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ABSTRACT 
We propose a methodology for optimal k-way partitioning with 
replication of directed hypergraphs via Boolean satisfiability. We 
begin by leveraging the power of existing and emerging SAT solvers 
to attack traditional logic bipartitioning and show good scaling 
behavior. We continue to present the first optimal partitioning results 
that admit generation and assignment of replicated nodes concurrently. 
Our framework is general enough that we also give the first published 
optimal results for partitioning with respect to the maximum 
subdomain degree metric and the sum of external degrees metric. 
We show that for the bipartitioning case we can feasibly solve 
problems of up to 150 nodes with simultaneous replication in hundreds 
of seconds. For other partitioning metrics, we are able to solve 
problems up to 40 nodes in hundreds of seconds. 

1 INTRODUCTION 
Balanced, k-way hypergraph partitioning is a fundamental problem in 
the design of integrated circuits. The precise details of the partitioning 
problems vary by application [1], but all known useful formulations of 
balanced partitioning result in NP-hard optimization problems. 
Although effective heuristics exist to solve many partitioning 
problems, few provably optimal solution techniques have been 
explored. Where optimal techniques have been applied, significant 
quality per given runtime improvements have been observed over 
heuristics for small problem sizes [2]. Rather than focus on time-
quality tradeoffs, we decided to explore the limits of solving 
partitioning optimally. 
A key definition in computer science is that any NP-complete problem 
can be transformed into any other NP-complete problem given only a 
polynomial amount of time and space [3]. Seminal work nearly two 
decades ago [4] suggested that partitioning can be efficiently 
remapped to Boolean satisfiability. Recent advances in SAT solvers 
allow enormous SAT instance to be solved (or proven UNSAT) within 
seconds [5]. These results have been obtained across a range of 
benchmarks represented in a canonical “conjunctive normal form” 
(CNF). Annual competitions have yielded rapid SAT solver progress 
in recent years. 
A key limitation of the early SAT-mapped partitioning work is that the 
published results handled a very traditional and specific partitioning 
formulation. “Real-world” partitioning problems may have complex 
formulations [6]. The author of the early work, however, recognized a 
broader potential of the SAT-mapped approach [4]: 
“An attractive feature of this approach is that the entire space of 
feasible solutions can be represented in a compact way, facilitating the 
search for optimal solutions under complex cost functions and 
associated constraints.” 
We developed and benchmarked a framework for SAT-mapping more 
complex cost functions and constraints than considered in prior work 
on optimal partitioning. This framework allows us to construct optimal 
k-way partitions. Further, we consider partitioning balance constraints 
that allow nodes to appear in multiple partitions (i.e. replication). To 
illustrate cost function flexibility, this work considers three well-
established metrics for partitioning quality: The traditional total cut 

hyperedges metric penalizes every edge that is not fully contained 
within a single partition. The sum of external degrees function 
penalizes every entry or exit of a wire from a partition. In multi-way 
partitioning problems, this may be appropriate as solvers targeting this 
cost function prefer solutions where edges interact with small numbers 
of partitions over solutions where the same number of edges are split 
over all of the partitions. Finally, the maximum subdomain degree 
metric limits the maximum IO into any given partition as opposed to 
the average IO over all of the partitions. Though runtime remains an 
issue for the more sophisticated metrics, we show techniques that are 
sufficiently general to consider cost functions that are tightly defined 
by their application domain. 
With this work, we expand the literature on optimal partitioning with 
the following innovations: 
• SAT formulations for three distinct partitioning metrics 

• An enhancement for optimal k-way partitioning (as opposed to 
simple bipartitioning)  

• Concurrent replication and partitioning of nodes as a natural part 
of problem formulation 

