
Floating-Point Sparse Matrix-Vector Multiply for FPGAs

Michael deLorimier
Dept. of CS, 256-80

California Institute of Technology
Pasadena, CA 91125

mdel@cs.caltech.edu

André DeHon
Dept. of CS, 256-80

California Institute of Technology
Pasadena, CA 91125

andre@acm.org

ABSTRACT
Large, high density FPGAs with high local distributed mem-
ory bandwidth surpass the peak floating-point performance
of high-end, general-purpose processors. Microprocessors do
not deliver near their peak floating-point performance on ef-
ficient algorithms that use the Sparse Matrix-Vector Multi-
ply (SMVM) kernel. In fact, it is not uncommon for micro-
processors to yield only 10–20% of their peak floating-point
performance when computing SMVM. We develop and an-
alyze a scalable SMVM implementation on modern FPGAs
and show that it can sustain high throughput, near peak,
floating-point performance. For benchmark matrices from
the Matrix Market Suite we project 1.5 double precision
Gflops/FPGA for a single Virtex II 6000-4 and 12 double
precision Gflops for 16 Virtex IIs (750Mflops/FPGA).

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles—
Algorithms implemented in hardware; B.2.4 [Arithmetic
and Logic Structures]: High-Speed Arithmetic—Algo-
rithms; G.1.3 [Mathematics of Computing]: Numerical
Linear Algebra—Sparse, structured, and very large systems
(direct and iterative methods)

General Terms
Algorithm, Performance, Design, Experimentation

Keywords
Floating Point, FPGA, Reconfigurable Architecture, Sparse
Matrix, Compressed Sparse Row

1. INTRODUCTION
Peak floating-point performance achievable on FPGAs has

surpassed that available on microprocessors [12]. Further,
memory bandwidth limitations prevent microprocessors from
approaching their peak floating-point performance on nu-
merical computing tasks such as Dense Matrix-Vector Multi-
ply (DMVM) due to large memory bandwidth requirements.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’05,February 20–22, 2005, Monterey, California, USA.
Copyright 2005 ACM 1-59593-029-9/05/0002 ...$5.00.

Consequently, modern microprocessors deliver only 10–33%
of their peak floating-point performance to DMVM appli-
cations [13]. Delivered performance per microprocessor is
even lower in multiprocessor systems. Sixteen microproces-
sors in parallel rarely achieve 5% peak. In contrast, high,
deployable, on-chip memory bandwidth, high chip-to-chip
bandwidth, and low communications processing overhead
combine to allow FPGAs to deliver higher floating-point per-
formance than microprocessors in highly parallel systems.

Many real life numerical problems in applications such
as engineering simulation, scientific computing, information
retrieval, and economics use matrices where there are few
interactions between elements and hence most of the matrix
entries are zero. For these common problems, dense matrix
representations are inefficient. There is no reason to store
the zero entries in memory or to perform computations on
them. Consequently, it is important to use sparse matrix
representations for these applications. The sparse matrix
representations only explicitly represent non-zero matrix en-
tries and only perform operations on the non-zeros matrix
elements. Further, sparse parallel algorithms often take ad-
vantage of matrix locality to perform much less communi-
cation on parallel machines than their dense counter parts.

We investigate Sparse Matrix-Vector Multiply (SMVM),
the simplest sparse matrix algorithm, on the Virtex II 6000-
4. On a single microprocessor, SMVM performs somewhat
worse than DMVM due to data structure interpretation
overhead. In our FPGA implementation, data structure
interpretation is performed by spatial logic, incurring less
overhead than on a microprocessor. Loads and stores are
streamed, so the computation does not stall between load
issue and data arrival. We use local on-chip BlockRAMs
exclusively which gives us a further performance advantage
from high memory bandwidth. Our design on one FPGA has
somewhat higher performance than the 900MHz Itanium II,
which is the fastest out of microprocessors released in the
same period. The performance gap increases when scaled
to multiple processors: for 16 processors our design runs
at 1/3 peak (750 Mflops/FPGA out of 2240 Mflops/FPGA
(Section 8)). This is a factor of three higher than 16 proces-
sor, microprocessor-based parallel machines.

Novel contributions of this work include:
• Architecture designed for SMVM for large matrices on

multi-FPGA systems
• Parameterized mapping strategy that allows deep pipelines
• Analysis and characterization of scalability
• Demonstration of feasibility of sparse matrix routines on

modern FPGAs

http://www.cs.caltech.edu/~andre

source

matrix = {row_start, matrix_value,

column_index}

matrix

row_start

matrix_value

column_index

Figure 1: Compressed Sparse Row Representation
of Example Matrix

2. BACKGROUND
Sparse Matrix-Vector Multiply is one of the most impor-

tant sparse matrix problems. SMVM is primarily used in
iterative numerical routines where it is the computationally
dominating kernel. These routines iteratively multiply vec-
tors by a fixed matrix. Examples that solve Ax = b are
GMRES and Conjugate Gradient (CG) [10]. Examples that
solve Ax = λx are Arnoldi and Lanczos [10].

Iterative SMVM finds Aib by performing SMVM repeat-
edly with a square matrix. We take it as a representative of
both the implementation and performance of iterative nu-
merical routines. The extra computations besides SMVM in
routines such as CG are typically a few vector-parallel op-
erations, which are small compared to the matrix multiply
(See Appendix B).

One of the simplest and most efficient sparse matrix rep-
resentations is Compressed Sparse Row (CSR), as shown
in Figure 1. Using CSR, the matrix A is represented as
three arrays: row start, matrix value, column index. A is
square with dimension n×n and has m non-zero entries.
• matrix value of length m stores the non-zero values in

row major order (non-zeros in row 0 ordered by their col-
umn index, then non-zeros in row 1 ordered by their col-
umn index, ...).

• column index of length m stores the column indices of
non-zeros also in row major order.

• row start of length n+1 stores each row’s starting index
into matrix value and column index.

