
Appearing in IEEE International Conference on Field-Programmable Technology (FPT 2019), December 11–13, 2019

Reducing FPGA Compile Time with Separate
Compilation for FPGA Building Blocks

Yuanlong Xiao, Dongjoon Park, Andrew Butt, Hans Giesen, Zhaoyang Han,
Rui Ding, Nevo Magnezi, Raphael Rubin, and André DeHon

Dept. of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
Email: ylxiao@seas.upenn.edu, dopark@seas.upenn.edu, giesen@seas.upenn.edu, zhhan@coe.neu.edu,

nmagnezi@ucsd.edu, andre@ieee.org

Abstract—Today’s FPGA compilation is slow because it com-
piles and co-optimizes the entire design in one monolithic
mapping flow. This achieves high quality results but also means a
long edit-compile-debug loop that slows development and limits
the scope of design-space exploration. We introduce PRflow
that uses partial reconfiguration and an overlay packet-switched
network to separate the HLS-to-bitstream compilation problem
for individual components of the FPGA design. This separation
allows both incremental compilation, where a single component
can be recompiled without recompiling the entire design, and
parallel compilation, where all the components are compiled in
parallel. Both uses reduce the compilation time. Mapping the
Rosetta Benchmarks to a Xilinx XCZU9EG, we show compilation
times reduce from 42 minutes to 12 minutes (one case from 160
minutes to 18 minutes) when running on top of commercial tools
from Xilinx. Using Symbiflow (Project X-Ray/Yosys/VPR), we
show preliminary evidence we can further reduce most compile
times under 5 minutes, with some components mapping in less
than 2 minutes.

I. INTRODUCTION

The performance and energy benefits of FPGAs are pro-
pelling them into larger scale use for embedded, server, and
cloud computing. Nonetheless, the exploitation of FPGAs
significantly lags behind their potential benefits. Despite in-
creasing opportunities to describe FPGA designs at higher-
levels of abstraction with High-Level Synthesis (HLS), it can
still take hours to compile a design from C to Verilog to gates
and ultimately to a bitstream that can be loaded onto the
device (HLS-to-bitstream compile). This long compile time
serves as a deterrent and disincentive to adopt and embrace
FPGAs. This compile time is off-putting for software designers
accustomed to debugging turns of seconds to minutes, making
multicore and GPU solutions attractive even when they are
slower and burn more energy. Furthermore, to find good FPGA
solutions, experts will need to carefully explore the design
space for potential solutions. However, when faced with hour-
long compilation times, even experts must limit the scope of
their design-space exploration leading to sub-optimal solutions
that do not fully exploit the benefits of the FPGA. Slow
compilation presents a barrier that is limiting the adoption
and exploitation of FPGA computing.

One of the key reasons FPGA compilation is slow is
the monolithic compilation and global optimization of the
entire design. With FPGAs that hold millions of 6-LUTs and
thousands of independent DSP blocks and embedded RAMs,

the sheer size of the compilation problem is large. Park [1]
suggests it is possible to decompose this large compilation
task into many, smaller pieces that can be compiled separately.
Separate compilation allows an easy form of data-level paral-
lelism. Furthermore, separate compilation isolates the impact
of changes, preventing the need to recompile pieces of the
design that have not been changed.

Specifically, Park uses partial reconfiguration and a packet-
switched overlay network to isolate design components for
separate compilation, dividing the FPGA capacity into a
number of independent, partial reconfiguration regions. Com-
ponents (IP blocks, computational operators) can be compiled
to partial reconfiguration regions independently. The packet-
switched network provides the communication linking that
allows the independently-compiled blocks to interact.

We develop and evaluate a concrete instance of this vision.
PRflow is an architecture and tool for the divide-and-conquer
approach that works for Virtex UltraScale Plus FPGAs on top
of the Vivado HLS and Vivado tool suites (Sec. V). The stock
commercial tools have a number of limitations that make this
usage challenging and that reduce the magnitude of the benefit
(Sec. IV). Nonetheless, we show how to make use of the
functionality available. We also explore the use of Project X-
Ray/Yosys/VPR for synthesis and physical mapping and show
preliminary evidence this may allow even faster mapping times
(Sec. VI). We make the following contributions:

1) Characterization of Vivado compilation times to optimize
a fast, separate compilation design point (Sec. IV)

2) Tool flow that operates on top of Vivado to automate the
separate compilation strategy (Sec. V)

3) Tool flow that operates on top of Yosys and VPR to
automate synthesis, place, and route (Sec. VI)

4) Characterization of the mapping time benefits and perfor-
mance impact on the Rosetta Benchmark suite (Sec. VII)

II. BACKGROUND

A. Out of Context

Vivado already supports separate HLS and Verilog synthesis
using Out-of-Context (OoC) design flow [2]. This can be used
by design groups to separately develop and synthesize IP and
compute blocks that can later be assembled for monolithic
place and route. Vivado will use multiple processes on a single

c© 2019 IEEE

http://www.icfpt.org/

workstation or server to exploit some parallelism in module
synthesis. We incorporate this capability into our design flow
and use it explicitly to allow separate compilation of leaf
blocks, including spawning the tasks to separate computers
in the cloud (Sec. V-A).

B. Partial Reconfiguration

Partial Reconfiguration (PR) is an architectural feature and
FPGA usage strategy that allows a subset of the FPGA
resources to be reconfigured separately from the rest of the
FPGA. This allows portions of the functionality deployed on
an FPGA to change while leaving other pieces in place. Done
properly, the non-changing portion of the FPGA can continue
to operate during the reconfiguration [3], [4]. The partial
bitstream can be smaller than the full bitstream, meaning the
time to load the partial bitstream can be smaller than the full
bitstream, roughly in proportion to the size of the reconfigured
region to the full FPGA.

The standard Xilinx design discipline for PR divides the
FPGA resources into a single static region and one or more
PR regions [5], [6]. The static region is the part that will never
change, while each PR region can be loaded separately. To
define each PR region, the developer identifies a specific set
of physical resources as a p-block. These p-blocks identify
the physical regions that logic can target and that can be re-
configured. When mapping the logical design, the application
designer identifies a portion of the design as a reconfigurable
partition. Each reconfigurable partition can then be assigned
to a reconfigurable p-block. Significantly for our purposes, by
constraining portions of the design (reconfigurable partitions)
to specific parts of the FPGA chip (reconfigurable p-blocks)
and using standard interfaces between the partitions, we can
isolate the design components (partitions) from each other so
that they can be compiled separately.