We show that when considering the traditional bipartitioning problem, 
our technique scales to more difficult problems than a branch-and-
bound implementation. Within that formulation, we can consider 
integrated replication set generation for not more than an order of 
magnitude runtime penalty. Finally, for some small netlists, we show 
the first published optimal results for two sophisticated cost metrics, 
with and without replicated nodes. 
2 PRIOR WORK 
We are aware of a single published work on hypergraph partitioning 
via Boolean SAT [4]. Devadas considers the traditional formulation of 
hypergraph bipartitioning. He shows that within a reasonable amount 
of time (14 minutes in the longest case), the hardware and SAT solvers 
of 1989 could optimally bipartition a benchmark netlist of 32 nodes 
under the total cut hyperedges metric. 
Instead of SAT, the recent work to date on optimal netlist partitioning 
has focused on branch-and-bound techniques — an approach to which 
the cut hyperedges metric avails itself due to several clever techniques 
available in that formulation [2]. These optimizations, by their nature, 
are limited to the traditional bipartitioning formulation. 
Previous implementations of k-way and broader cost metric 
partitioning have been limited to heuristic techniques. For example, 
Karypsis’s group at the University of Minnesota has developed 
partitioners that generate k-way partitionings to minimize the sum of 
external degrees, total cut hyperedges, and maximum subdomain 
degree metrics [7, 8]. 
The best-known techniques for allowing replication in order to 
improve partitioning quality are based on network flows [9, 10]. These 
techniques offer exact solutions to several unbalanced formulations of 
the bipartitioning problem. At the cost of optimality, they may be used 
as kernels in heuristics for k-way, balanced hypergraph partitioning 
and replication.  



The partitioning problem is fundamentally no different from any other 
finite-domain constraint satisfaction problem. This fact led us to apply 
unsuccessfully a Prolog-based constraint solver [11] to the task. We 
are not the first to note that constraint solvers which remap their 
problems to CNF can be significantly faster  than solvers that operate 
on a more direct problem formulation [12]. 
There are numerous solvers available for SAT instances, a complete 
exploration of which is beyond the scope of this paper. Readers may 
refer to annual SAT Solver Competitions at ICSAT for the current 
state-of-the-art in solvers. We found that siege_v4 [13] (which does 
not participate in the competition due to a ‘black-box’ restriction) 
generally provided the best performance for our SAT instances. 

3 SOLUTION OUTLINE 
A well-known technique for solving an NP-hard optimization problem 
is to transform it into a series of NP-complete decision problems. 
Generically, we represent this as: 

while (upperBound != lowerBound) { 
 thisTry = (upperBound + lowerBound) / 2; 
 if (existsSolutionLessThan(thisTry)) { 
   upperBound = thisTry; 
 } 
 else 
   lowerBound = thisTry; 
} 

 
The kernel of our approach is that we build a SAT problem instance 
which is satisfiable if, and only if, the circuit netlist can be partitioned 
with a goodness metric less than or equal to some target (an NP-
complete decision problem). In order to be a valid solution which 
meets a particular cost metric we will assert that: 
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Then after obtaining a SAT/UNSAT result, we have a new upper or 
lower bound on the optimal solution to use in a binary search for the 
minimum cost partitioning. Once the bounds are tight, the satisfying 
assignment to the SAT instance associated with the best goodness 
metric implies a solution to the NP-hard optimization problem. If we 
wish to relax the optimality constraint, we can treat problem instances 
where the solver times out as UNSAT. Otherwise, we must report the 
optimization problem as unsolved. Our experience has shown that 
SAT instances asserting a cost metric some distance from the 
minimum can be solved or proven UNSAT much more quickly than 
those very near the minimum. We found that this effect was more 
significant than the count of CNF clauses and variables. 
The SAT instances we generate have kN binary inputs, representing 
which nodes appear in each of the partitions. For 3-way partitioning, 
the graph in Figure 1 implies these inputs to a satisfiability instance: 

A0, A1, A2, B0, B1, B2, C0, C1, C2, D0, D1, D2, E0, E1, E2 
A ‘1’ in the satisfying input assignment indicates that a node appears 
in a particular partition. This contrasts with Devadas’ approach [4], 
which encodes the partition assignment with a single bit per node. 
Having outlined the approach, we have several natural questions. 