If j<(row start[i+1]-row start[i]) then
A[i][column index[row start[i]+j]]=

matrix value[row start[i]+j].
The SMVM algorithm computes x = Ab by performing a

dot product on each row. If Ai is the ith row, then xi =
Aib, where the dot product is defined as ab =

∑
i aibi. It

performs dot products from top to bottom (See Figure 2).

3. ARCHITECTURE
Our implementation parallelizes CSR SMVM by parti-

tioning the set of n dots products across multiple Processing
Elements (PEs). The entire computation is the set of dot
products between the vector and the matrix rows. We as-

CSR(row start, matrix value, column index,

source, dest)

for (int row=0;row<n;row++)

accum=0

for (int i=row start[row];

i<row start[row+1];i++)

source_value=source[column index[i]]

product=matrix value[i]*source_value

accum=accum+product

dest[row]=accum

Figure 2: Compressed Sparse Row SMVM Algo-
rithm

sign the dot products, Aib, to PEs, so they can compute in
parallel. During the compute stage, each dot product results
in a vector entry, xi. Since we are iterating matrix multiply,
we must send the resulting entries to the PEs that will use

them for the next iteration, setting b
(t+1)
i := x

(t)
i . This is

performed by a communication stage (Section 3.2).

3.1 Compute
During the compute stage each PE accumulates dot prod-

ucts on the vector source to produce the vector dest. Dot
product partitioning (Section 5) assigns elements of the des-
tination vector, dest, into the dest mems in each of the PEs.
Each element of source may be used by multiple PEs so the
local source mems redundantly store entries from source.

The PE datapath (Figure 3) performs its accumulation
with a floating-point multiply-accumulate (MAC). Values
from source mem and compute mem stream through the MAC
and into dest mem. compute mem also provides indices into
source mem and control to initialize accumulations and store
into dest mem. compute mem increments through addresses
to provide the same sequence of instructions on each com-
pute stage execution. compute mem acts as a queue which is
full at the beginning of each iteration and is popped on each
cycle. For the compute stage, we can think of dest mem as a
queue which is initialized to empty and is pushed each time a
new dest element is ready. Each compute mem word is an in-
struction: {end dot, matrix value, source address}.
• matrix value is the entry value.
• source address is the address into source mem which is

multiplied by matrix value. Relating to CSR,
source address takes the place of column index. Instead
of multiplying:

matrix value[i]*source[column index[i]]

we multiply:
matrix value[i]*source mem[source address[i]]

• end dot instructs an accumulation to end by pushing its
output into dest mem and reinitializing the MAC to zero.

Figure 4 shows datapath pseudocode.
To exploit the full computational throughput of the FP-

GAs, we want to pipeline the dot-product accumulation as
heavily as possible, maximizing clock frequency. Since one
accumulation input depends on the result of previous MAC
operations, the latency of the addition stage prevents us
from pipelining a single dot product at the full through-
put which the FPGA can offer. However, we are comput-
ing multiple dot products on each FPGA, and these dot
products may be computed in parallel. Consequently, we
can interleave the independent dot products in C-slow fash-

T

F

F

T

T

F

F

F

x

x

5.0

x

4.0

2.0

3.0

1.0

x

x

2

x

0

1

1

0

p
o

p

a
d

d
r

1.0

2.0

3.0

F T

0

0.0

0.0

p
u
s
h

T

compute_mem

source_mem

add

pipeline

dest_mem

e
n
d
_
d
o
t

m
a
t
r
i
x
_
v
a
l
u
e

s
o
u
r
c
e
_
a
d
d
r
e
s
s

Ladd = 2 in this example. The memory contents are the
initial values to multiply the example matrix and vector
in Figure 1. X values are don’t cares which result when
a matrix does not exactly fill a multiple of Ladd MAC
slots and at the end of the computation when we need to
flush the adder pipeline. end dot values are placed Ladd

cycles after the accumulates they end.

Figure 3: PE Compute Datapath

accum=0

row_idx=0

for i in [0,instr_len)

prod=source mem[source address[i]]

* matrix value[i]

if (end dot[i])

destination[row_idx]=accum

accum=prod

row_idx=row_idx+1

else
accum=accum+prod

Figure 4: PE Compute Code (Ladd = 1)

ion [9] on a single floating-point MAC pipeline. The adder
latency, Ladd, becomes the interleave factor, C. Conse-
quently, the data streams into the MAC must be interleaved
in compute mem consistently with the adder latency as shown
in Figures 3 and 5. The following recursion computes the
accumulation of row i; accumt is computed on cycle t:
accum(ti+Ladd×j) = accum(ti+Ladd×(j−1)) +

(matrix value[row start[i]+j] ×
source[column index[row start[i]+j]])

and
accumti = (matrix value[row start[i]] ×

source[column index[row start[i]]])
That is, the accumulation of row i begins on cycle ti and is
interleaved with Ladd other accumulations. Table 5 shows
the succeeding memory states. We can think of the accumu-
lations as occurring on Ladd processors in parallel; we call
each “processor” a MAC slot. We parameterize logic gener-
ation and memory configuration (Section 4) around Lmult

and Ladd.

3.2 Communicate
The communication stage copies the contents of dest mem

to source mems on different PEs. The interconnect topol-
ogy is a bidirectional ring as shown in Figure 6. One ring
sends messages to the right, and the other sends messages
left. Matrix locality and good partitioning imply locality
in inter-PE communication. Two ring directions allow local
communications between PEs to be short.

The communication pattern is fixed for each multiply, so it
can be statically scheduled. Switches are controlled by their
adjacent PEs. After a message is sent on a ring its receiving
PEs copy it off. Once the message has been received by
all its destination PEs, it may be overwritten by another
message. A vector element with destinations both to the
right and to the left generates one message to send right and
one message to send left. One advantage of static scheduling
is that one message may fan out to multiple PEs without a
dynamically sized header. The bus data width is the same
as the compute datapath, so each message occupies one ring
register at a time.