Conventional usage of PR have targeted area reduction [7],
[8], [9], load-time reduction, and design specialization [10],
[11]. Beyond [1], previous work has not directly targeted the
reduction of compilation time as we do in this work.

C. Pre-Compiled Macros

Previous work has demonstrated that pre-implemented large
macroblock components can be an effective approach to
reducing FPGA compilation time. HMflow exploited pre-
compilation of hard (internally, pre-placed and routed) macros,
macroblock floorplanning, and custom routing to quickly
assemble DSP designs from Xilinx’s System Generator [12],
[13]. Once placed and routed, HMflow uses vendor tools for
final bitstream generation.

Just-in-Time Assembly of Accelerators (JITA) similarly
pre-computes the compilation for components so that their
compilation time is removed from the critical path to produce
a user design [14]. JITA uses 9600 LUT p-blocks with
a configurable overlay network to avoid vendor placement,
routing, and bitstream generation. JITA’s overlay network is a
static, nearest-neighbor design similar to FPGA switchboxes

a

b

c

d

Task Parallel map leaf blocks
 on Cloud

b

c d

PS
net

 Leaf
P−block

PR Compile

PR Compile

PR Compile

PR Compile
a

Load PR bitstreams
onto Packet−Switched
network (PS net)

Fig. 1. Separate Compilation Strategy

except that it routes word-wide data and is configured on top
of the FPGA.

We build upon both of these ideas, taking the next step to al-
low and compile any leaf logic component rather than limiting
leaf blocks to a pre-defined set of pre-compiled blocks. Using
a packet-switched overlay network, we completely eliminate
the routing time to wire between leaf functions as well as the
possibility of routing failure.

D. Pre-defined and Pre-Sized Regions

Cutting the FPGA up into separate regions with pre-defined
sizes is a known technique for separating concerns and simpli-
fying design composition. This allows designs to be separately
and independently compiled to defined regions then composed
at the coarser-grain region level. This technique has been used
with PR regions in the past. Brebner introduces Swappable
Logic Units [15]. SCORE introduces logic pages that could be
separately implemented, reconfigured, and managed at runtime
[16]. While not fully exported to the application developer, the
Stratix-10 architecture internally has a notion of configuration
regions for clocking and partial reconfiguration [17].

III. IDEA AND BASIC DESIGN

The basic idea of a separate compilation methodology is
to divide the FPGA capacity into a set of regions of pre-
defined size and separately map blocks in the user’s application
to the regions (See Fig. 1) [1]. We call the physical partial
reconfiguration regions for user logic leaf p-blocks and the
logic we map separately into these leaf p-blocks leaf blocks.
Once mapped, the partial bitstream for each leaf block can
be loaded onto the FPGA. A packet-switched overlay network
provides connectivity between the leaf p-blocks.

A. Compute Model

We assume a dataflow streaming compute model [18], [16],
[19] to assemble and coordinate the application. The design is
decomposed as a network of computation and memory oper-
ators interconnected by dataflow stream links. The dataflow
stream links abstract away implementation and timing, so
that operators do not need any knowledge about the inter-
nal implementation of the operators they communicate with
nor the communication channels among them. One or more
operators are grouped together into a leaf block for mapping.
The dataflow stream links support the separate compilation of

these leaf blocks and the variable delay in interconnect among
them that arises both from leaf p-block placement choices and
from congestion on the packet-switched network.

In the current work, we demand that the operators in the
user design be smaller than the user logic capacity in the leaf
p-blocks in the target platform. Automated decomposition of
user logic into leaf blocks is complementary future work.

B. Packet-Switched Network

We use a packet-switch network so that there is no need
to synthesize, place, and route any unique connectivity to
interconnect the separately-compiled leaf blocks. The leaf
blocks are simply configured with the destination addresses on
the network for the downstream modules, and leaf interface
logic attaches the address to data as it enters the network. We
use a deflection-routed, packet-switch network since modern
designs show how they can be lightweight [20]. We specifi-
cally use a Butterfly Fat Tree (BFT) topology [21], [22] that
can be parameterized and tuned to provide different levels of
interconnect according to Rent’s Rule [23].

C. Network Interface

The user operator logic communicates through streaming in-
put and output ports, either HLS streams or AXI Lite streams.
To connect user module operators to the deflection-routed,
packet-switched BFT, the leaf blocks include leaf interface
logic as shown in Fig. 2. This leaf interface includes logical
stream FIFOs that receive the packets from BFT and send the
packets out to the BFT. These FIFOs decouple the user module
from BFT so that user logic and BFT can run at different
clock frequencies. The minimal complexity deflection-routed
BFT neither deals with flow-control for streams nor guarantees
in-order transfer of the packets to the destination leaf block
[20], [22]. We add sequence numbers to packets for ordering,
and we design the leaf-interface logic to store data into FIFOs
in order and deal with flow control using a windowed ac-
knowledgment scheme [24]. Because the leaf interface resides
in the reconfigurable leaf block, the composition of the leaf
interface can be tuned to the user module. For instance, the
depth and throughput of the FIFOs and the number of input
and output FIFO streams can vary based on the requirements
of the user module. Our packets include a destination leaf and
port identifier, an address for sequencing, and the payload. In
this work, we use a 48-bit packet with 5b for leaf identifier, 4b
for port, 7b for address, and 32b for payload. On the network,
a 49th bit is used for flow control. The 32b network reduces
the mapping time required by the static region (Sec. IV-C).

D. Management, Processor, and Memory Interface

In addition to the leaf p-blocks, we also place embedded
hard processors and memory interfaces on the BFT. On Zynq
devices, one or more leaves hold the embedded ARM proces-
sor(s). These processors can serve as operators in the dataflow
network, using the same dataflow streaming interfaces. We
also use one ARM as a configuration controller to manage leaf
p-block loading and configuration of the leaf blocks. Leaves

User Operator Logic

Port

BFT

dst regs

…

FI
FO

_o
ut

_0

FI
FO

_i
n_

0

clk_bft

L
ea

f I
nt

er
fa

ce

L
ea

f B
lo

ck

src regs

…

FI
FO

_i
n_

1

FI
FO

_o
ut

_1

clk_user

Fig. 2. Leaf Block Composition and Interface

with DMA interfaces to the DRAM controller(s) provide the
interface to DRAM.