• How do we assert a valid partitioning? 
• How are the various metrics specified in the SAT instance? 
• How does the SAT approach scale against other solutions? 
• What size problems are feasible to solve for the various cost 

metrics? 
The following sections answer these questions. 
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Figure 1. An Example Hypergraph 

4 THE DETAILS 
As stated in the previous section, we construct a SAT instance (in the 
form of a Boolean logic circuit). We show how each higher-level 
asserted variable in our circuit is constructed. 
4.1 Cardinality Constraints 
At several points, we will need to make an assertion about the number 
of ‘1’s set over some number of variables. Our notation in this work 
represents ‘1’s counters with the Σ symbol, both in equations and 
diagrams. In text, we refer to the ‘1’s counter as a totalizer. We expand 
on our technique for asserting cardinality constraints in Section 5.1. 
4.2 All Nodes Represented 
In order to be a valid solution we assert that each node appears in at 
least one partition. Continuing with the example of a three-way 
partitioning of the netlist from Figure 1: 
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Or more generally, for a k-way partitioning: 
( )( )ikiNodesA
ApresentedAllNodesRe

<≤∈
∨∧=

0
 

If the problem formulation we are considering does not admit 
replication, then we can assert that no node appears in two (or more) 
partitions: 
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4.3 Partitions Balanced 
We make an assertion on the cardinality of each of the partitions by 
means of the totalizer described above. If the partitions are balanced 
then no partition has more than some fraction of the total nodes in the 
graph. 
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If replicated nodes are allowed, we may also construct a totalizer for 
the ‘excess’ nodes in the design and limit them as desired. 
4.4 Metric Met 
The subtleties of SAT-mapped partitioning occur when we assert that 
a metric is less than or equal to some given value. We begin this work 
by examining a single cost metric. We discuss additional metrics in 
Section 7. 
4.4.1 Total Cut Hyperedges 
The total cut hyperedges metric is the easiest to describe. We define an 
edge (e) as a source (e.Source) with a set of sinks (e.Sinks) and assert 
that it is cut if any of its sink nodes appear in a partition without the 
source node. 
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We employ a totalizer to sum over all the potentially cut edges, and 
assert that their cardinality is less than our current target. 

MaxMetriceCutMetricMet
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≤= ∑
∈

)(  

Figure 2 shows how we would build the MetricMet function using the 
total cut hyperedges metric for a three-way partitioning of the sample 
hypergraph shown in Figure 1. 
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Figure 2. Cut Hyperedges Metric 

5 OPTIMIZING IMPLEMENTATION 
Having identified problem formulations that guarantee optimal results 
given unlimited SAT runtime, we move on to consider a few 
techniques that offer the potential of reducing the total amount of time 
that the SAT solver will require to solve the generated instances. 
Intuitively, the key to these techniques is the notion that we can 
improve the tractability of SAT by assuring that partial assignments of 
variables allow maximum implications to assign other variables in the 
instance. We show, on a few sample netlists, how two techniques 
improve our runtimes.  
5.1 Cardinality Constraints 
One way to assert cardinality constraints in our SAT instances is via a 
tree of adders. This is the technique employed by Devadas [4]. A 
desirable property of this approach is that it requires few clauses or 
variables in the generated SAT instance. However, SAT solvers 
operate on a partial assignment of variables. Figure 3 shows that if we 
limit the ‘1’s cardinality over a set of four variables to one, even after 
three of the input variables are set to ‘1’, the solver will not be able to 
prune the search space. 
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Figure 3. Cardinality constraint expressed in binary arithmetic 

We improve on Devadas’ cardinality constraints by sacrificing the 
brevity of the binary approach for the strategy of Bailleux and 
Boufkhad [12, 14]. They construct binary trees of totalizers, each 

operating on pre-unate2 input. The pre-unate representation allows the 
solver to more quickly discover conflicts and prune the search space 
with fewer input variables assigned.3 We then assert SAT on the 
appropriate inverted output from the top-level totalizer. Figure 4 
shows how a SAT solver would interpret the cardinality constraint 
from before with the same partial assignment of inputs. In fact, as soon 
as any two input pins are assigned ‘1’, the totalizer tree will produce a 
contradiction. The complexity of the CNF encoding is O(N2) clauses 
and O(N log (N)) variables if we are constraining N variables to a sum 
of N-1 (the most pathological case). 
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Figure 4. Cardinality constraint expressed with pre-unate totalizers 

