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Abstract—Due to their different cost structures, the archi-
tecture of switches for an FPGA packet-switched Network-
on-a-Chip (NoC) should differ from their ASIC counterparts.
The CONNECT network recently demonstrated several ways in
which packet-switched FPGA NoCs should differ from ASIC
NoCs. However, they also concluded that pipelining was not
appropriate for the FPGA switches. We show that the Split-Merge
switch architecture is more amenable to pipelining on FPGAs,
achieving 300MHz operation—up to three times the frequency
and throughput of the CONNECT switches—with only 13-37%
more area. Furthermore, we show that the Split-Merge switches
are at least as efficient at routing traffic as the CONNECT
switches, meaning the 2-3x frequency translates directly into
two to three times the application performance.

I. INTRODUCTION

Many applications on today’s large-scale, platform FPGAs
demand high bandwidth, dynamic communication (e.g. mul-
tiprocessors [1], CoORAM [2], sparse graph processing [3],
dynamic reconfigurable accelerators [4]). Natively, today’s
FPGAs provide high dedicated bandwidth with configured
interconnect, but only modest dynamically shared bandwidth
with hardwired buses [5]. As a result, it is increasingly useful
to configure a scalable, high-bandwidth, dynamically shared
interconnect, such as a Packet-Switched (PS) Network-on-a-
Chip (NoC), as an overlay network on top of the FPGA
configured interconnect and logic.

While PS NoCs are well developed for implementation on
ASICs [6], [7], the different cost structure of FPGAs mean
that NoCs optimized for ASICs may not be the best solutions
for FPGA NoCs. In particular, the larger delays associated
with configurable interconnect coupled with the high and pre-
determined ratio of registers to logic suggests that FPGA NoCs
should be pipelined more heavily than ASIC NoCs. A number
of recent efforts have shown how to build PS FPGA NoCs
[8], [4], [9], but much work remains to develop a systematic
understanding of PS NoC design for FPGAs. Two FPGA NoC
designs that have begun to depart from the ASIC NoC designs
are CONNECT [10] and Split-Merge-based PS NoC [11].

CONNECT [10] started with a standard Virtual Channel
(VC) ASIC NoC [6], [12] and observed the difference in wire
availability, buffer cost, and pipelining should drive FPGA
NoCs to use wider channels, fewer buffers, and less pipelined
designs. It is, however, unclear whether the low pipelining
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conclusion is driven more by the the FPGA architecture or
by the ASIC-style NoC architecture from which CONNECT
is derived. The paper [10] performed systematic comparisons
between ASIC NoC designs and their FPGA NoCs opti-
mizations, showing quantitatively the benefits of their FPGA-
optimized NoC designs.

The Split-Merge PS NoC [11] is a more radical departure
from ASIC NoCs. Rather than starting with an ASIC NoC
design, the Split-Merge PS NoC started with the design
of highly pipelined primitives: split units, merge units, and
queues. These primitives could be individually tuned for high
frequency operation, then composed with additional pipelining
as necessary to maintain high throughput. However, other than
showing their ability to achieve higher bandwidth, previous
work on Split-Merge PS NoCs did not perform direct com-
parisons to other FPGA or ASIC PS NoCs.

In this paper, we contribute to the systematic understanding
of FPGA PS NoCs by comparing CONNECT and Split-Merge
PS NoCs, both designed in Bluespec [13] and mapped to a
Xilinx Virtex 6 Platform FPGA. Notably, we show that the
Split-Merge design can be pipelined to achieve two or three
times the frequency of the CONNECT design without sacri-
ficing latency, significant area, or any net performance under
congestion. As a result, the Split-Merge PS NoC achieves three
times the performance of the CONNECT design on application
workloads in roughly the same footprint.

Our novel contributions include:

o Split-Merge PS NoC Design in Bluespec that supports

operation up to 300MHz on a Virtex 6 (Secs. III and IV)

o Quantitative comparisons of resource requirements and

timing of CONNECT and Split-Merge PS NoC (Sec. IV)
o Quantitative characterization of both CONNECT and
Split-Merge PS NoC on application traffic (Sec. V)
We start by reviewing PS NoC background including both
CONNECT and Split-Merge PS NoCs in the next section.

II. BACKGROUND
A. NoC Routers

This section discusses network topology, flow control meth-
ods and routing algorithms that characterize a typical NoC.

Topology Topology represents the way switches and pro-
cessing elements (PE) interconnect with each other in the
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network. In this paper, we focus on the 2D mesh since it
is the most commonly used and characterized topology and
our primary goal is to compare switches rather than topology.