Like the compute stage, the communicate stage has an in-
struction memory, communicate mem. communicate mem con-
tains instructions of the form {dest address, left recv,
right recv, left send, right send}. If the left or right re-
ceive flag is valid, a message is received from the left-ring
or right-ring respectively. source mem acts as a queue and
pushes received messages. If the left or right send flag is
valid, a message is sent on the left-ring or right-ring respec-
tively. When sending, dest address addresses the dest mem

word to send. Figure 7 shows the communicate logic for one
PE along with its left-ring and right-ring switches.

The pipeline latency of a switch is parameterized so in-
terconnect does not constrain the maximum operating fre-
quency. When ring throughput rather than message latency
dominates the number of cycles required for communication,
adding ring registers will only result in a small increase in
communication cycles.

3.3 Controller Element
Also on the rings is a Controller Element (CE) which

performs the high level control and IO. The CE first sends
the contents of PE memories on the right-ring. dest mems
are loaded rather than source mems since vector entries map

compute_mem:{end_dot;matrix_value;source_address}
F; 1.0; 0F; 3.0; 1F; 2.0; 1T; 4.0; 0T; x; xF; 5.0; 2F; x; xT; x; x
F; 3.0; 1F; 2.0; 1T; 4.0; 0T; x; xF; 5.0; 2F; x; xT; x; x
F; 2.0; 1T; 4.0; 0T; x; xF; 5.0; 2F; x; xT; x; x
T; 4.0; 0T; x; xF; 5.0; 2F; x; xT; x; x
T; x; xF; 5.0; 2F; x; xT; x; x

F; 5.0; 2F; x; xT; x; x
F; x; xT; x; x
T; x; x

0.00.0
0.01.0
1.06.0
6.05.0
5.04.0

x19.0
19.0x

xx

4.0x
6.0

6.05.0

6.05.019.0

6.05.0
6.05.0

add pipeline dest_mem

Figure 5: Trace of Compute Memory Values Starting at the Initial Values in Figure 3

CE PE PE PEio

SW SW SWSW

SW SW SWSW

Figure 6: Bidirectional Ring

SW

d
e
s
t
_

a
d
d
r
e
s
sp
o
p

d
o
w
n
_
r
e
c
v

u
p
_
r
e
c
v

s
e
n
d
_
d
o
w
n

s
e
n
d

u
p

T

F
T

F
T

a
d
d
r

dest_mem

comm_mem

p
u

s
h

source_

mem

F T

to left PE

from left

PE

to right

PE

from right

PE

SW

PE

Figure 7: PE Datapath used for Communication

onto the dest mems. This requires a communicate stage be-
fore iterations start.

4. DESIGN PARAMETERIZATION
To make this solution general and scalable, we parameter-

ize the logic generation, assembly, and tools. This allows us
to quickly assimilate better floating-point cores, new tech-
nologies which may have different levels of pipelining, and
various FPGA capacities. Key parameters include:
• Ladd – adder pipeline depth
• Lmult – multiplier pipeline depth
• Lringstage – ring stage pipeline depth; this can be tuned

so that interconnect latency does not limit the clock cycle
and to tolerate pipelining between chips.

• NPEs per FPGA – number of processing elements per FPGA
• W – datapath width; this allows support for single-, double-,

and custom-precision floating-point units.
• Mdepth[d] – memory depth of memory d per PE; d ∈
{compute mem, communicate mem, source mem, dest mem}.
This is tuned along with the parallelism. Highly paral-
lel designs have shallow memories, while more sequential
designs require deeper memories per PE (See Table 2).

Logic is generated using a flexible generator built in JHDL[3].

5. MATRIX MAPPING
To map a matrix to this architecture, we must schedule

the communication and computation of the input matrix
and produce memory configurations to load onto logic. The
scheduling will depend on the logic parameters (Ladd, Lmult,
Lringstage) and the total number of processors, NPEs. Fig-
ure 8 shows the operations performed for mapping.

Matrix partitioning assigns dot products, or equivalently,
vector entries, to PEs. A good partitioner will load bal-
ance to minimize computation latency while minimizing the
inter-PE communication. compute mem size will set a limit
to the volume of work assigned to any single PE. To mini-
mize communication, dot products should be placed to min-
imize the number of dot products in other PEs that use their
result, effectively minimizing the number of messages that
need to be sent and the size of the source mems’. We use
UMpack’s multi-level partitioner, UCLA MLPart4.21.1, on a
Linux platform [4].

Partitions are then placed on PEs to minimize communi-
cation distances. Graphs with locality tend to have locality
on their partition level as well, so placement of partitions
on PEs is important. UMpack’s partitioner computes bi-
nary partitions, so we apply it recursively to compute an
arbitrary number of partitions. The resulting binary tree of
partitions is then flattened for placement.

After placement, the computation scheduler load balances
dot products assigned to a PE across the Ladd MAC slots.
The quality of this schedule affects the compute stage la-
tency and compute mem size. The simple strategy used is to
order each accumulate by its length. Accumulates are then
greedily scheduled from largest to smallest. The schedules
resulting from this heuristic are never longer than the opti-
mal schedule plus the length of the longest dot product [6,
7].

After placement, we also need to schedule communica-
tions. The quality of this schedule affects the communi-
cate stage latency which is limited by communicate mem size.
dest mem words are sent to source mems. Each word that is
used outside its PE must be sent to a set of sink PEs. Since

matrix, A

fp adder
depth

#PEs Matrix
Partition PE Place

Schedule
Computation

Schedule
Communication

Assemble
Memories

Computation &
Communication

Memories

Matrix Mapper

Figure 8: Matrix Map Stages

one message may fanout to multiple PEs and PEs are placed
for locality, typically each word is sent by one short left mes-
sage and one short right message. For a given word, the set
of PEs that receive it from the left message and the set that
receive it from the right are chosen to minimize the sum
of message latencies. Messages are then scheduled greedily
with priority to the longest.