IV. VIVADO CHARACTERISTICS

Intuitively, we expect that the time to perform physical im-
plementation mapping (placement and routing) will be driven
by the number of logical design elements (LUTs, BRAMs,
DSPs, nets) in the netlist and perhaps the number of physical
elements to which they can be mapped (LUTs, BRAMs, DSPs
on the FPGA or in a p-block). All the mapping problems are
NP-hard and typical algorithms are heuristics. So, we might
expect, at least, linear scaling with the number of design or
physical elements. By making leaves small compared to the
size of the FPGA (e.g., maybe 1% or 2% of the size), we
would hope to reduce mapping time commensurately.

We will see that Vivado is not designed to completely
deliver the full benefits. In this section, we characterize the
rough behavior of Vivado and use that to guide the design
of our PRflow mapping strategy. For the experiments in this
section we use Vivado 2018.2 running on a compute server
with two 2.7 GHz Intel E5-2680 CPUs and 128 GB of RAM.

A. Leaf Size

For a fixed-size FPGA, when the resource requirements are
not too close to 100% utilization, we see (Tab. I) that the
mapping time is driven by the number of design elements
in the netlist and not by the number of physical resources
available (e.g., number of LUTs in a p-block). Specifically,
as long as the design size is sufficiently smaller than the
p-block size, increasing the size of the design increases the
implementation time. However, keeping the design size fixed
and increasing the size of the p-block does not have a big
effect on mapping time. For this experiment, we use two
designs; one is a large shift-register, where we vary the length
of the shift register, and the second has a variable number of
connected MicroBlaze [25] cores. Nonetheless, a large portion
of the implementation time is the fixed cost of starting Vivado

TABLE I
IMPLEMENTATION TIME VS. DESIGN AND P-BLOCK SIZE ON XCZU9EG

P-Block Size (LUTs)
Design Size 3960 6160 7920 10120 15840

623 203 206 206 205 204
Shift 1633 210 210 210 208 210

Register 2661 220 218 218 217 217
3614 229 233 224 227 225
4616 239 239 234 237
5623 239 244 241 242
1435 182 181 180 181 185

MicroBlaze 2860 196 192 195 192 198
Cores 4285 210 211 210 207

5710 605 231 223 226

(cells show compilation time in seconds)

TABLE II
STATIC REGION IMPACT ON IMPLEMENTATION TIME (32 LEAF BFT WITH

32B PAYLOAD WIDTH DATAPATH)

PR implementation OoC impl.
BFT in Static BFT as P-block leaf only

LUTs in mapping 30611 8590 1435
optimize time (s) 29 10 79

place time (s) 238 161 27
route time (s) 170 113 74
total time (s) 437 284 180

and loading the device database. This is one limitation on our
ability to achieve ideal speedups with Vivado.

B. Partial Reconfiguration Compile

Vivado PR implementation time includes the static region
and all the PR blocks. Implementation takes time for elements
in the static region even though the static region is constrained
and there are no decisions to make on where to place its
elements and how to route its nets; Vivado still spends time
loading and validating the logic and connections. If we are
only mapping a single reconfigurable p-block, we can assign
minimal dummy logic to the p-blocks we are not currently
mapping, but Vivado demands inclusion of the full static logic.
To illustrate this phenomenon, Fig. 3 shows an experiment
where we vary the size of the static region by varying the
number of leaves on the BFT that are included in the static
region. For this experiment, we place a 1522 LUT MicroBlaze
processor [25] in each of the leaves added to the static region.
In all cases, there is only one non-dummy reconfigurable p-
block being mapped. As we see, the implementation time
increases with the size of the static region. As another ex-
ample, in Tab. II, we look at the time to perform an OoC
implementation of a reconfigurable p-block that will only
synthesize, place, and route the leaf p-block compared to the
time of a PR mapping along with the static region. We see
that the PR mapping (“BFT in Static” column) takes longer
than the leaf p-block compiled in isolation.

As a result, the time for a leaf implementation is:

Tprmap ≈ Tleaf + Tstatic (1)

Fixed Leaves in Static Region 0 4 8 12 16 20 24 28
Implementation Time for
Non-Dummy Leaf (seconds) 288 323 347 385 411 458 494 526

leaf
PR

leaf
PR

leaf
PR

leaf
PR

leaf
PR

leaf
PR

leaf
PR

leaf
PR

ARMCLK

 static region

P
R

 B
F

T
 N

e
tw

o
rk

leaf
PR

leaf
PR

leaf
PR

leaf
PR

leaf
PR

ARMCLK

 static region

P
R

 B
F

T
 N

e
tw

o
rk

leaf
static

leaf
static

leaf
static

BFT in Static
BFT as P−Block 3 Fixed Leaves

in Static Region No Leaves
in Static Region

leaf
PR

leaf
PR

leaf
PR

leaf
PR

leaf
PR

leaf
PR

leaf
PR

leaf
PR

ARMCLK

 static region

s
ta

ti
c
 B

F
T

 N
e

tw
o
rk

Fig. 3. Impact of Static Region Compososition on PR Leaf Mapping Time

TABLE III
PARTIAL RECONFIGURATION MAPPING TIMES VS. LEAVES AND WIDTH

Time (seconds)
Nleaf Width Tprmap OoC Tstatic

8 48 308 220 88
72 297 224 73
96 306 226 80

16 48 333 220 113
72 336 224 112
96 346 226 120

32 48 399 220 179
60 412 226 186

C. Optimizing Partial Reconfiguration Compile Time

We can reduce the static time by moving all the logic (even
the logic we intended not to change among applications) into
reconfigurable p-blocks. Specifically, we can move the BFT
into one or more reconfigurable p-blocks [1]. Tab. II also
shows how this reduces the PR implementation time.

Once the BFT is placed in reconfigurable p-blocks, what is
left is a small amount of global wiring (e.g., clocks) and the
connections among the partially reconfigurable blocks. This is
mostly the connections between the BFT and the leaves. The
BFT leaf connection nets are proportional to the number of
leaves and the width of the network. There will be some time
to map the minimal logic in each of the leaves and some fixed
time to load the chip database and deal with global resources,
so static time increases with the number of leaves and, to a
lesser extent, with the width of the network (Tab. III). We
select a configuration (Width=48, Nleaf≈32) where Tstatic

is roughly 180 seconds so that it does not dominate Tleaf .