Routing Algorithms The role of a routing algorithm is to
choose the proper path for each packet to achieve high network
throughput. Due to the limited on-chip logic resources and
more plentiful wiring, it is less beneficial to spend logic for
the sophisticated routing algorithms used for off-chip routing.
Deterministic routing, such as Dimension Ordered Routing
(DOR) [14] is widely adopted for NoCs because of its simple
routing logic. DOR on a mesh routes the packet along the
X dimension first then the Y dimension. The West-Side First
(WSF) routing algorithm allows the router choice to avoid
local congestion while remaining deadlock free [14].

Fully adaptive routing algorithms often use Virtual Channels
(VCs) to allow more flexibility to avoid local congestion
while remaining deadlock free [15]. VCs share a physical
wire between multiple logical channels, each with its own
buffers. Since the VCs block independently, this can reduce the
impact of Head-of-Line (HoL) blocking, prevent low priority
traffic from blocking higher priority traffic, and create acyclic
channel graphs while still allowing rich adaptive routing [16],
[17]. VC routing algorithms tradeoff more complex routing
logic and higher buffering requirements to achieve better
utilization of physical wires. Since wires are pre-allocated and
richly populated in modern FPGAs, this tradeoff may be less
attractive than in ASIC designs.

Flow Control Most packet-switched NoCs adopt wormhole
routing which breaks packets into smaller segments called
flits. Both the sender and receiver switch must follow a flow
control protocol. VC switches usually adopt credit-based [6]
flow control. For non-VC switches, such as the split-merge
routers, the valid/backpressure [18] flow control is simpler and
also provides guaranteed flit transmission. CONNECT uses
valid/backpressure flow control in its simpler peek scheme.

B. How FPGAs differ from ASICs

While FPGAs are generally slower and larger than ASICs
[19], they are not uniformly larger or slower. Resources are
pre-allocated among logic, registers, interconnect, and memory
in the FPGA, meaning area is not interchangeable as in
the ASIC. Modern FPGAs have a mix of coarse-grained,
specialized resources (e.g. clocks, embedded memories, carry
chains) and fine-grained logic, with the specialized resources
offering lower latencies and more compact areas than the fine-
grained logic. As a result, FPGAs and ASICs have significantly
different cost structures, and it may be possible to significantly
improve performance and resource utilization by customizing
the architecture to the FPGA [10].

Delay and Pipelining The large area of programmable
switches in FPGAs mean longer interconnect paths where
route delays often dominate the critical path. This discourages
large and complicated switches, making high-frequency, sim-
ple routing logic more attractive than complex designs running
at lower frequencies. Furthermore, FPGAs pre-allocate flip-
flops at the logic gate level. As a result, FPGAs usually have
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Fig. 1: Packet Format of CONNECT Network

abundant flip-flop resources that make increased pipelining an
effective technique to improve overall system performance.
Since flip-flops are not pre-allocated in ASICs, they effectively
have a larger area cost when inserted into ASIC designs.

C. CONNECT

The CONNECT router is a simple one pipeline-stage, VC-
based router targeting the FPGA platform [10]. The design
philosophy is to achieve minimal resource utilization while
maintaining a moderate operation frequency. CONNECT uses
distributed RAMs to implement look-up table based routing
[6]; the default routing algorithm is DOR. CONNECT supports
multiple VCs for the purpose of segregating packets, avoiding
deadlock, and reducing HoL blocking effects. CONNECT also
supports a Virtual Link (VL) option that guarantees continuous
transmission of packets at receiving end-points. The imple-
mentation of VLs slightly increases router complexity but
greatly simplifies the PE-router interface. CONNECT attaches
header data to every flit, as shown in Fig. 1, to exploit the
abundance of wires on the FPGA to simplify routing. The
CONNECT routers support both credit-based flow control
and a simpler “peek” (valid/backpressure) flow control. The
valid/backpressure approach reduces the resource requirements
and has the same performance under the situations when the
round-trip communication delay is low.

The CONNECT designers concluded that FPGA NoCs
should be pipelined less than ASIC NoCs, arguing primarily
in terms of the longer wire delays and ignoring the abundance
of registers in FPGAs to support pipelining. Consequently,
CONNECT employs a single stage Mesh switch, noting: “...it
becomes impossible to further subdivide into balanced finer
pipeline stages due to the quantization effects of the underlying
realization structures and the difficulty in controlling physical
details like logic placement, wiring routing, and driver sizing”
[10]. We contend that the problem is not the underlying FPGA
resources, but rather the ASIC-style NoC architecture that they
started with that impedes productive pipelining. Consequently,
it is necessary to redesign the NoC switch architecture more
significantly to better accommodate FPGA designs.