5.2 Symmetry Breaking 
In a k-way partitioning, we have k! potential orderings (i.e. 
symmetries) of the partition sets. When we generate the satisfiability 
instance, we can break one degree of symmetry by preassigning a 
single node to an arbitrary partition. We considered several potential 
heuristics to select the breaking node: The node connected to the most 
other nodes; the node connected to the least other nodes; and a random 
node. Table 2 shows that not breaking the symmetry reliably causes 
the longest runtimes over our selected netlists. When we do break the 
symmetry, choosing a random node seems to provide as good a result 
as any of the more crafted selection heuristics. 
For k > 2 partitioning, preassigning a single node for symmetry 
breaking leaves obvious symmetries unaddressed. Adding another 
hard symmetry breaking preassignment (assigning another node to 
another arbitrary partition) would destroy our optimality guarantee. 
However, we can safely preassign a second node to either the same 
partition as the first or another arbitrary partition. We generalize the 
technique by inserting a “weak backbone” as a symmetry constraint. 
We construct a weak backbone for the netlist as follows: 

weakBackbone(k, netlist) { 
P = heuristicPartition(k, netlist) 
for i ← 0 to k – 1  
do 
  Node = randomSelection(P[i]) 
  assertInOneOf(Node, 0..i) 
} 

The power of this approach is that it allows us to imply an ordering of 
the partitions, but without removing the optimality guarantee from the 
result. Table 2 shows that the weak-backbone approach provides better 
scalability than simply constraining a single node as the number of 
partitions generated increases. 

                                                                 
2 “Pre-unate” represents k in N bits by setting the first k bits to ‘1’ and 

the trailing N - k bits to ‘0’. For example, if N = 5, three is expressed 
as ‘00111’. 

3 More formally, unit propagation on any subset of assigned variables 
restores generalized arc-consistency. 



Table 1. Effect of Cardinality Constraints 

SAT Runtime (ms)  
Netlist Size k Binary Bailleux & 

Boufkhad Speedup 

2 16360 2762 5.9 
3 20130 4168 4.8 
4 42877 10960 3.9 
5 93999 15332 6.1 

ex4 55 

6 174480 22921 7.6 
2 16098 1246 12.9 
3 59514 14344 4.1 
4 105858 14678 7.2 
5 160268 16358 9.8 

misex2 97 

6 524047 62035 8.4 
2 73936 8631 8.6 
3 207867 40410 5.1 
4 716010 102163 7.0 
5 Timeout 243489 - 

5xp1 100 

6  Timeout 652259 - 
2 7416 2010.25 3.7 
3 25970 3049 8.5 
4 27988 2694 10.4 
5 135951 9881 13.8 

f51m 114 

6 533034 34044 15.7 
2 400696 22714 17.6 
3 742069 75493 9.8 
4 1442291 160343 9.0 
5 Timeout Timeout - 

kirkman 
  
  

151 

6 Timeout Timeout - 
 

6 BENCHMARKING RESULTS 
In order to show the potential for practical usefulness of our technique, 
we quantify the performance of our SAT mappings. In this section, we 
examine our benchmark results for traditional bipartitioning with cut 
hyperedges as the metric – we perform a side-by-side comparison 
against an optimized and widely-used branch-and-bound partitioner. 
We continue to show that adding replication to this formulation does 
not cause runtime to increase too much. 
6.1 Methodology 
Our implementation of the approach generates ISCAS89 format files, 
which represent the satisfiability instances. We convert these to CNF 
via a Perl script [15]. As benchmark hypergraphs, we employed 
4-LUT FPGA mappings (generated via Flowmap [16]) of the small 
IWLS93 benchmark circuits.  These netlists are appropriate to explore 
this methodology as they consist of nodes of equal size – standard-cell 
mapped circuits would complicate our construction of balance 
constraints. We ran our flow on dual-processor 2.8 GHz Intel Pentium 
4 machines with 512 KB L2 cache and 4 gigabytes of RAM. 
Whenever we report a CPU time, it is the total time spent in the SAT 
solver. 
6.2 SAT Solver Choice 
The experience of the SAT community is that it is unusual for a given 
solver to be ideal across a range of problem types. Therefore, we 
conducted an evaluation of several SAT solvers [13, 17, 18]. We 
determined that a solver would receive a ‘pass’ for a partitioning-
derived satisfiability instance if it could solve (SAT/UNSAT) the 
problem within a reasonably long amount of time (which we 
arbitrarily set at two hours of CPU time).  At this stage, we deemed the 
higher priority to find a solver that would solve many problems than to 
reduce the average runtime of solved instances. Over many SAT 
instances, we found that siege_v4 consistently solved more instances 
than the other solvers. 
If a solver superior to siege_v4 appears, it is a simple matter to 
adjust our flow to leverage the new tool because the SAT community 

has widely standardized upon the CNF representation of problem 
instances. 