V. TOOL SUPPORT

As shown in Fig. 4, we add three tools for design prepa-
ration and compilation coordination around the Vivado HLS
and Vivado synthesis and implementation routines.

 <!--functions to be synthes ized -->

 <f uncti on name = "a" inputs = "1" outputs = "4" page = "9"/>

 <f uncti on name = "b" inputs = "1" outputs = "1" page = "2"/ >

 <f uncti on name = "b" inputs = "1" outputs = "1" page = "5"/ >

 <f uncti on name = "c" inputs = "1" outputs = "2" page = "6"/>

 <f uncti on name = "c" inputs = "1" outputs = "2" page = "7"/>

 <f uncti on name = "d" inputs = "4" outputs = "1" page = "8"/ >

 <f uncti on name = "e" inputs = "3" outputs = "1" page = "4"/>

 <!--functions connections -->

 <link source = "9.0" des tination = "2.0" />

 <link source = "9.1" des tination = "5.0" />

 <link source = "9.2" des tination = "6.0" />

 <link source = "9.3" des tination = "7.0" />

 <link source = "2.0" des tination = "8.0" />

 <link source = "5.0" des tination = "8.1" />

 <link source = "6.0" des tination = "8.2" />

 <link source = "7.0" des tination = "8.3" />

 <link source = "8.0" des tination = "4.0" />

 <link source = "6.1" des tination = "4.1" />

 <link source = "7.1" des tination = "4.2" />

a

b

c

c

d
eb

Parallel HLS

on Cloud

a

VIVADO

HLS

a

b

VIVADO

HLS

b

c

VIVADO

HLS

c

a

V / Y

a

b

V / Y

b

c

V / Y

c

d

V / Y

d

e

V / Y

e

Parallel Synthesis

on Cloud

b b d e

0
1
2
3
4

9
8
7
6
5

0 1 2 3 4

9 8 7 6 5

Parallel

Implement on

Cloud

app_def.xml

Config_gen

config.c

gcc_arm

config.elf

c ca

4

d

VIVADO

HLS

d

e

VIVADO

HLS

e

Prepare Implementation/Bitstream

Prepare Synthesis

DCP file

BFTARM

Verilog file

C/C++ file

B
F

T
 p

-b
lo

c
k

0
1
2
3
4

9
8
7
6
5

B
F

T
 p

-b
lo

c
k

0
1
2
3
4

9
8
7
6
5

0
1
2
3
4

9
8
7
6
5

0
1
2
3
4

9
8
7
6
5

0
1
2
3
4

9
8
7
6
5

0
1
2
3
4

9
8
7
6
5

B
F

T
 p

-b
lo

c
k

B
F

T
 p

-b
lo

c
k

B
F

T
 p

-b
lo

c
k

B
F

T
 p

-b
lo

c
k

B
F

T
 p

-b
lo

c
k

876529

Empty PR Region

Placed and Routed

PR Region

Partial Bitstream

Run Vivado/VPR

 for P&R

Run Vivado/Yosys

for Synthesis

Fig. 4. PRflow Separate Compilation Flow

A. Prepare Synthesis

Designs start with the user logic for operators expressed in C
or Verilog with stream inputs and outputs. In the first phase, we
use separate OoC synthesis runs to compile each of these into
a netlist design checkpoint (.dcp) file. We require a top level
application definition file in XML (app_def.xml) that iden-
tifies all the source files for the operators that need compilation
and the dataflow connectivity among the operators. Our tool
sets parameters and generates the appropriate leaf interface
(Sec. III-C) for the operator based on its needs (e.g., number
of input and output streams). It creates a custom leaf block
wrapper for each operator including both the user operator
logic and the selected leaf interface. It generates TCL scripts
to control synthesis for each operator leaf block. Finally, it
spawns each of the synthesis runs to the cloud server. Overall
operation is coordinated with a Python script.

B. Prepare Implementation

After the leaf blocks have been synthesized to netlist design
checkpoints, our second phase directs the separate physical
implementation of each leaf block to a particular leaf p-block.
Based on a leaf assignment from the application definition
file, a leaf implementation tool packages up the design for
implementation, including setting the p-blocks that are not
being mapped in this separate compilation to dummy designs.
It creates the TCL scripts to control the implementation runs

and spawns the implementation runs to cloud servers. The
result of the synthesis is a partial reconfiguration bitstream
for the target leaf p-block.

C. Generate Configuration (config gen)

Concurrent with leaf p-blocks implementation runs, we also
produce and compile C code for the embedded ARM processor
to link up the leaf blocks. A configuration generation tool
takes in the application definition XML file that expresses
the operator dataflow. For each stream link, it has the ARM
processor send control messages over the BFT to configure the
source and destination ports in the respective leaf interfaces
so that they know each other’s location and port identifiers to
construct packets.

VI. PROJECT X-RAY/YOSYS/VPR

We also explore using open-source tools for leaf RTL to
bitstream mapping. We continue to use Vivado HLS for C to
RTL (Verilog) mapping. We use Yosys [26], [27] for Verilog
Synthesis and VPR for packing, placement, and routing [28]
enabled by the Project X-Ray architecture files [29]. This has
three advantages: (1) we can avoid the portion of time Vivado
spends on static logic, (2) inspired by Maverick [30], we can
build an architecture file for a single leaf p-block to reduce
device loading time,1 and (3) we can tune the open-source
tool parameters aggressively for low mapping times. Since
Project X-Ray currently only supports Artix-7 devices, we
map to comparably sized leaf p-blocks of (11,916 LUTs, 20
36Kb BRAMs, 40 DSPs) or (16,720, 30, 60) on an XC7A50T
for our mapping time estimates. Since DSP support is still
under development, we implemented a minimal mapping that
simply used each DSP block as an 18×25 multiplier. Since
Project X-Ray currently supports only a single clock, we use
a single, unified BFT and user clock for this mapping. As
a consequence of these limitations, we have not produced
bitstreams to run on actual devices with this flow. We see these
results as illustrating how it is possible to reduce mapping time
with appropriate tool design.