6. EFFICIENCY
This section analyzes the sources of inefficiency which con-

tribute to the actual performance relative to peak perfor-
mance. Recall that for a given matrix, m is the number
of non-zeros. Lideal compute = m/NPEs is the ideal latency
where all logic is devoted to floating-point units that are
fully utilized on each cycle. We decompose the actual la-
tency of one iteration of SMVM into this ideal latency and
an efficiency factor, E, for the parallel computation:

L = Lideal compute/E (1)

We decompose efficiency into four main components:

E = EA × EB × EC × EL (2)

Efficiencies are:
• EA – MAC slot utilization
• EB – Partition balance efficiency
• EC – Communication efficiency
• EL – Logic utilization
Figure 12 and Section 9 assess the magnitude of EA, EB ,
EC and EL.

During the computation stage, it may not be possible to
schedule every PE so that it performs a MAC operation on
every cycle. MAC slot utilization efficiency, EA, measures
the extent to which dot products assigned to a PE utilize its
Ladd MAC slots. If there are fewer dot products assigned to
the PE than MAC slots, then parallelism due to pipelining
cannot be fully exploited. Also slots cannot be fed near the
end of the computation. EA is the number of cycles which
use a MAC slot on the PE with maximum compute stage
latency divided by the compute stage latency. EA is affected
by Ladd, m, k, and the partition’s load balance. Section 9.3
shows how EA scales with Ladd.

The partitioner should try to balance the computation
load between PEs. EB measures how evenly computation
work is assigned to PEs. We define EB as the average num-
ber of non-zeros per PE divided by the non-zeros allocated
to the PE with maximum latency. Lmax row is the size of
the largest row. Since we assign rows atomically to PEs, if
Lmax row is larger than the average non-zeros per PE then
work cannot be evenly distributed. When partitioning, there

partition place p = 0 p = 1/2 p = 2/3 p = 1

random random O(1) O(1) O(1) O(1)

good random O(n1/2) O(n1/3) O(n1/4) O(1)

good good O(n1/2) O(n1/2) O(n1/3) O(1)

Table 1: PE Scaling on Ring: Number of PEs which
can be supported with bounded efficiency (See Ap-
pendix A)

is a trade off between load balancing and minimizing com-
munication.

Since computation and communication are separated into
two, non-overlapped, stages, all cycles spent communicating
contribute to overhead:

L = Lcompute + Lcommunicate (3)

We then define EC :

EC = Lcompute/L (4)

Appendix A analyzes E modeling EA = EB = EL = 1, eval-
uating several partitioning and placement strategies. Our
model of Lcommunicate is based on the both the throughput
and latency of the ring. Lthroughput is the lower bound on
Lcommunicate due to data volume; this latency is the maxi-
mum number of messages any switch must route. Lring is
the latency of one cycle around the ring.

We use the Rent parameter, p, [8] to model matrix locality
(See Appendix A.2). The average p for most matrices ranges
from 0 to 0.6 (See Table 3). Table 1 summarizes the number
of processors the ring can support with constant efficiency
for each of the models from Appendix A.

Since we must allocate some control logic, we cannot fill
each FPGA with floating-point units. Further, the opti-
mal number of PEs per FPGA may be less than maximum
if large NPEs causes communication to dominate computa-
tion. EL measures the impact of these limitations. EL is
the ratio of the area of one double-precision multiply and
one double-precision add to the actual PE area used. For
our design, we find EL ≤ 3/4 (See Section 8).

7. MEMORY SIZES
Since our design uses BlockRAM memory only, larger ma-

trices will require more FPGAs. However, as Table 1 and
Appendix A show, there is a limit to the number of PEs,
and hence FPGAs, we can effectively use before communi-
cation dominates computation (i.e. EC begins to diminish
with NPEs).

Combining the scaling of memory and communication re-
quirements, we can derive a range of feasible matrix sizes for
any constant efficiency, E. For constant EC , we will spend,

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
um

be
r

of
 P

ro
ce

ss
in

g
E

le
m

en
ts

Memory Capacity per Processing Element

Memory Constraint
Efficiency=1/2
Efficiency=1/3

Figure 9: Feasible regions for n and NPEs with
a Constant Memory Size per PE and a Fixed Effi-
ciency Target

at most, a constant fraction of our cycles communicating;
this means the communication memory (communicate mem)
will be at most linear in the size of the computation memory
(compute mem). Each source and dest entry is used at least
once so:

depth(source mem) ≤ depth(compute mem)

depth(dest mem) ≤ depth(compute mem)

Together, this means the sum of the depth of all memory
components (compute mem, communicate mem, source mem,
and dest mem) is proportional to the compute memory depth
(depth(compute mem)). Therefore, to bound EL to a con-
stant, the memory per PE must be constant and hence the
depth(compute mem) must be a constant. Assuming EA, EB

and ES are constant, PE memory will be fully utilized. This
means:

depth(compute mem) ∝ m/NPEs ∝ n/NPEs

This makes:

NPEs ∈ Ω(n) (5)

From Appendix A constant efficiency requires:

NPEs ∈ O
(
min

(
n1/2, n1−p

))
(6)

Together this means NPEs must be within the feasible re-
gion bounded below by the minimum memory requirement
(Eq. 5) and bounded above by the communication efficiency
requirement (Eq. 6) as shown in Figure 9.

8. CONCRETE DESIGN
We implemented the design on a Virtex II 6000-4. Since

the computation and communication schedules are static for
a partitioning of a given matrix, we know how many cycles
a matrix multiply will take.

Since the performance of machines running numerical prob-
lems is usually evaluated in terms of double-precision floating-
point, we use double-precision arithmetic units. For our
FPUs we modified parameterized precision VHDL cores from
Northeastern University [2]. We modified both FPUs by
pipelining them more deeply. Resulting pipeline depths for
the adder and multiplier are 13 and 26 respectively. The

Memory Width Depth BlockRAMs

compute mem 75 (78) 3584 (3584) 15 (15)
communicate mem 14 (14) 5120 (9216) 5 (9)

dest mem 64 (64) 512 (512) 2 (10)
source mem 64 (64) 512 (2560) 2 (2)

Total 24 (36)

Table 2: Per PE Memory Shapes for 6 PEs (4 PEs)
per FPGA

overall clock frequency is 140MHz, limited by the multiplier
frequency.

To operate at 140MHz the ring pipeline depth per PE,
Lringstage, is 5. So Lring = 5NPEs.