Table 2. Effect of various symmetry-breaking choices. 

SAT Runtime (ms) 
Netlist Size k None Least 

Conn. 
Most 
Conn. 

Rand. Weak 
Back. 

2 2782 1448 1202 1622 1678
3 4226 2687 2238 3311 1851
4 11480 7361 3440 7226 3079
5 15652 9491 6238 11006 6422

ex4 55 

6 23563 15420 9169 16311 8840
2 1237 1343 998 928 1092
3 15082 9293 4291 5481 4443
4 14740 10695 7269 7095 4814
5 16671 14101 9831 8530 5463

misex2 97 

6 64989 56707 45003 38717 23974
2 8692 8477 5663 5347 7317
3 42566 40228 22779 18809 27546
4 103773 91713 70658 72145 41012
5 248916 240253 172330 192982 113177

5xp1 100 

6 665235 846848 651781 441434 490670
2 2022 1729 1021 2540 1503
3 3091 2358 1939 2259 2060
4 2713 2941 2623 2004 2059
5 10000 13515 12639 12848 10118

f51m 114 

6 34828 32823 31933 25315 21705
2 23141 18457 18788 16561 17206
3 77397 66562 71601 52921 47441
4 164108 136261 172171 97556 60365
5 Timeout 574638 687024 876982 501577

kirkman 151 

6 Timeout Timeout Timeout Timeout Timeout
 

6.3 Scalability Against Branch and Bound 
We used our approach and the branch-and-bound solver from Capo [2] 
to optimally bipartition our benchmark circuits (which have from 10 to 
255 nodes). We allowed up to a 10% unbalanced partitioning. We 
validated that the partitioning metrics generated between the two 
solvers were identical. Figure 5  shows that while the branch-and-
bound approach is superior for many netlists, as the complexity 
increases, our approach dominates. We present plots sorted by both 
SAT runtime and branch-and-bound runtime because merely 
considering node count is not a strong enough predictor of problem 
complexity to give a clear visualization. 
We observe that as branch-and-bound’s runtime increases, our SAT-
mapped formulation offers much better scaling properties. Branch-and 
bound times out on many of the benchmarks that SAT completes (even 
though we allowed the branch-and-bound implementation 10x longer 
runtime). There are no examples in the benchmark set however where 
SAT times out and branch-and-bound does not.  
6.4 Bipartitioning with Integrated Replication 
Typically, adding replication to the logic bipartitioning SAT 
formulation does not increase the runtime by more than an order of 
magnitude. We considered the case of allowing two partitions, each 
60% of the total size of the netlist. Table 3 shows that, for large 
benchmarks of fewer than 152 nodes (the largest netlists we could 
reliably partition without timing out), we can obtain improvements in 
cutsize with a modest overhead in compute time over the non-
replicated case. In many cases, the freedom to replicate nodes allows 
us to find an optimal solution even more quickly.  
 



 
Figure 5. SAT vs. Branch-and-Bound Scaling 

7 BEYOND CUT HYPEREDGES 
In principle, a key feature of the SAT formulation is that we need not 
be limited to simple formulations of the partitioning problem. It is not 
difficult to construct satisfiability instances that represent more 
sophisticated cost metrics than total cut hyperedges. We conducted 
experiments on two such metrics (which are formally described in the 
appendix) and show results for three benchmarks of forty nodes. We 
report the first results from an optimal algorithm to solve partitioning 
for these metrics (and allow replicated nodes in the formulation) – 
unfortunately, our results to date indicate that the SAT formulation 
appears to be a very slow method of attacking these problems. Our 
results consider dividing the nodes into partitions of maximum size = 
(1.2 / k × total node area). In the replicated case we allow nodes to 
appear in multiple partitions while keeping the maximum size fixed. 
We report a timeout when the SAT solver times out at 1200 s. 