D. Split-Merge PS NoC

Unlike CONNECT routers that resemble a traditional, VC-
based router and have only one pipeline stage, the split-
merge design took a different approach. The typical split-
merge router architecture is shown in Fig. 2. The router is
constructed using primitives called splits and merges [11]
(Sec. ITII-A). Constructing routers under different topologies is
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Fig. 2: Typical Split-Merge Switch Architecture
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simply a matter of connecting these two primitives in different
patterns. A big advantage of this design paradigm is that the
decentralized implementation of routing and arbitrating func-
tions greatly reduced the logic complexity for each primitive.
By inserting FIFO queues at each input port of both primitives
as buffers, the router can be easily pipelined at the level of
the primitives.

Packet Format Split merge also uses wormhole routing of
flits. Each packet contains one head flit and several body flits.
The head flit distinguishes itself from body flits by setting its
highest bit to one. It contains extra bits for routing information
and the number of flits for the packet (pkt_len). This number
is used to handle flexible packet length.

Flow Control A simple but effective switch-to-switch
valid/backpressure flow control method is used to control
the transmission of flits. This flow control resembles the
“peek” flow control for CONNECT and uses one bit (back
pressure) signal to indicate whether there is enough space for
each downstream buffer. Since there may be one or more
cycles of round-trip delay (depending on channel pipeline
level) between adjacent primitives, the downstream buffer
must produce the backpressure signal early enough so that
there are still enough buffer space to hold all following flits
due to pipeline delays in the backpressure status transmission.

III. SPLIT AND MERGE SWITCHING PRIMITIVES

This section describes our implementation of split-merge
primitives and mesh switches using split-merge primitives.

A. Primitive Operation

Primitives are shown in Fig. 5. Buffers are implemented as
FIFO queues using shift registers (SRLs) to take advantage of
Xilinx FPGA’s built-in SRL resources [20]. The split primitive
looks at flit headers and routes input packets by sending them
to the appropriate output port. The merge primitive interleaves
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Fig. 4: Structure Diagram of DOR and WSF Mesh Switches

messages from different input ports to the same output port
while maintaining packet completeness and trying to reach
100% throughput. Split and merge are each pipelined blocks.
We explore giving them each one or two pipe stages to operate.

B. Constructing Switches from Split and Merge Primitives

In a 2D mesh topology, each switch in the network is
connected with a local PE and has direct connection with
its neighbors on X and Y directions. This roughly makes the
mesh switch a 5x5 crossbar. Fig. 4 (left) shows the structure
diagram of the DOR switch. Splits and merges inside a single
switch do not need to be fully connected because certain
connections are never used by DOR routing algorithm. The
structure of the WSF mesh switch is shown in Fig. 4 (right).
As is analyzed in [14], a mesh network is free from deadlock
if certain turns are prohibited to prevent any potential circular
channel dependency. Compared with DOR switches, the WSF
switches has two more internal interconnections between split
and merge primitives that allow packets coming from Y
directions to turn east. This gives splits at certain directions
the flexibility to make route decisions for packets adaptively.
All paths through the DOR and WSF mesh switches traverse
one split and one merge primitive. As a result, it takes two or
four cycles to traverse each mesh switch.

IV. IMPLEMENTATION AND COMPARISON

We implement our split-merge network on a Xilinx Virtex 6
FPGA (XC240T-1) to demonstrate the effectiveness of our
design. We generate detailed synthesis result for split-merge
primitives and compare resource utilization and timing result
with CONNECT switches after mapping and Place-and-Route
(PAR) procedures. We obtain CONNECT networks from the
public web distribution [21].

A. Primitives

We compile our Bluespec primitive modules into Verilog
and use Xilinx ISE 13.2 XST tools to obtain the synthesis
result for both area and timing results. All the synthesized
switches have 32-bit data channel width with a buffer depth
of 16. As can be seen from Table I, buffers are synthesized
into SRLs that occupy SLICEM resources [22]. Merge logic
is larger than split logic or buffers because the arbitration
among various input channels requires more input information.
All stand-alone primitives are able to achieve an operation
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TABLE I: Synthesis Results for w=32 Split-Merge Primitives

Regs Logic Memory | Max Freq.
(6-LUT) | (SRL16) (MHz)

Buffer (16) 10 19 32 581
Split2 36 41 0 726
Split3 38 45 0 577
Split4 39 50 0 683
Merge?2 39 94 0 351
Merge3 42 153 0 370
Merge4 43 221 0 354

frequency of over 350MHz. When composed using only a
single pipeline stage per split or merge, wiring delays greatly
reduced the overall performance. With a second pipeline
register per stage, we are mostly able to place these routing
delays into a separate pipeline stage (Table II).