The number of slices taken by the adder and multiplier re-
spectively are 790 and 3276. For both arithmetic units reg-
isters are the critical resource. The total number of slices for
the Virtex II 6000-4 is 33792, which allows a maximum of
8 PEs/FPGA. The peak is then 2 × 8 × 140MHz = 2240
Mflops/FPGA. Including other logic (e.g. control logic,
addressing, interconnect) and floorplanning limits us to 6
PEs/FPGA, which gives us EL ≤ 3/4. The CE takes the
place of one PE on one FPGA.

Each PE has the four memories that must fit into its avail-
able memory. Table 2 shows memory sizes which fit 6 PEs
(4 PEs) per FPGA.

All logic except for FPUs was generated using JHDL 0.3.34.
FPUs were synthesized with Synplicity Synplify Pro 7.5.
Logic was mapped, placed, and routed with Xilinx ISE 6.1.

9. RESULTS
SMVM performance is highly dependent on the matrix.

For benchmarking, we used 35 matrices from the Matrix
Market Suite [1]. Performance of different matrices on the
same number of processors varies by as much as a factor of
four. Table 3 lists the matrices and their application areas.
Among the matrices we chose, some are the largest matrices
from Matrix Market. We also chose matrices to cover a wide
range of sizes and applications.

9.1 Single Processor Comparison
Table 4 compares the performance of our implementation

on one Virtex II 6000-4 to the performance of various mi-
croprocessors. The single microprocessor information is a
subset of a table in [13], which uses highly tuned SMVM al-
gorithms. Our performance for a single FPGA is the median
of our benchmark matrices that fit on a single FPGA.

The Power 4 has the greatest peak performance of the mi-
croprocessors summarized here and was released the same
year as the Virtex II 6000-4. The Itanium 2 performs rel-
atively well because it has a large cache and high memory
bandwidth [13].

9.2 Parallel Processor Comparison
Table 5 shows that our implementation scales well to mul-

tiple processors. The microprocessor-based implementations
may be affected by poor communication and partitioning as
discussed in Appendix A. Further, the multiple processor
versions may pay operating systems overhead. Single pro-
cessor SMVM implementations tend to be more highly tuned
to use available memory bandwidth than parallel implemen-
tations. We compare our iterative SMVM performance to
other parallel machines’ Conjugate Gradient(CG) perfor-

Peak Mflops/ SMVM Mflops/ fraction
Processor Year MHz Processor Processor of peak Ref.

Pentium 4 2000 1500 3000 425 1/7 [14]
Power 4 2001 1300 5200 805 1/6 [14]

Sun Ultra 3 2002 900 1800 108 1/16 [14]
Itanium 2001 800 3200 345 1/10 [14]

Itanium 2 2002 900 3600 1200 1/3 [14]
Virtex II 6000-4 2001 140 2240 1500 2/3

Table 4: Performances of SMVM on Single Processors

Peak Mflops/ SMVM Mflops/ fraction
Architecture Processors Year MHz Processor Processor of peak Ref.

NEC SX-6 8 x NEC SX-6 2002 500 8000 *131 1/60 [11]
Altix 16 x Itanium II 2002 1500 6000 *263 1/23 [5]

Cray X1 16 x MSP 2002 800 12800 *170 1/75 [5]
SP4 16 x Power4 2001 1300 5200 *250 1/20 [5]

This Work 16 x Virtex II 6000-4s 2001 140 2240 750 1/3

* denotes NAS CG performance

Table 5: Performances of SMVM on Parallel Processors

Matrix Application n m p
af23560 Aeronautics 23560 460598 0.2
bcsstk11 Finite Element 1473 17857 0.1
bcsstk18 Finite Element 11948 80519 0.3
bcsstk24 Finite Element 3562 81736 0.2
bcsstk25 Finite Element 15439 133840 0.1
bcsstk28 Finite Element 4410 111717 0.0
bcsstk30 Finite Element 28924 1036208 0.0
bcsstk31 Finite Element 35588 608502 0.1
bcsstk32 Finite Element 44609 1029655 0.1
bcsstm27 Finite Element 1224 28675 0.0
fidapm07 Finite Element 2065 45184
fidap009 Finite Element 3363 99397 0.0
fidap011 Finite Element 16614 1091362 0.0
fidap020 Finite Element 2203 67429 0.1
fidap035 Finite Element 19716 217972 0.0
fidapm07 Finite Element 2065 53533 0.3
fidapm37 Finite Element 9152 765944 0.0
dwt 2680 Finite Element 2680 25026 0.1
plat1919 Fluid Dynamics 1919 17159 0.2
lnsp3937 Fluid Dynamics 3937 25407 0.2
cavity10 Fluid Dynamics 2597 76171 0.2

conf6.0-0014x4- Quantum 3072 119808 0.4
3000 Chromodynamics

gemat11 Power Grid 4929 33108 0.5
add20 Digital Logic 2395 17319 0.3

memplus Digital Logic 17758 99147 0.6
mhd3200b Magneto- 3200 18316 0.0

hydrodynamics
mhd3200a Magneto- 3200 68026 0.0

hydrodynamics
mhd4800b Magneto- 4800 27520 0.0

hydrodynamics
mhd4800a Magneto- 4800 102252 0.0

hydrodynamics
qc324 Molecular 324 26730 0.1
qc2534 Molecular 2534 463360 0.2

s3dkt3m2 Finite Element 90449 1888336 0.2
s3rmt3m3 Finite Element 5357 106240 0.2
utm5940 Nuclear 5940 83842 0.2
rdb3200l Chemistry 3200 18880 0.2

(p denotes average rent parameter)

Table 3: Matrix Market Benchmark Matrices

 100

 1000

 1 10 100

M
flo

ps
/F

P
G

A

FPGAs

Max Mflops/FPGA
Median Mflops/FPGA

Min Mflops/FPGA

Figure 10: Mflops Scaling for Benchmark Matrices
that Fit into each Number of FPGAs

mance; since CG is dominated by its SMVM kernel, and its
other operations have higher performance than SMVM (See
Appendix B), the comparison favors the other machines.