Table 3. Optimal Bipartitioning with Simultaneous Replication 

Netlist Size No Replication Replication 
  Cut ms Cut ms Slowdown% Cutsize 

Impr. 
c8 131 8 1413 8 2228  1.58 0 

sao2 133 15 188887 10 7401  0.04 33 
s641 135 13 55061 10 16559  0.30 23 
s713 137 13 56494 10 12840  0.23 23 

mm9b 141 17 344367 15 3348853  9.72 12 
C1355 147 16 32097 16 117767  3.67 0 
C499 147 16 28155 16 292111  10.38 0 
cse 148 18 1522416 11 221276  0.15 39 
cht 151 5 170 5 145  0.85 0 

kirkman 151 12 11317 9 15006  1.33 25 
Avg.      2.82 15.5 

 

7.1 Sum of External Degrees 
When we consider the sum of external degrees cost (“SOED”) 
function, we must consider every hyperedge as a potential external 
degree of one or more partitions. If a net is cut, it will appear as an 
output degree on exactly one partition and an input degree on at least 
one partition. A totalizer tree sums over all the potential partition pins 
(all the hyperedges in the hypergraph for every partition for inputs, 
and all the hyperedges again for outputs).  
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Table 4 shows that our SAT formulation is not yet efficient enough to 
reliably optimize this cost function, even for small, forty node netlists. 
We present the results to show our current progress on optimizing this 
metric. 
Figure 6 shows how we assert the sum of external degrees function for 
a three-way partitioning of the example circuit in Figure 1. 

Table 4.  Sum of External Degrees Optimization 

Netlist k No Replication Replication 
  SOED ms SOED ms 

2 25 195 21 79
3 33 6538 27 1434
4 35 5824 34 220448
5 42 895024 Timeout

misex1 

6  Timeout Timeout
2 22 428 18 423
3 31 45958 28 640239
4 38 2515958 Timeout
5  Timeout Timeout

bbara 

6  Timeout Timeout
2 22 897 18 1647
3 32 119169 Timeout
4 Timeout Timeout
5 Timeout Timeout

ex7 

6 Timeout Timeout
 

7.2 Maximum Subdomain Degree 
Minimizing the maximum subdomain degree (“MSD”) requires the 
most intricate SAT formulation. At first, it appears sufficient to 
modify slightly the SOED formulation. However, the replicated nodes 
create an additional complexity. We must only charge one partition for 
the output from a replicated node. 
We employ totalizers at several points in the assertion of the MSD 
value. First, we employ totalizers for each partition to sum the number 
of input pins into each partition – this is similar to the SOED metric. 
Then we totalize the outputs. 
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Figure 6. Sum of External Degrees Metric 

We assert that if an edge is cut, its output node must count as an output 
in exactly one of the partitions where it appears. We employ separate 
totalizer trees to sum the inputs and outputs over each of the partitions 
(subdomains). We assert that for every partition, SumMaxMetric+1 is false. 
If we wish, this technique is easily extended to to solve the FPGA 
clustering problem (where each cluster would typically have a 
particular number fixed inputs and fixed outputs as opposed to general 
IO pins [6]). Figure 7 shows the satisfiability instance we construct for 
this metric on the example hypergraph in Figure 1.  
 

1

10

100

1000

10000

100000

1000000

10000000

100000000

Netlist (Sort by SAT Time)

Ti
m

e 
(m

s) SAT
BB
BB Timeout

1

10

100

1000

10000

100000

1000000

10000000

100000000

Netlist (Sort by BB Time)

Ti
m

e 
(m

s) SAT
BB
BB Timeout



Σ

Out(e1)0

A0

Out(e1)1

A1

Out(e1)2

A2

Σ Sum 1 = Cut(e1)

Sum 2 = 0

Out(e2)0
C0

Out(e2)1
C1

Out(e2)2

C2

Σ Sum1 = Cut(e2)

Sum2 = 0

Out(e3)0
D0

Out(e3)1
D1

Out(e3)2
D2

Σ Sum 1 = Cut(e3)