B. Mesh Switch Comparison

To make a head-to-head comparison between the split-
merge switch and the CONNECT switch, we built both types
of switches for the mesh topology which has five input/output
ports, N, S, E, W, and local PE. We use the peek flow
control for the CONNECT switch because it matches the back
pressure flow control, occupies the least area, and achieves the
highest operating frequency. The VL is enabled to guarantee
a simpler PE to switch interfacing and buffering mechanism
that matches the functionality of the split-merge design. We
implemented the CONNECT switches with 2 and 4 VCs
under the buffer depth of 16 and data width of 32 bits.
We also implemented the split-merge switches applied with
DOR and WSF routing algorithms. Since the CONNECT
switch has separate flow control wires to transmit routing
information in addition to the data paths (See Fig. 1), packets
of the same number of flits and payload data width in the
CONNECT network use more physical wires than the split-
merge network. Since the split-merge network puts the routing
information in the head flit of a packet (See Fig. 3), it may
end up needing more flits to transmit a fixed data payload. To
provide a more direct comparison taking into consideration
this additional packet overhead, we also characterize split-
merge switches with 42-bit channels to model the extra 10b
of routing information that CONNECT is adding to its flits.
This is an overestimate for split-merge switches; only in the
case where the payload is a single flit of exactly 32 bits do

TABLE II: Map & Post-PAR Report for Split-Merge and
CONNECT Switches on XC6VLX240T-1

Area Timing
Logic [ Mem. | Constrain | Cycle [ Freq.
Regs (LUTs) (ns) | (ns)| (MHz)
CONNECT | 2VCs; 32bit | 635| 1396 | 166 9.0 9.6 104
1 clock |4VCs; 32bit | 1265 | 1926 | 288 10.0| 10.9 92
DOR; 32bit | 541 | 1449 | 336 45 4.5 220
split-merge | DOR; 42bit | 641 | 1686 | 462 45 4.6 219
1 pipe WSF; 32bit | 579| 1839 | 400 46| 4.6 217
(2 clock) | WSF; 42bit | 679 | 2139 | 550 46| 4.6 216
DOR; 32bit | 1262 | 1157 | 336 33 33 303
split-merge | DOR; 42bit | 1572 | 1302 | 462 5.0 5.0 201
2 pipe WSF; 32bit | 1454 | 1491 | 400 33 3.4 298
(4 clock) | WSF; 42bit | 1804 | 1666 | 550 4.7 4.7 213

split-merge switches need this full 42-bit width to be a direct
match with CONNECT. Under typical situations, the most
comparable split-merge network will lie between the 32-bit
and 42-bit case. We show the extremes to bracket the range.

C. Placed Mesh Switch

Table II shows the post-PAR static timing report for both
types of switches targeting Xilinx Virtex-6 LX240T speed-
grade -1 FPGAs. Overall, for placed mesh switches, the split-
merge switches with one pipeline stage per split or merge are
able to achieve more than twice the speed of the CONNECT
switch; with two pipeline stages, they are able to achieve three
times the speed. The DOR split-merge switches are between
13-37% larger than the 2 VC CONNECT switches.

V. PERFORMANCE COMPARISON

Since the Split-Merge PS NoC is a more radical departure
from traditional ASIC NoC designs, it is necessary to under-
stand how its architectural changes impact its ability to deal
with traffic congestion in the mesh network. Consequently,
in this section, we perform head-to-head routing comparisons
between the CONNECT and Split-Merge PS NoCs.

A. Experimental Setup

In this section, we present the cycle-accurate simulation
methodology for both the split-merge network and the VC-
based CONNECT network.

Dummy PE We designed dummy PEs with the same
interface as normal PEs to inject traffic into the network and



monitor network performance. Each dummy PE includes a
memory pre-loaded with a complete set of messages. Dur-
ing the simulation, PEs read every entry from the memory,
translate it into a packet, and inject corresponding flits into
an infinite buffer connected to the network. This trace-based
traffic simulation method has the flexibility of providing traffic
of any kind because all messages are generated completely
offline. We assign enough space to each PE memory to hold
tens of thousands of entries, which is capable of driving the
simulator for over 100,000 cycles. This provides a long enough
period for the warm-up and guarantees a stabilized operation
environment for evaluation.

