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Abstract—Many stand-alone, FPGA-based accelerators sepa-
rate the implementation of a computation into two components
– (1) a large parallel component that is realized as hardware on
spatial FPGA fabric and (2) a small control and co-ordination
component that is realized as software on embedded soft-core
processors like an off-the-shelf Xilinx Microblaze (or host offchip
CPU). While this hardware-software partitioning methodology
allows the designer to lower design effort when composing the
accelerator system, it introduces unnecessary Amdahl’s Law
bottlenecks and limits scalability. In this paper, we show how
to avoid these limitations with VLIW-SCORE: a combination of
a high-level parallel programming framework called SCORE and
a custom, hybrid VLIW hardware organization. We demonstrate
the benefits of this methodology for the SPICE circuit simulator
when implementing the simulation control algorithms. With our
spatial mapping flow we are able to improve performance by
≈30% (mean across circuit benchmarks) when compared to
the Microblaze implementation for the Xilinx Virtex-6 LX760
FPGA. For complete application acceleration, we see an improved
speedup from 1.9× for the Microblaze-based design to 2.6× for
the hybrid, custom VLIW implementation when comparing a
Xilinx Virtex-6 LX760 FPGA (40nm) with an Intel Core i7 965
CPU (45nm).

I. INTRODUCTION

Hardware-software partitioning approaches to system design
allow us to integrate parallel fabrics such as FPGAs with
sequential processors such as Intel CPUs into a unified ac-
celerator design. Modern FPGAs can be configured to imple-
ment embedded sequential processors like the Xilinx Microb-
laze [21] or the Altera NIOS [1] to reduce or even eliminate the
dependence on host offchip CPUs. These embedded processors
have a small area footprint on the FPGA fabric and allow
us to devote most of the FPGA resources for implementing
the core parallel computation. However, in many cases, this
partitioning approach is not driven by fundamental mapping
requirements but pragmatic considerations such as lower soft-
ware development time. In this partitioning methodology, the
designer offloads the sequential fraction of a large parallel
computation to the embedded processor [15]. However, this
can introduce unnecessary performance bottlenecks and limit
smooth scalability of the design to larger FPGA capacities.
It is possible to improve soft-processor performance through
replication [13], customization [23] or micro-architecture ex-
tensions [4], [24]. However, these approaches are not well
suited for implementing control components of computation as
they offer a coarse granularity for customization and scaling.
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Fig. 1: SPICE Runtime Distribution for s641 netlist
(Virtex-6 LX760 Parallel Implementation)
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Fig. 2: SPICE Runtime Distribution for r4k netlist
(Virtex-6 LX760 Parallel Implementation)

In this paper, we propose a unified spatial methodology
based on VLIW-SCORE. We use the existing, high-level
SCORE [3], [5] (Stream Computation Organized for Recon-
figurable Execution) framework described in Section III and
couple that to a custom, hybrid VLIW architecture described
in Section III-C. This allows us to compose the complete ac-
celerator system entirely on the parallel FPGA fabric without
resorting to sequential offload or excessively burdening the
programmer. We concretely demonstrate the benefit of this
approach using the case-study of the SPICE Circuit Simulator.
The SPICE algorithm, described later in Section IV, can
be decomposed into compute-intensive Model-Evaluation and
Matrix-Solve phases along with a small, sequential Iteration-
Control phase. In our previous work, we have shown how to
accelerate the compute-intensive components of SPICE using
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a custom VLIW architecture [11] for Model-Evaluation Phase
and a dataflow architecture [12] for the Sparse Matrix-Solve
phase.

To motivate the impact of implementation choice when
mapping the Iteration-Control phase of SPICE on an FPGA,
we show representative runtime breakdown for the s641
SPICE netlist in Figure 1. In the “Sequential” column we
observe that sequential runtime is dominated by the Model-
Evaluation and Sparse Matrix-Solve computation while the
Iteration Control is a small 7–8% fraction of total runtime.
When we parallelize the Model-Evaluation and the Sparse
Matrix-Solve phases on a Virtex-6 LX760, we notice that the
Iteration Control is now a significant ≈25% portion of total
runtime (see Column “CPU IterCtrl”). This suggests, that we
must parallelize this phase to achieve high overall speedup. In
Column “Microblaze IterCtrl”, we observe that a Microblaze
mapping is a poor implementation choice and results in lost
speedup. In column “VLIW IterCtrl” we show the effect of
implementing Iteration-Control phase on the a custom, hybrid
VLIW FPGA fabric. We observe that the FPGA implemen-
tation offers the best overall performance for the complete
simulator. When considering the additional r4k benchmark in
Figure 2, we observe that the FPGA implementation is superior
to the CPU-FPGA solution by 50%, emphasizing the merits
of an application-customized, stand-alone accelerator. All our
benchmarks exhibit characteristics between these two extremes
shown in Figure 1 and Figure 2. This suggests we must
consider stand-alone FPGA implementation methodologies to
get the full potential speedup for the accelerator.

The key contributions of this paper include:
• Design and demonstration of a hybrid, custom VLIW
architecture for implementing the control components of an
FPGA-based SPICE accelerator.
• Development of a compilation flow for the VLIW archi-
tecture with a static VLIW scheduler.
• Development of a SCORE streaming library and code-
generator for Xilinx Microblaze.
• Quantification of the speedups achieved by SPICE when
considering: (1) CPU-FPGA partitioning, (2) Microblaze-
based design and (3) a custom, hybrid VLIW mapping.

