compiled separately
in parallel. Also, when a minor fix is required to a bitstream,
only the corresponding leaves need to be incrementally compiled.
Preliminary experimental evidence from our work-in-progress
effort illustrates how a 30 minute full-chip compile time can be
reduced to 7 minutes.

I. INTRODUCTION

Compilation time for FPGAs is notoriously long. For
large devices, compilation can take hours. For example, post-
synthesis place and route of a 50% utilized ZU9EG MPSoC
FPGA using Vivado 2016.4 can take half an hour on a 2.7 GHz
Intel E5-2680 processor. This is in sharp contrast to compi-
lation for processors and GPUs that typically take seconds
to minutes, especially when only making small changes to the
application. This makes FPGA use unattractive. It forces a long
edit-compile-debug cycle that is inconsistent with modern soft-
ware development idioms. For novices, the long edit-compile-
debug cycle challenges the attention span and frustrates the
developer. For experts, the long cycle limits the design-space
exploration that can be performed within a limited time-to-
market window. Together, this slow compilation is holding
FPGAs and Reconfigurable Computing back form its full
potential—limiting the set of developers who will try to use
it, limiting the rate at which designs can be developed, and
limiting the quality of designs that are deployed.

We believe the time is right for a methodology and tool
chain to support fast compilation of FPGA designs onto
today’s large-scale FPGA parts. We explore a divide-and-
conquer model that allows large FPGA compilation to be
decomposed into a collection of smaller compilation tasks
that can be run in parallel. The small compiled blocks are
assembled using partial reconfiguration and interconnected
using a lightweight, packet-switched overlay network (See
Fig. 1). This model allows designs to be compiled in minutes,
gated only by the time to compile small leaf functions to
regions of the chip. For example, a 2700 LUT leaf block on the
ZU9EG can be implemented (LUT mapping, placement, and
routing) in 7 minutes. During incremental development, a sin-
gle leaf function can be compiled quickly and independently

and reintegrated into the design, just as software compilers
can separately compile only the files that changed and link
them into a complete application. For larger changes, cloud
resources can recompile all the component leaf functions in
parallel. For example, with a cluster of 8 compute servers, each
with two 2.7 GHz Intel E5-2680 CPUs and 128 GB of RAM
(total of 8×2×8=128 cores), we run 31 parallel Vivado post-
synthesis place and route jobs to implement the entire design
for the ZU9EG in 7 minutes.

This methodology deliberately sacrifices routed design qual-
ity and density for low compilation and recompilation latency.
It pays area for an overlay network and sacrifices area to
fragmentation in the partial reconfiguration blocks. Separate
compilation prevents co-optimization of functions. Connectiv-
ity through the overlay network is lower than the raw wiring
provided by the FPGA and increases the latency between leaf
blocks. Given the high capacity FPGA devices that decades
of Moore’s Law scaling has produced, we have long emerged
from the era of poverty [1] and can now afford to spend some
of this capacity to accelerate development, particularly during
the early lifetime of a design.

Current FPGAs and vendor tools are not deliberately de-
signed for this purpose. This work explores how we can make
the most of the existing designs.

Our novel contributions include:
• Strategy for using Partial Reconfiguration to reduce

FPGA post-synthesis place and route time, including both
incremental compilations that allow recompilation of only
the leaf functions that change and parallel compilations
that exploit multi-core and cloud capacity to reduce full-
chip (re)compilation latency (Sec. III)

• A case study that concretely illustrates the potential
benefits and challenges of this strategy when built upon
current Xilinx tools and FPGAs (Sec. V)

II. BACKGROUND AND OPPORTUNITIES

A. Partial Reconfiguration

Partial Reconfiguration (PR) allows portions of the FPGA to
be reconfigured independently at some granularity without the
need to rewrite the configuration bits of the entire FPGA. This
has traditionally allowed portions of the FPGA functionality
to be replaced during runtime without disabling complete
operation [2], [3]. When only small edits are needed to the
logic on the FPGA, this speeds reconfiguration by reducing
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the amount of data that must be loaded onto the FPGA through
the limited-bandwidth configuration path.

In order to support PR designs, vendors [4], [5] and recon-
figurable computing developers [6] provide methodologies and
tool flows that allow logic to be constrained to and mapped for
a small region of the FPGA. PR designs are decomposed into
a static region and multiple reconfigurable regions. The static
region refers to the part of the design that is never partially
reconfigured, and the reconfigurable regions refer to the part
that is recompiled and reconfigured by downloading partial
bitstreams. To identify reconfigurable regions, the designer
defines a set of physical resources on the FPGA as a p-block.
Many, independent p-blocks can be defined for the FPGA,
providing many different regions that can be independently
reconfigured. A portion of the logical design can then be
identified as a reconfigurable partition that can be assign to a
particular p-block.