Sum 2 = 0

Σ
Σ

Σ
Σ
Σ

MaxMetric + 1

MetricMet

Cut(e1)

Cut(e2)

Cut(e3)

C0

B0

E0

D0

E0
Σ

Cut(e1)

Cut(e2)

Cut(e3)

C1

B1

E1

D1

E1
Σ

Cut(e1)

Cut(e2)

Cut(e3)

C2

B2

E2

D2

E2
Σ

In
pu

t D
eg

re
es

Output Degrees

External 
Degrees

 
Figure 7. Maximum Subdomain Degree Metric 

Table 5 shows that our formulation of the MSD problem scales better 
than the SOED formulation. Further, we see at least anecdotally, that 
allowing replication improves results for this metric. 
8 FUTURE DIRECTIONS 
We believe that the flexibility introduced by representing partitioning 
as a SAT problem creates new opportunities for optimal solutions with 
diverse notions of partitioning quality. Future work will broadly 
consider how we can improve the scaling properties.  
8.1 Higher K Partitioning 
So far, we have found that as K is increased, the time to compute an 
optimal partition set goes up quickly. We believe that this could be 
somewhat alleviated if more of symmetries in partition ordering could 
be broken. If we were to optimize a partitioning metric where the 
partitions naturally form a spatial order, we could break this 
symmetry.  
8.2 Hybrid Cost Functions 
We have seen that two cost functions other than cut-hyperedges are 
very difficult to solve optimally with SAT. The cut-hyperedges 
solutions may be very helpful in identifying the gross locality in the 
hypergraphs. We believe that by creating a hybrid cost function, we 
can significantly speedup the search for solutions to more complex 
partitioning problems. For example, at the cost of our optimality 
guarantee, we might seed an MSD or SOED problem instance with 
some hard preassignments from a cut hyperedges solution. 

9 CONCLUSION 
We have shown several new problem formulations and speedup 
techniques for optimally solving hypergraph partitioning by remapping 
the problem to Boolean satisfiability. Combining these techniques with 
a leading edge SAT solver allows us to perform optimal multiway 
partitioning with integrated optimal replication for small benchmark 
netlists. For the traditional logic bipartitioning cost function, our 
method scales better than the optimal branch-and-bound algorithm in 
an academic placer. Under this model, we can add integrated 
generation of replicated nodes to the problem formulation for 
relatively small additional runtime. 
We further show how our framework allows us to produce the first 
published optimal results of k-way logic partitioning under two more 
sophisticated cost metrics. We generate these with and without 
replicated nodes. Our runtime results to date in this effort suggest that 
Devadas’ claim of SAT’s applicability to broader cost functions may 
have been premature. Future work will consider how we can improve 
the scaling properties of SAT-based solutions to these problems. 

Appendix 
In this work, we consider several well-known partitioning cost metrics. 
For the reader’s convenience, we formalize our definitions in this 
appendix. We adapt the descriptions given in [8] to describe our 

hypergraph model and partitioning metrics along with their evaluation. 
We make appropriate modifications to expand the model to include a 
notion of node replication appropriate for VLSI layout applications.  

Table 5. Maximum Subdomain Degree Optimization 

Netlist k No Replication Replication 
  MSD ms MSD ms 

2 14 470 11 120
3 12 1490 10 2667
4 11 6734 9 13478
5 10 14052  Timeout 

misex1 

6 9 8616 8 1780920
2 12 525 9 927
3 11 3979 10 18182
4 11 13421 9 138265
5 10 23967 9 107820

bbara 

6 10 45501  Timeout 
2 12 3496 9 4586
3 12 8490 9 99578
4 11 25455  Timeout 
5 11 122051  Timeout 

ex7 

6 10 218037  Timeout 
 
A.1 Netlist and Partitioning Definitions 
A netlist hypergraph  G = (V, E) consists of a set of vertices V (“logic 
elements”) and directed hyperedges E (“wires”). Every hyperedge 
e = (d, R) has exactly one source vertex (d) and a set of at least one 
sink vertex R. This model is not appropriate for all applications – for 
example, circuit models which include tristate drivers would not 
include the limitation of one source node per hyperedge.  