VII. DEMONSTRATION

A. Methodology

To characterize the impact of the PRflow approach, we
use the Rosetta Benchmark suite [31] as a set of illustra-
tive designs. We map to the UltraScale+ Zynq XCZU9EG
FPGA (274,080 LUTs, 548,160 FFs, 912 36Kb BRAMs, quad
ARM Cortex-A53 processors), using Vivado, Vivado HLS,
and SDSoC 2018.2. We perform mappings on a cluster of 8
compute servers, each with two 2.7 GHz Intel E5-2680 CPUs
and 128 GB of RAM (total of 8× 2× 8=128 cores).

For comparison, we generate a number of baselines. We
include two monolithic compile cases: one that uses the same
decomposed blocks as the PRflow designs and includes all
the logic in the final PRflow mapped designs, including the
infrastructure BFT network and a second that directly connects

1We further reduce device load time by providing a binary alternative to
the default XML architecture description.

blocks and does not decompose the design. The version
with no BFT might represents a design without any of our
infrastructure overhead. The version with the BFT illustrates
the overhead it contributes. Since our compute model requires
some decomposition that is different from the original SDSoC-
targeted Rosetta Benchmark reference designs, we also include
an SDSoC mapping to the same part where we only tuned the
parameters to exploit our XCZU9EG target.

B. Design Point
For the XCZU9EG, we use a 32-leaf BFT with p=0.5 and a

datapath width of 48 to support 32b payloads. We split the BFT
into 5 p-blocks (one root and four 8-leaf subtrees). At this size,
the BFT costs 15,956 LUTs, or about 500 LUTs per endpoint.
The network runs at 300 MHz. With one physical input and
output from the network to a leaf, the peak leaf bandwidth
is 1.2 GB/s each direction. One of the leaves is connected to
an embedded ARM core for configuration. One is connected
to the DRAM controller for memory access, which we run at
250 MHz with a 32b interface for a peak DRAM bandwidth
of 1 GB/s. The leaf interface resource requirements scale with
input ports, I , and output ports, O:

Leaf Interface LUTs ≈ 206 + 66I + 227O (2)
Leaf Int. 36Kb BRAMs = 1 + 2I +O/2 (3)

We use a distribution of leaf p-block sizes (12×(5760
6-LUTs, 24 36Kb BRAMs, 48 DSPs), 4×(4800,12,72),
4×(4800,24,48), 2×(5760,12,72), 6×(6720,24,48),
1×(4320,12,48)), 1×(9120,36,48)). The total leaf-block
logic capacity is 63% of the FPGA logic capacity. Assuming
an average leaf I/O of 2 inputs and 2 output ports, this means
54% of the FPGA logic will be available for user operator
logic. The smallest leaf p-block is 1.6% of the FPGA logic
capacity, and the largest leaf p-block is 2.4%.

C. Application Refinement
We use the Rosetta Benchmark source from https://github.

com/cornell-zhang/rosetta, commit ID 6bc38c0.
a) 3D Rendering: The stages in the rendering pipeline

map directly to operators that can be placed in leaf blocks and
connected into a streaming pipeline. Given the capacity on the
ZU9EG, we build 2 parallel rendering pipelines and split the
image into 2 regions, that can run concurrently.

b) Digit Recognition: The basic operator is a hamming
distance calculator followed by a systolic sorter that keeps
the K-minimum matches computed locally by that operator.
Each operator gets 6 BRAMs to hold 512 training samples for
comparison. We place two such operators in each leaf block,
then use 18 parallel leaf blocks to perform the matching. A
final leaf block combines the 18×K minimum candidates from
the final K minimum values from each of the 18 hamming-sort
operators and performs voting.

c) SPAM Filtering: This basically performs a dot-product
against the identified features. Features weights are kept in
BRAMs in leaf pages and data for classification is streamed
from DRAM. We use 8 pages to perform dot products and a
total of 20 pages.

d) Optical Flow: The original optical flow Rosetta
Benchmark was already decomposed into nine operators that
fit into our streaming flow. The “Weight” and “Tensor” mod-
ules required more DSPs than available in any of our leaf pages
and the “Compute Flow” required more LUTs. Consequently,
we decomposed these further by splitting along independent
x, y, and z components. This gives us a design that fits on our
leaf p-blocks, but the input bandwidth needed by the “Outer
Product” exceeds the bandwidth provided by the single leaf
connection into the BFT. Consequently, we decompose the
“Outer Product” along with “Tensor” and “Compute Flow”
operators so we could utilize bandwidth from multiple leaves.
The resulting design uses 16 leaf blocks.

e) Binarized Neural Network (BNN): The original
Rosetta Benchmark implementation of the BNN kept network
weights in DRAM and read them into the FPGA one level at
a time, performing the levels in series. We store all network
weights in on-chip BRAM, but our preliminary version pro-
cesses BNN stages in series as well, achieving no net speedup.

f) Face Detection: Face Detection was the most chal-
lenging to decompose into small leaf blocks with limited input
and output bandwidth. It was important to keep the classifiers
local to the windows image (e.g. Integral Image) in the same
page. This required, splitting the windowed image in the Y-
dimension across five leaf blocks, splitting the classifiers along
with the windowed portions, and replicating the windowed
image for different classifiers. Our decomposed design must
serialize the communication of classifier partial sums between
leaf blocks, resulting in a large communication bottleneck
that does not exist in the monolithic design. More significant
reorganization will be needed to reduce these bottlenecks.

We validated the PRflow revised designs using the origi-
nal Rosetta Benchmark test suites. We mapped designs and
test them on the ZCU102 development board containing an
XCZCU9EG-ffvb1156-2-i.

D. Parallel Mapping Speed

Fig. 5 shows the mapping time for 3D Rendering for
the monolithically compiled design that matches our final
design and the PRflow leaf mappings. We set jobs to 32 for
the monolithic mappings to exploit the parallelism available
on the 16 core, 2 hyperthread machines. The PRflow case
exploits parallelism across multiple servers. We set each run
to use a single job per run. For the Vivado Quick option,
we use -directive Quick with place_design and
route_design. Reported time for each phase in Fig. 5 for
the PRflow is the maximum time of the parallel Vivado runs in
the respective phase. Tab. IV includes the compile time data
for all the benchmarks and includes mapping times for the
original Rosetta Benchmark SDSoC compiles.