We use Mflops/FPGA as our baseline performance metric
for scaling. Figure 10 shows how performance scales with the
number of Virtex IIs. Taking the median performances, 16
FPGAs deliver 1/3 peak. We get 1/7 peak at 128 FPGAs.
The best parallel architecture in Table 5 drops to 1/20 peak
by 16 processors.

9.3 MAC Slot Scheduling
The adder slot utilization component of Ecompute, EA, is

low if MAC slots are poorly utilized. Figure 11 shows how
increasing Ladd decreases EA. At this point (Ladd = 13), we
are able to fill over 80% of our MAC slots, giving EA = 0.80.

9.4 Analysis of Inefficiencies
The largest factor contributing to scaling inefficiency is

the large ring interconnect latency, Lring. We use Figures 12
and 13 to analyze sources of inefficiency.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100

E
ffi

ci
en

cy

Adder Latency

Figure 11: MAC Slot Efficiency, EA, as a Function
of Ladd for 16 FPGAs

 0.1

 1

 1 10 100

E
ffi

ci
en

cy

FPGAs

E
Ea: MAC Slot

Eb: Work Balance
Ec: Communicate

El: Logic

Figure 12: Scaling of Median Efficiencies for Bench-
mark Matrices that fit into each Number of FPGAs

Figure 12 shows EC is the major component of dimin-
ishing efficiency as NPEs increases. The two main latencies
contributing to Lcommunicate are Lring and Lthroughput. Fig-
ure 13 shows that at 1024 PEs Lring dominates: Lring =
(2/3)Lcommunicate and Lthroughput = (1/10)Lcommunicate.

The second worst scaling efficiency is EA. EA decreases
when there are too few dot products to be evenly distributed
between MAC slots.

EB is also significant. Large rows sometimes make it im-
possible to load balance. The heuristic partitioning algo-
rithm could also contribute to low EB , as well as, the com-
mon trade off between partition cut-size and partition load
balance.

Constant EL shows that we obtain our best performance
using 6 PEs per FPGA up to 95 FPGAs.

9.5 Matrix Map Overhead
Currently the overhead to configure memories given a ma-

trix is large compared to Iterative SMVM time. The num-
ber of iterations performed by numerical routines that use
SMVM is usually much less than n. Taking n as an upper
bound for the number of iterations, Table 6 compares the
time taken by Matrix Map stages in software to the upper
bound of logic execution time.

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000

cy
cl

es

PEs

L
Lcompute

Lcommunicate
Lideal_compute

Lmax_row
Lthroughput

Lring

Figure 13: Matrix fidapm37 Cycle Breakdown: fi-
dapm37 has n = 9152, m = 765944.

Matrix Map Stage Seconds
Matrix Partition 70.5

Schedule Communication 30.0
Schedule Computation 8.6
Assemble Memories 1.9

n SMVM iterations 1.0

Table 6: Compute Times for Matrix Map Compo-
nents for fidapm37 on 16 Virtex IIs

10. FUTURE WORK
A complete solution for contemporary FPGAs needs to

implement a wide range of sparse numerical routines on
large matrices. Further, memory configuration time must
be comparable to or smaller than hardware execution time.

Communication Latency From Section 9.4, we see the
key scaling limitation in this architecture is, not surpris-
ingly, communication latency on the ring. We can easily de-
crease the worst-case communication latency from the cur-
rent 5NPEs to O(

√
NPEs) or even O(3

√
NPEs) by moving to

two- or three-dimensional interconnect structures.
Matrix Mapping For the architecture to be useful for a

broad set of applications, the Matrix Mapping stages must
be streamlined or eliminated. We have not, yet, focused on
efficient mapping steps, so all stages could be improved with
attention to their runtime. For the largest stages, simple
tuning will not be enough. Some promising directions to
achieve the large-scale performance improvement required
include:
• FPGA-based clustering to exploit the same hardware

to rapidly create partitions
• Dynamic routing to avoid the need for the scheduling

stage
General Applicability Adapting the architecture to a

more complete set of sparse numerical routines requires im-
plementations for vector parallel operations, accumulations,
scalar broadcasts, and scalar divides. These operations eas-
ily fit into the current ring interconnect and can extend to
high-dimension interconnect solutions.

11. CONCLUSIONS
An architecture for performing efficient SMVM on mod-

ern FPGAs has been demonstrated. It achieves high scala-
bility by taking advantage of the Virtex II’s high BlockRAM
memory bandwidth. The compute datapath processes the
sparse matrix structure in a streaming fashion so there is
no slowdown due to memory latency. We have shown that
good matrix partitioning allows us to scale up to 16 Vir-
tex II 6000-4s while maintaining an efficiency of 1/3—much
higher than 16-processor, microprocessor-based, multipro-
cessor systems.

Acknowledgments
This work was supported by the Microelectronics Advanced
Research Consortium (MARCO) and is part of the efforts
of the Gigascale Systems Research Center (GSRC). Thanks
to Keith Underwood for valuable editorial comments on this
writeup.

12. REFERENCES
[1] Matrix Market.

<http://math.nist.gov/MatrixMarket/>, June
2004. Maintained by: National Institute of Standards
and Technology (NIST).

[2] P. Belanović and M. Leeser. A Library of
Parameterized Floating Point Modules and Their Use.
In Proceedings of the International Conference on
Field-Programmable Logic and Applications, pages
657–666, September 2002.

[3] P. Bellows and B. Hutchings. JHDL - An HDL for
Reconfigurable Systems. In K. L. Pocek and
J. Arnold, editors, IEEE Symposium on FPGAs for
Custom Computing Machines, pages 175–184, Los
Alamitos, CA, 1998. IEEE Computer Society Press.

[4] A. Caldwell, A. Kahng, and I. Markov. Improved
Algorithms for Hypergraph Bipartitioning. In
Proceedings of the Asia and South Pacific Design
Automation Conference, pages 661–666, January 2000.