Since implementation time is influenced both by the size of
the logical design (e.g., number of LUTs in the user’s design)
and the physical substrate (e.g., number of CLBs on the target
FPGA or region of the FPGA), to implement a design that
is a tiny fraction of the FPGA capacity to a region that is
a small fraction of the FPGA capacity should be faster than
performing a full-scale FPGA implementation. Nonetheless,
the main use of PR to date has been to reduce the area required
for a design, by loading only the logic needed at a particular
time onto the FPGA, and to reduce the reconfiguration time
when new functions must be loaded onto the FPGA. Previous
research provides methodologies for using PR regions as slots
that are dynamically loaded with hardware modules during
execution [7], [8], [9]. However, this work does not address
compilation time.

B. Out-of-Context Compilation

Vivado provides Out-of-Context (OoC) compilation that
allows developers to compile leaf IP blocks without the
“context” of the entire enclosing design [10]. This allows
groups to divide the work among team members and supports
independent synthesis and implementation runs for IP blocks.

III. STRATEGY

The basic idea is to break the FPGA into a set of separate
p-blocks that can be compiled and recompiled separately.
We assume the user design is a collection of interconnected
components or IP-blocks that we generically call leaf blocks.
Ideally, each leaf block will be mapped to a p-block.

This raises a number of questions:
• how are leaf blocks interconnected?
• how can we deal with leaf blocks that vary in size?
• how do we prepare designs to fit this framework?

A. Interconnecting Leaf Blocks with Overlay Network

The standard PR model with a fixed-logic static-region
would constrain the interconnection between leaf blocks. How-
ever, we want to support arbitrary designs for development.
We could re-compile the static region, but that would be

a long compilation task that would undermine our goal of
fast compilation. To avoid this compilation time, we use a
lightweight, packet-switched overlay network as the top-level
infrastructure for connecting leaf blocks. Once the leaf blocks
are loaded and configured, they are all set to communicate.
We specifically use a Butterfly Fat Tree (BFT) topology [11],
[12] that can be parameterized and tuned to provide different
levels of interconnect according to Rent’s Rule [13].

B. Leaf p-blocks
The PR regions for leaf blocks are a collection of leaf p-

blocks of predefined sizes. As long as a leaf block is smaller
than a p-block, it can be placed in the p-block. This may
waste some logic resources due to internal fragmentation. Leaf
blocks larger than the p-block will need to be decomposed. A
future extension could combine multiple primitive p-blocks
into a larger p-block that will accommodate the logic.

C. Compute Model
We assume computations are composed of operators, which

we call user modules, that are connected through streaming
dataflow links with data presence handshaking in the style of
a Kahn Process Network [14] similar to the Ambric [15] or
SCORE [16]. User modules can be arbitrary logic or memory
functions and can be written in any language (e.g., Verilog,
C, BSV) as long as they follow the stream communication
discipline. Threads running on the embedded, hardcore proces-
sors can also communicate through stream links. Together, the
dataflow streaming model accommodates the variable delay
introduced in the pipelined, packet-switched network and the
delay changes that arise as the implementation or placement
of leaf blocks change.

D. Design Flow
Standard Vivado compilation consists of three main steps:

synthesis, implementation, and bitstream generation. OoC
Synthesis (Sec. II-B) can be used to exploit parallelism when
synthesizing the user modules. We focus on using PR to accel-
erate the implementation process so that the full compilation
process can be accelerated.

The inputs of the system are synthesized user modules. The
user modules are assigned to the appropriate sizes of leaf p-
blocks based on their synthesis utilization reports. Our goal is
to run implementation on each of the user modules indepen-
dently, allowing either a single user module to be changed at a
time or for a set of user modules to be implemented in parallel.
In Fig. 1, six of the configurations are run in parallel, and each
configuration implements only one leaf p-block, leaving other
leaf p-blocks empty. Since the size of the design with a single
user module filled in is smaller than that of the monolithic
approach with all the user modules instantiated, the separate
compilations should be faster than the monolithic compilation.
For the same reason, we put the BFT in its own reconfigurable
p-block so that its resources do not contribute to the size of
the static region and slow down leaf implementation. One leaf
of the BFT is connected to the ARM, and the ARM configures
the network informing the leaves where to send the packets.
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Fig. 1. Separate Compilations of Leaf Blocks

IV. DESIGN POINT

For concrete discussion and evaluation in this and the
following section, we specifically consider a Xilinx Zynq
UltraScale+ MPSoC ZCU102 evaluation board which uses an
UltraScale+ ZU9EG FPGA (274,080 LUTs, 548,160 FFs, 912
36Kb BRAMs, quad ARM Cortex-A53 processors). Vivado
2016.4 is used for the compilation of the design running on
2.7 GHz Intel E5-2680 CPUs with 128 GB of RAM.