From Fig. 5 and Tab. V, we can see the compile time
reduction and the major source of benefits. PRflow is able to
exploit some additional parallelism in HLS and logic synthesis
and significantly reduce optimization time. PRflow must spend
time reading a DCP checkpoint for the static region and a
netlist DCP for the synthesized leaf block, which adds about

https://github.com/cornell-zhang/rosetta
https://github.com/cornell-zhang/rosetta

TABLE V
ROSETTA BENCHMARK DETAIL COMPILATION TIME

Monolithic (undecomposed), 32 Proc. Vivado Quick PRflow Yosys+VPR PRflow
hls mkprj syn opt place route total hls syn rdchk opt place route total hls syn pack place route total

Digit Recognition 145 32 752 144 297 377 1747 64 132 132 10 181 99 603 64 46 44 26 184 337
SPAM Filtering 90 33 592 144 178 161 1198 65 128 135 11 178 98 612 65 33 37 29 140 295
3-D Rendering 119 30 582 123 171 124 1149 63 122 128 10 168 87 566 63 59 31 23 40 185
Optical Flow 179 52 1243 238 446 402 2560 126 176 132 15 201 131 724 126 39 71 36 115 311
Binarized NN 7487 33 1391 172 356 350 9789 199 336 142 12 205 112 1004 †70 †43 †41 †46 †118 †309
Face Detection 526 32 1061 172 319 365 2475 174 307 132 13 179 113 918 not map

Max component is computed per component, so max total shown is often lower than sum of component maximums. † omit bin conv leaf.

TABLE VI
AREA AND PERFORMANCE COMPARISON

SDSoC Monolithic Vivado PRflow
no BFT (undecomposed) with BFT leaf

par Area Fmax per input Area Fmax per input Area Fmax per input blocks Fmax per input
3D Rendering 2 8901,71,0 100MHz 6.17ms 11472,38,0 250MHz 2.42ms 43501,146,0 200MHz 1.18ms 12 250MHz 1.18ms

Digit Recognition 40 388685,306,1 100MHz 13.00ms 32563,177,0 215MHz 6.70ms 66636,318,0 250MHz 16.58ms 22 250MHz 16.58ms
SPAM Filtering 32 12754,73,224 100MHz 82.13ms 11827,37,224 250MHz 126.52ms 48904,216,256 250MHz 49.10ms 20 250MHz 48.90ms

Optical Flow 38802,93,124 100MHz 6.35ms 78381,81,252 250MHz 3.82ms 59789,161,282 167MHz 25.80ms 16 250MHz 25.80ms
Binarized NN 46165,599,3 100MHz 5.30ms 48753,591,3 150MHz 3.56ms 49985,582,6 250MHz 14.63ms 29 250MHz 17.42ms
Face Detection 67791,134,79 100MHz 28.19ms 52885,85,79 188MHz 17.16ms 96763,338,108 150MHz 351.93ms 20 150MHz 351.93ms

Area given as (LUTs, BRAMs, DSPs). par = PAR_FACTOR; parallelism parameter in Rosetta Benchmark Source (or inserted for 3D Rendering)
per input – run time required for each image frame or dataset to characterize throughput achieved

Mono. Vivado 1 Proc

Mono. Vivado 32 Proc

PRflow Vivado (default)

PRflow Vivado Quick

PRflow Yosys+VPR hls

mkprj

syn

rdchk

opt.pack

place

route

Mapping Time Breakdown

Time (s)

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

hls = Vivado HLS; mkprj = create Vivado project; syn = Vivado
Synthesis; rdchk = Read Checkpoint (DCP file); opt = logic

optimization (for Vivado); pack = block packing for VPR; place =
Placement; route = Routing

Fig. 5. Compilation Time Comparison for 3D Rendering

two minutes to the flow; this cost is offset by about 30 seconds
since we do not need to perform a mkproj. Physical opti-
mization, place, and route takes about 300 seconds as we saw
in Sec. IV; this is largely fixed time including device load and
time checking the static region; the result is that we do not get
a net speedup on physical mapping time on small designs like
3-D Rendering when using Vivado. Vivado Quick mapping
saves 20–70 seconds. This leaves PRflow leaf mapping time

TABLE IV
ROSETTA BENCHMARK COMPILATION TIME (SECONDS)

Design SD Monolithic PRflow
SoC (undecomposed) Vivado Yosys

1 proc. 32 proc. Quick +VPR
Digit Recognition 2472 3604 1747 638 603 337
SPAM Filtering 1770 2971 1198 658 612 295
3-D Rendering 1769 2931 1149 659 566 185
Optical Flow 2660 4082 2560 744 724 311
Binarized NN 10726 11669 9789 1000 1004 †309
Face Detection 4347 4352 2475 972 918 —

† omit bin conv leaf.

fairly fixed around 600–700 seconds across all benchmarks
(Tab. IV) except the largest leaf in BNN and face detect
which take significantly more time in HLS and synthesis.
Nonetheless, BNN and face detect see large parallelism gains
for separated HLS compilation and synthesis. The monolithic
mapping time increases for the larger benchmark, resulting in
a speedup for PRflow that increases with design size.

The Yosys+VPR path allows us to reduce the fixed over-
heads and further accelerate physical mapping. It avoids the
read checkpoint time and reduces device reading time. Once
tuned for fast mapping, VPR packing, placement, and routing
are typically 50–200 seconds, faster than the 300 seconds
taken by Vivado. Together, this suggests mapping times of
2–5 minutes are possible to achieve. Currently, Yosys+VPR
flow cannot map leaves with floating-point IP macros (two in
optical flow, one in face detection), cannot route the largest
leaf in BNN (bin conv) and face detect (strong classifier),
and routes many of the face detect pages slower than Vivado.

●●

● ●●

Rendering 3D

Digit Recognition

Spam Filter

Optical Flow

BNN (no bin_conv)

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Time (s)

Fig. 6. Distribution of Yosys+VPR PRflow Mapping Times for Leaf Pages
in Rosetta Benchmark Applications

This suggests these challenging leaf blocks should be further
decomposed for Symbiflow fast mapping.

Incremental Mapping: A common application develop-
ment strategy is to develop and test each operator one at a time,
incrementally adding functionality to the design. Similarly,
when debugging the complete design, a good strategy is to
make small changes to one or a few operators at a time.
Consequently, a common usage pattern is to change a single
leaf operator and recompile. The PRflow times in Tab. IV
report the worst-case time require to compile any of the leaves.
Fig. 6 plots the distribution of mapping times showing most
map faster than the worst case.