[5] T. Dunigan. ORNL SGI Altix Evaluation.
<http://www.csm.ornl.gov/~dunigan/sgi/>,
September 2004.

[6] D. S. Hochbaum, editor. Approximation Algorithms for
NP-Hard Problems. PWS Publishing Company, 1997.

[7] J. R. Jackson. Scheduling a Production Line to
Minimize Maximum Tardiness. Management Science
Research Project Research Report 43, UCLA, 1955.

[8] B. S. Landman and R. L. Russo. On Pin Versus Block
Relationship for Partitions of Logic Circuits. IEEE
Transactions on Computers, 20:1469–1479, 1971.

[9] C. Leiserson, F. Rose, and J. Saxe. Optimizing
Synchronous Circuitry by Retiming. In Third Caltech
Conference On VLSI, March 1983.

[10] I. Lloyd N. Trefethen, David Bau. Numerical Linear
Algebra. SIAM, 3600 University City Science Center,
Philadelphia, PA, 1997.

[11] L. Oliker, A. Canning, J. Carter, J. Shalf, D. Skinner,
S. Ethier, R. Biswas, J. Djomehri, and R. V. der
Wijngaart. Evaluation of Cache-based Superscalar and
Cacheless Vector Architectures for Scientific
Computations. In Proceedings of the IEEE/ACM
Conference on Supercomputing, 2003, 2003.

[12] K. Underwood. FPGAs vs. CPUs: Trends in Peak
Floating-Point Performance. In Proceedings of the
International Symposium on Field-Programmable Gate
Arrays, pages 171–180, February 2004.

[13] R. Vudoc. Automatic Performance Tuning of Sparse
Matrix Kernels. PhD thesis, UC Berkeley, 2003.

[14] R. Vuduc, J. Demmel, K. Yelick, S. Kamil,
R. Nishtala, and B. Lee. Performance Optimizations
and Bounds for Sparse Matrix-Vector Multiply. In
Proceedings of IEEE/ACM Conference on
Supercomputing, November 2002.

APPENDIX

A. COMMUNICATION MODELS
In this section we study how communication bandwidth

constraints affect asymptotic scalability. We evaluate how
taking advantage of matrix locality can increase scalabil-
ity. We find the maximum number of PEs we can use while
maintaining a constant efficiency. We analyze how the num-
ber of PEs, NPEs, scales with matrix dimensions n for three
different partitioning and PE placement types:
• Random assignment of dot products to PEs.
• Partitioning dot products for locality into PEs, then plac-

ing PEs in a random order.
• Partitioning for locality, then placing PEs for locality.
For matrices with locality, we show that each refinement
improves asymptotic scaling of NPEs in terms of n.

This section models the efficiency EC from Section 6.
We use Lideal compute to model the compute stage latency,
and Lcommunicate to model the communicate stage latency.
Analogously to Equation 4, we model of the fraction of total
cycles spent in the compute stage as:

ECideal =
Lideal compute

Lideal compute + Lcommunicate
(7)

Henceforth we use ECideal ≥ 1/2 as our target, which
gives us Lideal compute ≥ Lcommunicate.

Recall the matrix dimension is n, and number of non-
zeros is m. k = m/n is the average non-zeros per row.
Lideal compute = kn/NPEs so for E ≥ 1/2 in the following
analyses we will use:

Lcommunicate ≤ kn/NPEs (8)

Two lower bounds on the latency of the communicate
stage are the maximum message latency, Lring, and the cy-
cles required if interconnect is fully utilized, Lthroughput. If
the maximum message latency constrains communication,
then we say it is latency constrained, otherwise it is through-
put constrained. Since message latency is linear in the num-
ber of PEs, NPEs, we model:

Lcommunicate ≥ O (NPEs) (9)

Interconnect is fully utilized if each switch routes a message
on each cycle:

Wcomm =
∑

msg∈messages

Lmsg (10)

Lmsg is the distance each message must travel. Wcomm is the
useful work performed in communication. We say a switch
performs one unit of work on each cycle it routes a message.

http://math.nist.gov/MatrixMarket/
http://www.ece.neu.edu/groups/rpl/publications/belanov_fpl2002.pdf
http://www.ece.neu.edu/groups/rpl/publications/belanov_fpl2002.pdf
http://doi.acm.org/10.1145/368434.368864
http://doi.acm.org/10.1145/368434.368864
http://www.csm.ornl.gov/~dunigan/sgi/
http://doi.acm.org/10.1145/968280.968305
http://doi.acm.org/10.1145/968280.968305

Since there are 2NPEs switches:

Lcommunicate ≥ Wcomm/(2NPEs) (11)

Considering both throughput and latency bounds:

Lring = Lringstage ×NPEs (12)

Lcommunicate ≥ max(Wcomm/(2NPEs), Lring) (13)

Communication is throughput constrained if and only if:

Wcomm/(2NPEs) ≥ Lringstage ×NPEs (14)

A.1 Random Partitioning
First we find the scaling effect of a partitioning that load

balances dot products with no regard to matrix locality.
Most vector entries are used by multiple dot products, which
are distributed in random PEs. So most entries are sent as
either one or two messages which are received by all desti-
nation PEs. The length of the ring is Lringstage × NPEs,
so the work per vector entry is proportional to NPEs. Since
assignment was random, communication is load balanced on
switches. Hence Wcompute = n×NPEs. From Inequality 14,
communication is throughput constrained:

Lcommunicate = Wcomm/(2NPEs) ∝ n

Using Eq. 8, we find:

NPEs ∈ O(1)

This means we can only use a number of PEs, NPEs, con-
stant in n or communication will dominate. Therefore in-
creasing the matrix dimension while keeping non-zeros per
row fixed does not allow us to scale to more processors.