A decomposition of V into k subsets V1, V2, …, Vk, such that ∩i Vi = V 
is called a k-way partitioning of V. We refer to each of these subsets as 
a partition or subdomain. The partitions need not be disjoint if 
replication is permitted. A k-way partitioning of V satisfies a balance 
constraint specified by [l, u] if, for each partition l ≤ |Vi| ≤ u. 

A.2 Total Cut Hyperedges 
The total cut hyperedges metric counts the number of hyperedges that 
are cut between the partitions. A hyperedge is cut if it has at least one 
sink vertex r ∈ R in a partition where the driving vertex (d) is not 
assigned. Formally, a hyperedge e = (d, R) is cut if there exists Vi s.t. 
R ∩ Vi ≠ ∅ and d ∉Vi. 
For the example partitioning in Figure 8, the cut hyperedges metric is 
4, because edges sourced by vertices A, B, E, and F are shared 
between multiple partitions. 

A.3 Sum of External Degrees 
The sum of external degrees cost function (SOED) counts the total 
‘pins’ required over the partitions. Partitions have two types of 
external degrees: input and output. The input set Ii of a partition Vi is 
the set of hyperedges which form its input. Vi includes at least one sink 
vertex from i and does not include the source vertex from i. We 
compute the set of output degrees overall by assigning an output 
degree to every input degree ∩i Ii = O. Note that we do not assign the 
output edges to particular partitions – this is significant as the source 
node might appear in multiple partitions. The SOED cost function is 
SOED = |O| + ∑i |Ii|. 
For the example in Figure 8: V1 has zero inputs, V2 has inputs from B, 
E, and F. V3 has inputs from A and B. We then have that A, B, E, and 
F are outputs. So the SOED metric is 0 + 3 + 2 + 4 = 9. 

A.4 Maximum Subdomain Degree 
The most intricate metric is the maximum subdomain degree (MSD) 
criteria. We expand from the computation of the SOED metric. We 
separate the output hyperedge set O into disjoint subsets O1,…,Ok s. t. 
∩i Oi = O and MSD = MAXi (|Oi| + |Ii|) is minimized. In the non-



replicated case, the computation of the MSD metric for a given 
partitioning is trivial (the output hyperedges are constrained to 
assignment in the partitions where their source nodes are assigned). If 
we allow node replication, then assigning the output hyperedges to 
minimize the MSD for a given partitioning is more involved. Each 
output hyperedge o with source vertex d may be feasibly assigned to a 
partition Q ∈ {V1, …, Vk} s.t. d ∈ Q.  
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Figure 8. A Partitioned Hypergraph 

For the example in Figure 8 we begin with the input assignments from 
SOED: V1 has zero inputs, V2 has inputs from B, E, and F. V3 has 
inputs from A and B. We must assign the output E to V1 and the 
output F to V3. Before considering output A, V1 has degree 2, V2 
degree 3 and V3 degree 3. By choosing to assign the output A to V1 
instead of V2, the MSD metric is 3. 
In debugging our work and examining non-SAT generated partitions, 
we found that evaluating MSD with of replicated nodes is non-trivial. 
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Figure 9. Max-flow Output Assignment Formulation 

Our technique for evaluated the MSD metric without SAT is as 
follows: We perform a binary search on potential MSD values to 
determine the minimum MSD. We formulate the decision problem as 
max-flow problem as follows: 
For a particular value of MSD, we allow each partition Vi to have 
output degree of oi = MSD - |Ii|. We construct a directed flow graph 
that consists of a source with unit capacity flows leading to nodes 
representing each output hyperedge to assign. We create nodes gvi for 
each of the potential partitions to assign outputs. We create unit flow 
edges from the nodes representing outputs to each of their feasible 
partitions. We connect every node gVi representing partitions to a sink 
via edges of capacity oi. We compute the maxflow. If the max flow is 
equal to the total output degree, then the links with positive flow imply 
an assignment of output hyperedges to partitions and a demonstration 
that the potential MSD is feasible. If the maxflow is less than the total 
output degree, the specified MSD is infeasible. Figure 9 shows an 
example of flow graph constructed for assigning five output edges 
(two of which are driven by replicated nodes) to three partitions.  
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