E. Application Performance

Tab. VI shows the total resources and performance for the
reference and Vivado PRflow cases. The PRflow case uses
more resources due to its infrastructure overhead. We report
the maximum clock frequency at which each design runs; for
the PRflow case, the network runs at 300 MHz (200 MHz for
face detect), and the table reports the leaf block frequency.

Our monolithic designs run at comparable or higher speeds
to the original SDSoC Rosetta benchmarks, showing that
our modifications remain competitive implemenations. The
SDSoC cases are often frequency (Fmax) limited by their data
mover interfaces. Half of our PRflow decomposed designs
(3D Rendering, Digit Recognition, SPAM filtering) achieve
the same performance as the monolithic versions. Optical
flow runs at one-sixth the speed of the monolithic case and
face detection one-twentieth due to the limited bandwidth
between leaves over the BFT. Overall, this shows that the
methodology supports high performance design even when
exploiting separate component compilation. There is a higher
premium for minimizing communication between components,
but communication minimization is generally a good optimiza-
tion target for all design mappings.

VIII. DISCUSSION AND FUTURE WORK

It is possible to compile all the versions (monolithic and
decomposed) from the original source. So, one view is that
you quickly compile with the Yosys/VPR versions like a -O1
compiler optimization in 2–5 minutes, use the Vivado option
as a -O2 option to get a result in 12 minutes, then use the

monolithic version like a -O3 option to get an integrated
design when you can afford the hour long mapping time.

The Yosys/VPR mapping shows that it is possible to craft
tools to accelerate physical mapping of reconfigurable p-
blocks, but conventional tools are not optimized to do so.
Hopefully, this work provides motivation for supporting such
optimizations. Future work includes actual bitstream genera-
tion on this path as Project X-Ray support matures.

Once we remove the time taken for the static region, this
decomposition solution is scalable. Leaving the size of the leaf
block fixed and scaling up the number of leaves, the per leaf
mapping time remains constant. We simply use more, parallel
cloud resources to compile the design in the same time.

Relying directly on the vendor tools, we have accepted
that each leaf p-block would be unique, both in size and in
resources borrowed by the static region. This means we must
compile each leaf block separately for each leaf p-block in
which it may be placed. Existing work shows how to identify
compatible regions for relocation [32] and how to keep static
resources out of leaf p-blocks [33], [34].

To better handle a diversity of user designs with a potential
variety of leaf block sizes, we expect it will be useful to
stock a set of pre-compiled overlay architecture templates
with different size trees and different size and distributions
of p-blocks. We have already found it useful to stock overlay
templates with larger pages to use during development before
tightening or partitioning leaf blocks.

IX. CONCLUSIONS

Hour-long compilation times make FPGA design untennable
for many potential users and limits the quality of designs
even experts can afford to develop. We show that FPGA
compilation does not need to take hours. We can divide the
FPGA compilation problem into independent pieces that can
be mapped separately. The solution requires: (1) decomposi-
tion of the design into separate modules, (2) decomposition
of the FPGA into separate physical regions, (3) adaptation
and optimization of the CAD tools to focus on a single
design component and physical region, and (4) provision of
support infrastructure to connect up the separate designs in
their separate regions. We provide these with (1) Dataflow-
streaming module discipline, (2) Partial Reconfiguration p-
blocks, (3) revised tool-chains that work only on the PR
regions, (4) a packet-switched overlay network. This allows
a form of separate module compilation and linkage that is
familar in the software world. We demonstrate the feasibility
of compile times in the 2–5 minute range, exploiting either
incremental compilation, where only a single module needs
to change, or parallel compilation where all modules compile
simultaneously on a cloud resources.

ACKNOWLEDGMENTS

This work is funded in part by the Office of Naval Research
under grant N000141512006. Any opinions, findings, conclu-
sions, or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the
Office of Naval Research.

REFERENCES

[1] D. Park, Y. Xiao, N. Magnezi, and A. DeHon, “Case for fast FPGA
compilation using partial reconfiguration,” FPL, 2018.

[2] UG946: Vivado Design Suite Tutorial: Hierarchical Design, Xilinx,
Inc., 2100 Logic Drive, San Jose, CA 95124, Aprial 2015. [Online].
Available: https://www.xilinx.com/support/documentation/sw manuals/
xilinx2015 1/ug946-vivado-hierarchical-design-tutorial.pdf

[3] J. D. Hadley and B. Hutchings, “Design methodologies for partially
reconfigured systems,” in FCCM, April 1995, pp. 78–84.

[4] Virtex Series Configuration Architecture User Guide, Xilinx, Inc., 2100
Logic Drive, San Jose, CA 95124, October 2004, XAPP 151. [Online].
Available: https://www.xilinx.com/support/documentation/application
notes/xapp151.pdf

[5] D. Lim and M. Peattie, Two Flows for Partial Reconfiguration: Module
Based or Small Bit Manipulations, Xilinx, Inc., 2100 Logic Drive, San
Jose, CA 95124, May 2002, xAPP 290 <http://www.xilinx.com/bvdocs/
appnotes/xapp290.pdf>.

[6] UG909: Vivado Design Suite User Guide: Partial Reconfiguration,
Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124, December 2017.
[Online]. Available: https://www.xilinx.com/support/documentation/sw
manuals/xilinx2017 4/ug909-vivado-partial-reconfiguration.pdf

[7] M. J. Wirthlin and B. L. Hutchings, “Sequencing run-time reconfigured
hardware with software,” in Proceedings of the International Symposium
on Field Programmable Gate Arrays, February 1996, pp. 122–128.

[8] T. Marescaux, V. Nollet, J.-Y. Mignolet, A. B. W. Moffat, P. Avasare,
P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins, “Run-time support
for heterogeneous multitasking on reconfigurable SoCs,” INTEGRA-
TION, The VLSI Journal, vol. 38, no. 1, pp. 107–130, 2004.

[9] M. Majer, J. Teich, A. Ahmadinia, and C. Bobda, “The Erlangen
slot machine: A dynamically reconfigurable FPGA-based computer,”
Journal of VLSI Signal Processing Systems for Signal, Image, and Video
Technology, vol. 47, no. 1, pp. 15–31, 2007.

[10] S. A. Fahmy, J. Lotze, J. Noguera, L. Doyle, and R. Esser, “Generic
software framework for adaptive applications on FPGAs,” in FCCM,
2009, pp. 55–62.