Since the CONNECT network available from [21] is in
Verilog, we first construct our test bench and dummy PE in
Bluespec and then compile the Bluespec module into Verilog.
We use the same control method to inject packets for both
networks and tune the simulation parameters of CONNECT
switches to achieve good performance under similar area
constraints as the split-merge network (e.g. number of VCs (v
=2 and 4) and buffer depth of 16 for traffics with 8 flits/pkt).
The RTL-level simulation is performed under the Xilinx iSim
13.1 simulation environment.

Application Traffic In addition to synthetic, random traffic,
we use traffic workloads from a graph algorithm as real-
world benchmarks to test network performance. The appli-
cation traffic is the complete set of communication messages
between nodes during Bellman-Ford shortest path computa-
tions mapped onto finite number of NoC PEs. The original
computation is based on a Barrier Synchronized Parallel model
that divides computation into separate steps [3]. Since the
overall run time for the whole computation depends on each
step period, the maximum number of cycles to route a single
step is an important metric for performance evaluation. We
use MLpart [23] and load-balanced PE assignment.

B. Results

In this section, we focus on 8x8 mesh networks composed
by both the split-merge switches and the CONNECT switches
with data width of 32 bits and buffer depth of 16. We configure
both DOR and WSF split-merge switches. To show the effects
of number of VCs on the network performance, we also
simulate the CONNECT network with 2VCs and 4VCs. The
routing algorithm for the CONNECT switch is DOR.

Fig. 6 shows the delay-load curve for the split-merge and
the CONNECT networks under uniform random traffic. At
low traffic injection rate, both 2VCs and 4VCs CONNECT
network have smaller average cycle delay compared with the
split-merge network. When the network is under light load,
the average delay is determined by the number of switches
that flits traverse after being injected into the network before
reaching their destinations. The CONNECT network has the
advantage of using one pipeline-staged router design which
halves the required cycles compared with the single pipeline
stage split-merge routers. However, since the single pipeline
stage split-merge routers run at half the cycle time, the end-to-
end latency is roughly the same. At higher traffic load, how-
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Fig. 6: Cycle Comparison between CONNECT and Split-
Merge PS NoC on Uniform Random Traffic on 8x8 Mesh
with 8 Flit Packets

ever, both the WSF and DOR split-merge networks outperform
the CONNECT networks by having higher saturation injection
rate. This suggests that the split-merge network is better at
handling congestion under the same bisection bandwidth. This
may be because the splits and merges have rich buffering
inside each single switch that reduces HoL blocking effects at
input buffers. We also see that the split-merge network with
DOR routing out-performs the WSF routing under uniform
random traffic, suggesting it is preferable to use the more
compact DOR switch.

Fig. 7 shows the network performance under the Bellman
Ford traffic benchmarks. The height of each column represents
the number of cycles required to route all messages in a
single Barrier-synchronized traffic step. Although the split-
merge network has two or three times the pipeline stages at
each switch, the total number of cycles to route a single step is
almost the same as the CONNECT networks. Fig. 8 shows the
actual time elapsed (in nanoseconds) when both types of net-
works run at their maximum frequency (303MHz and 219MHz
for split-merge networks and 104MHz for CONNECT). By
taking advantage of the simpler logic and higher frequency, the
split-merge networks routes the Bellman Ford traffic in half
or one-third the time of the VC-based CONNECT network.
This shows that the frequency advantage that the split-merge
network gets from pipelining translates directly into higher
application performance.

VI. CONCLUSIONS

We have reevaluated the split-merge paradigm for packet-
switched NoC design on FPGA platforms and made head-
to-head comparison with the VC-based CONNECT network.
We succeed in building two- and four-staged, low latency
switches for both the DOR and WSF routing algorithms. The
implementation on a Xilinx Virtex 6 FPGA demonstrates the
high performance of our network, showing that the entire
system 1is capable of running at a maximum frequencies up
to 300MHz, three times the frequency and throughput of the
CONNECT network with only slightly more area. Evaluat-
ing the network performance of split-merge and CONNECT
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networks under a common set of benchmarks on an 8x8§
mesh, we see that our split-merge network routes the same
amount of traffic three times as fast as the CONNECT mesh
network. A source-level distribution of our designs is available
http://ic.ese.upenn.edu/distributions/split_merge_fpt2012.
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