A.2 Matrix Model
In order to analyze the effect of good partitioning, we need

a model of matrix locality. We first represent the matrix
communication structure as a graph. Each dot product is a
node. It fans out to each dot product that uses its result. We
use the common Rent Parameter model, where the graph is
fitted to the two parameters c, p [8]. The Rent Parameter
is defined for a graph when there is a power law relating the
size of each local cluster with the IO of the cluster. If the
number of nodes per cluster is r, then the number of inputs
to each cluster is:

inputs(r) = c(r)p (15)

Partitioning well with different size partitions can be used
to find the relation. A graph with p = 1 has little local-
ity if any: a constant fraction of nodes in a partition out-
put to another partition. A 3D problem has p = 2/3, a
2D problem has p = 1/2, and a 1D problem has p = 0.
Circuit graphs commonly have p = 2/3. Figure 14 shows
the average number of inputs per partition for our bench-
mark matrices. The graph has x = log(r) and from Eq. 15
y = log(inputs(r)) = log(c(r)p). Relating x and y gives
y = log(c) + px. So p for a matrix is its plot’s slope. Many
matrices have a flat slope for two orders of magnitude and
hence a well defined p. Others have negative curvature,
which means larger partitions have smaller p. In either case,
when p < 1 there is locality to be exploited by a partitioner
and placer.

A.3 Partitioning for Locality and Placing Ran-
domly

Next we find the scaling effect of a partitioning that load
balances and minimizes communication between partitions.
Each PE is then assigned to a random partition. Commu-
nication will be load balanced since placement is random.
Here, message sends per PE is Θ((n/NPEs)

p). Work per
message is still NPEs, so Wcomm ∈ Θ(N2

PEs × (n/NPEs)
p).

From Inequality 14, communication is throughput constrained.
Using Eqs. 8 and 11:

NPEs ∈ O(n(1−p)/(2−p))

For example, for p = 2/3, NPEs ∈ O(n1/4), and for p = 1/2,

NPEs ∈ O(n1/3).

A.4 Partitioning and Placement for Locality
Scaling can be further improved by placing partitions on

PEs for locality. We construct a hierarchical, binary tree of
partitions, where each pair of siblings partitions its parent.
On level k, each partition is of size n/2k. When placing we
flatten the tree to a line so each pair of sibling partitions on
each level are adjacent. Then all k level siblings can com-
municate in parallel. This load balances communication.
Sends per k-level partition is Θ((n/2k)p). So Lk ∝ (n/2k)p

is the time to communicate between two k-level siblings.
Lthroughput = Wcomm/(2NPEs) is the communication la-
tency due to throughput. Communicating on each level sep-
arately, we get

Lthroughput ∝
log(NP Es)∑

k=0

Lk (16)

∝
log(NP Es)∑

k=0

(n/2k)p (17)

= np ×
log(NP Es)∑

k=0

(1/2k)p (18)

∝ np (19)

We get Eq. 19 from Eq. 18 using:

1 ≤
log(NP Es)∑

k=0

(1/2k)p <

log(NP Es)∑
k=0

1/2k < 2

Using Eq. 8 we get:

NPEs ∈ O(n1−p) (20)

Communication may be latency constrained; using Eq. 9 we
get:

NPEs ∈ O(n1/2) (21)

Considering both throughput and latency constraints, we
combine Eq. 20 and 21 in a manner similar to Eq. 13 and
get:

NPEs ∈ O(min(n1/2, n1−p)) (22)

A.5 Comparison
Table 1 compares the three types of partitioning and place-

ment with p = 2/3 and p = 1/2. It shows that scalability is

limited to O(n1/2) due to ring latency.

 1

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000 1e+06

In
pu

ts
/P

ar
tit

io
n

Partition Size

Figure 14: I/O Scaling for Benchmark Matrices

B. SCALING AND COMPUTATIONAL RE-
QUIREMENTS

Conjugate Gradient (CG) is part of the common NAS
benchmark suite and its performance is more often reported
than SMVM. As mentioned above, CG computation and
communication are dominated by the SMVM kernel and
the other operations have little impact on performance. We
evaluate CG performance for an extension of our architec-
ture that supports vector parallel operations: this extension
incurs, at most, 20% more cycles for a 16 FPGA design.

Per iteration, CG consists of 1 SMVM, 2 vector dot prod-
ucts, 3 vector-add scalar multiplies, and 2 scalar divisions.
Vector-add scalar multiply performs ax+y on vectors x and
y, and scalar a. The two scalar divisions each require Ldivide

cycles. Divider latency is typically on the order of tens of
cycles, so we assume Ldivide < 100. A vector-add scalar
multiply consists of one scalar broadcast, n adds and n mul-
tiplies. A vector dot product consists of an addition reduce
and n adds and n multiplies. Adds and multiplies can be
pipelined as in SMVM for n/NPEs compute cycles. Each
CG operation can immediately follow the previous leaving
one Lring latency:

Lreduce = Ladd × n/NPEs + Lring (23)

Lextra = Lring + Lreduce + 4× n/NPEs (24)

+ 2× Ldivide

We are interested in comparing the performance of 16 pro-
cessor machines. Since there are at most 6 PEs per FPGA,
the point on Figure 13 where NPEs = 100 gives us at least 16
FPGAs. Here L ≈ 15000 and Lring ≈ 700. For the matrix
fidapm37, n = 9152. Ladd = 13. Now Lreduce ≈ 1900, so
Lextra ≈ 3200 ≈ (1/5)L. Without considering performance
benefit due to extra floating point operations performed, this
shows CG incurs a performance overhead of at most 20%.

Web links for this document: <http://www.cs.caltech.edu/research/ic/abstracts/smvm_fpga2005.html>

http://www.cs.caltech.edu/research/ic/abstracts/smvm_fpga2005.html

	Introduction
	Background
	Architecture
	Compute
	Communicate
	Controller Element

	Design Parameterization
	Matrix Mapping
	Efficiency
	Memory Sizes
	Concrete Design
	Results
	Single Processor Comparison
	Parallel Processor Comparison
	MAC Slot Scheduling
	Analysis of Inefficiencies
	Matrix Map Overhead

	Future Work
	Conclusions
	REFERENCES -9pt
	Communication Models
	Random Partitioning
	Matrix Model
	Partitioning for Locality and Placing Randomly
	Partitioning and Placement for Locality
	Comparison

	Scaling and Computational Requirements