[11] K. Vipin and S. A. Fahmy, “Automated partial reconfiguration design
for adaptive systems with CoPR for Zynq,” in FCCM, May 2014.

[12] C. Lavin, M. Padilla, S. Ghosh, B. Nelson, B. Hutchings, and M. Wirth-
lin, “Using hard macros to reduce FPGA compilation time,” in FPL, Aug
2010, pp. 438–441.

[13] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and
B. Hutchings, “HMFlow: Accelerating FPGA compilation with hard
macros for rapid prototyping,” in FCCM, 2011, pp. 117–124.

[14] S. Ma, Z. Aklah, and D. Andrews, “Just in time assembly of
accelerators,” in FPGA, 2016, pp. 173–178. [Online]. Available:
http://doi.acm.org/10.1145/2847263.2847341

[15] G. Brebner, “The swappable logic unit: A paradigm for virtual hard-
ware,” in FCCM, 1997, pp. 77–86.

[16] A. DeHon, Y. Markovsky, E. Caspi, M. Chu, R. Huang, S. Perissakis,
L. Pozzi, J. Yeh, and J. Wawrzynek, “Stream Computations Organized
for Reconfigurable Execution,” J. Microproc. and Microsys., vol. 30,
no. 6, pp. 334–354, September 2006.

[17] D. L. How and S. Atsatt, “Sectors: Divide conquer and softwarization
in the design and validation of the Stratix 10 FPGA,” in FCCM, May
2016, pp. 119–126.

[18] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Proceedings of the IFIP CONGRESS 74. North-Holland
Publishing Company, 1974, pp. 471–475.

[19] M. Butts, A. M. Jones, and P. Wasson, “A structural object programming
model, architecture, chip and tools for reconfigurable computing,” in
FCCM, April 2007, pp. 55–64.

[20] N. Kapre and J. Gray, “Hoplite: A deflection-routed directional
torus NoC for FPGAs,” ACM Tr. Reconfig. Tech. and Sys.,
vol. 10, no. 2, pp. 14:1–14:24, Mar. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3027486

[21] C. E. Leiserson, “VLSI theory and parallel supercomputing,”
MIT, 545 Technology Sq., Cambridge, MA 02139, MIT/LCS/TM
402, May 1989, also appears as an invited presentation at the
1989 Caltech Decennial VLSI Conference. [Online]. Available:
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA214035

[22] N. Kapre, “Deflection-routed butterfly fat trees on FPGAs,” in FPL, Sept
2017, pp. 1–8.

[23] B. S. Landman and R. L. Russo, “On pin versus block relationship for
partitions of logic circuits,” IEEE Trans. Comput., vol. 20, pp. 1469–
1479, 1971.

[24] D. Clark, “Window and Acknowledgement Strategy in TCP,” USC/ISI,
Information Sciences Institute, University of Southern California, 4676
Admiralty Way, Marina del Rey, California, 90291, RFC 813, July 1982.

[25] UG984: MicroBlaze Processor Reference Guide, Xilinx, Inc., 2100
Logic Drive, San Jose, CA 95124, November 2016. [Online].
Available: https://www.xilinx.com/support/documentation/sw manuals/
xilinx2016 4/ug984-vivado-microblaze-ref.pdf

[26] “Yosys Open SYnthesis Suite,” https://github.com/YosysHQ/yosys,
2019.

[27] D. Shah, E. Hung, C. Wolf, S. Bazanski, and M. M. Dan Gisselquist,
“Yosys+nextpnr: an open source framework from verilog to bitstream
for commercial FPGAs,” in FCCM, 2019.

[28] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,
M. Nasr, S. Wang, T. Liu, N. Ahmed, K. B. Kent, J. Anderson,
J. Rose, and V. Betz, “VTR 7.0: Next generation architecture
and CAD system for FPGAs,” ACM Tr. Reconfig. Tech. and
Sys., vol. 7, no. 2, pp. 6:1–6:30, Jul. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2617593

[29] “Symbiflow architecture definitions,” https://github.com/SymbiFlow/
symbiflow-arch-defs, 2019.

[30] D. Glick, J. Grigg, B. Nelson, and M. Wirthlin, “Maverick: A stand-
alone cad flow for partially reconfigurable fpga modules,” in FCCM,
2019.

[31] Y. Zhou, U. Gupta, S. Dai, R. Zhao, N. Srivastava, H. Jin, J. Feath-
erston, Y.-H. Lai, G. Liu, G. A. Velasquez, W. Wang, and Z. Zhang,
“Rosetta: A realistic high-level synthesis benchmark suite for software
programmable FPGAs,” in FPGA, 2018, pp. 269–278.

[32] A. Lalevée, P. H. Horrein, M. Arzel, M. Hübner, and S. Vaton, “Autore-
loc: Automated design flow for bitstream relocation on xilinx FPGAs,”
in 2016 Euromicro Conference on Digital System Design (DSD), Aug
2016, pp. 14–21.

[33] A. A. Sohanghpurwala, P. Athanas, T. Frangieh, and A. Wood, “OpenPR:
An open-source partial-reconfiguration toolkit for xilinx FPGAs,” in
IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum, May 2011, pp. 228–235.

[34] C. Beckhoff, D. Koch, and J. Torresen, “Go Ahead: A partial reconfig-
uration framework,” in FCCM, April 2012, pp. 37–44.

Web link for this document: <http://ic.ese.upenn.edu/abstracts/prflow fpt2019.html>

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug946-vivado-hierarchical-design-tutorial.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug946-vivado-hierarchical-design-tutorial.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp151.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp151.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp290.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp290.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp290.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp290.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug909-vivado-partial-reconfiguration.pdf
http://doi.acm.org/10.1145/2847263.2847341
http://ic.ese.upenn.edu/abstracts/score_jmm2006.html
http://ic.ese.upenn.edu/abstracts/score_jmm2006.html
http://doi.acm.org/10.1145/3027486
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA214035
http://www.faqs.org/rfcs/rfc813.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_4/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_4/ug984-vivado-microblaze-ref.pdf
https://github.com/YosysHQ/yosys
http://doi.acm.org/10.1145/2617593
https://github.com/SymbiFlow/symbiflow-arch-defs
https://github.com/SymbiFlow/symbiflow-arch-defs
http://ic.ese.upenn.edu/abstracts/prflow_fpt2019.html