As a base design, we use a p=0.5 BFT (alternating t and
π switches, provides the same bandwidth growth as a mesh)
with 97b, single-flit packets (64b payload, 32b address, 1b
valid). For these parameters, the BFT is roughly 1000 LUTs
per leaf supported. If we make each p-block for a leaf about
3900 LUTs and include 11, 36Kb BRAMs, that means we
need about 1000+3900=4900 LUTs per leaf. Placing a 31-leaf
BFT on an MPSoC ZU9EG uses 151K (55%) of the 274K
LUTs. 20% of the logic goes into the BFT overlay network.
Leaf interface logic can be as small as 471 LUTs and 3, 36Kb
BRAMs and will scale up with the stream links supported. At
this size, the leaf interface will consume 10% of the used logic.
This leaves about 3400 LUTs or about 70% of the used logic
for each user module. At 3900 LUTs, each leaf module is only
1.4% the size of the full 274K FPGA.

V. CASE STUDY: CUSTOMIZING ARRAY OF PROCESSORS
AND ACCELERATORS

A. MicroBlaze

To measure the effectiveness of fast compilation using the
parallel approach, an array of MicroBlaze processors [17] is
chosen as a simple benchmark. The size of MicroBlaze varies

Fig. 2. Floorplanning of BFT-32 and Leaf Blocks on ZU9EG

from 500 LUTs to more than 4000 LUTs depending on options
chosen. The default user modules contain a MicroBlaze with
an AXI-lite interface. For this case study, we use a 32-leaf BFT
with 31 mostly identical p-blocks with around 3900 LUTs and
11–24 BRAMs.

This array of MicroBlazes might represent the beginning
of a design optimization where the user starts with all their
computations written in C and running on the MicroBlazes.
Since each MicroBlaze is independent of each other, the de-
signer can optimize the design by customizing the MicroBlaze
parameters tailored to the operator. Further, the designer can
exploit HLS to replace the MicroBlaze with custom hardware
IP-block in a leaf block. With this setup, the designer can
incrementally migrate, test, and refine each leaf operator with
quick implementation turns using our flow.

B. Parallel Compilation

Our primary experiment is to compare the runtime for a leaf
block PR build to the runtime for a monolithic, full-chip build
with the standard Vivado flow. Our design can be assembled
by running these leaf block builds in parallel (Fig. 1) or
one at a time, whereas a traditional flow would demand the
sequential, monolithic build be run for any changes. We show
the maximum time for the single leaf runs. The total time for
our scripts to setup these runs and process the result is just
a few seconds and hence negligible compared to the Vivado
implementation runtimes, so we do not report them here.

Tab. I shows the result of sample experiments with different
MicroBlaze configurations. We see the parallel, single leaf
implementation and bitstream generation runs are significantly
faster than the monolithic run, but not as fast as we might
expect based solely on the size of the leaf logic. As stated
earlier (Sec. III-D), we put the BFT with ARM Leaf in a
seperate p-block, and our approach is much faster than the
approach that has BFT with ARM Leaf in the static region
(“BFT Static” column).

The synthesis runtime for parallel approach is merely that
for synthesizing Microblaze system with the leaf interface
since that is all that is included in the leaf block. Synthesis
for the monolithic approach takes much more than for parallel



TABLE I
COMPARISON OF COMPILATION RUNTIME

µBlaze(v.0) µBlaze(v.1) µBlaze(v.2)
runtime(secs) Mono BFT Static Parallel Mono Parallel Mono Parallel

synthesis 3171 287 287 3118 283 2510 235
impl+bitstream 1797 857 418 1692 413 1283 398

BFT-32 p-block µBlaze(v.0) µBlaze(v.1) µBlaze(v.2)
LUTs 29774 3840∼3960 2722 2328 1433

BRAM 0 11∼24 8 8 4
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Fig. 3. Monolithic vs. Parallel for µBlaze(v.0)

approach. This can be exploited using OoC synthesis runs
(Sec. II-B) for an order of magnitude speedup independent of
our strategy. The runtime improvement on the implementation
process shows the impact of our parallel compilation flow.

Fig. 3 shows the runtime composition of implementation
and bitstream generation process for monolithic approach
and all 31 runs that are executed in parallel. Because 31
parallel runs implement the identical designs in the identical
sizes of the leaf p-block, the runtimes are almost the same.
While the bitstream generation is not accelerated much, the
implementation process decreases due to the smaller problem
size.

VI. CONCLUSIONS

We show how to use partial reconfiguration capabilities
of modern FPGAs coupled with lightweight, packet-switched
overlay networks to decompose the normally monolithic and
slow compilation tasks into separate, smaller compilation
problems that can be run independently. This allows both faster
incremental compilation when only small parts of the design
change and parallel compilation when the design is new or has
significant changes. Modern FPGAs and vendor flows are not
necessarily tuned to this usage, limiting the magnitude of the
benefit. Nonetheless, we show how to use Vivado’s existing
facilities to achieve a 4× speedup and get implementation time
down to 7 minutes when decomposing the design into leaf
blocks with a few thousands LUTs.
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