II. RELATED WORK

We will now review some previous approaches for im-
plementing control components of an FPGA accelerator. In
CHIMPS [15], a C-to-FPGA compilation framework automati-
cally extracts sequential traces from the computation and maps
them to embedded soft-processors when offchip CPU transfer
overheads are too large. However, for SPICE-like application
requirements, the Microblaze mappings can lead to poor re-
sults as shown in Figure 1 and Figure 2. The RAMP Blue [13]
project shows how to combine up to a thousand Microblaze
soft-processors on a rack of FPGA boards to implement
message-passing multi-processing fabrics. This granularity is
unsuitable for implementing the control components if we
desire balanced, overall speedups. And, this approach requires
the programmer to manually partition the computation across

convergence(
param double reltol, param double abstol,
input double new, input double old,
output boolean cvg) {

double max, diff, tol;

state dfg(new, old):
max=(new<old)? old:new;
diff=new-old;
tol=reltol*max+abstol;
cvg = (tol<diff);

}

Listing 1: SPICE Convergence Detection in TDF

multiple soft-processors. SPREE [23] shows how to improve
performance of the soft-processor through low-level archi-
tectural modifications such as pipelining, multiplier designs,
and novel shifters but delivers limited improvement (≈11%
in some cases) that is insufficient for properly parallelizing
SPICE. VESPA [24] and VEGAS [4] augment the NIOS
soft-processors with configurable, flexible vector support to
improve performance for data-parallel, regular computation.
However, these architectures are unsuitable for SPICE since
it has an insufficient auto-vectorization potential of 7% [8].
CUSTARD [6] provides efficient multi-threading support to
a MIPS-based soft-processor and can deliver up to 5× im-
provements for media processing benchmarks with a 50%
increase in area but only for integer-rich applications unlike
resource-hungry, floating-point applications such as SPICE.
Our SCORE-based approach provides a combination of au-
tomated, lightweight multi-threading as well as the customiz-
ability of the underlying hybrid VLIW datapath architecture
to deliver scalable results for floating-point computation.

III. VLIW-SCORE FRAMEWORK

As we saw in Figure 1 and Figure 2, the Iteration-Control
phase only accounts for ≈7% of total sequential runtime.
Our parallel implementation must take care to efficiently
implement this portion to avoid an Amdahl’s Law bottle-
neck. Simply mapping the sequential fraction of computation
on the host CPU (offchip CPU) may introduce additional
communication bottlenecks due to long round-trip latencies
(e.g. PCIe latencies of ≈1–10µs). A C description of compu-
tation mapped to an embedded soft-processor can be equally
limiting due to micro-architectural mismatch. Alternatively,
we may choose to implement the computation in low-level
VHDL or Verilog; however, they require careful cycle-level
scheduling of irregular code for best results. Instead of relying
on C or cycle-level RTL, we use a more suitable model
for describing the control components – SCORE [3], [5].
SCORE is a streaming system architecture that allows natural
expression of control-oriented, streaming computation and is
well-suited for high-performance FPGA implementation. In
general, it is a restricted subset of Hoare’s Communicating
Sequential Processes [9] (CSP) and an implementation of
the Kahn model [10]. We now briefly review the SCORE
framework.



convergence_compose(
param double reltol, param double abstol,
input double new, input double old,
output boolean cvg) {

double cvg_stream;

convergence(reltol, abstol, new, old,
cvg_stream);

reduce_cvg(cvg_stream, cvg);
}

Listing 2: SPICE Convergence Composition in TDF

A. Description of Computation

A SCORE program consists of a graph of operators (com-
pute) and segments (memory) linked to each other via streams
(interconnect). Streams provide point-to-point communication
and are realized as single-source, single-sink FIFO queues
of unbounded length. SCORE operators are implemented
as finite-state machine (FSM) operations that interact with
the rest of the computation only through streams thereby
preventing side-effects and decoupling the internal operation
of each operator from each other. A state-machine description
of a computation is a natural way to express the control-
oriented, irregular operations in the SPICE Iteration-Control
phase. The operations within a state can be described as a
straight-line dataflow computation on stream inputs and local
register values. SPICE convergence and timestep calculations
in the Iteration Controller can be naturally expressed as data-
parallel reduce and map functions which are amenable to
simple SCORE operators with dataflow states. We also observe
that each SCORE state will be evaluated using a deterministic
function (logic AND) of the input stream states without peek-
ing. This means that the operational semantics of the SCORE
compute model are fully deterministic and independent of
physical mapping substrate i.e. host CPU, embedded soft-
processor, and spatial FPGA logic. We use the TDF [3] (Task
Description Format) dataflow language for our expression. In
Listing 1, we show a simplified, illustrative example from
the SPICE Iteration-Control phase to show how one would
describe computation in SCORE. Each SCORE operator de-
clares its input and output streams. The param keyword
allows the programmer to specify a late-bound constant in
the code. Within the operator, computation is separated into
states with optional sensitivity on input streams. Each
stream can even carry eofr (end-of-frame) signaling to allow
the operator to clear internal states if necessary and provide
higher-level timing information to the processing. Multiple
SCORE operators can be composed hierarchically as shown
in Listing 2. This composition is a directed graph of operators
connected through stream connections (later see Figure 6 for
the SPICE Iteration-Control SCORE graph). We can test the
correctness of the compiled SCORE code by using the multi-
threaded C++ code-generation backend.

B. Parallelism

SCORE exposes different forms of parallelism within
the computation at multiple levels of granularity. State
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transition operations and bit-level streaming operations can be
customized to use spatial FPGA fabric (fine-grained,
bit-level parallelism). Each SCORE state
captures dataflow computation (instruction-level
parallelism, pipeline parallelism) on stream
inputs and local variables to generate stream outputs.
Multiple SCORE operators can be processed in parallel
(thread-level parallelism) if data is available in
the stream inputs. For stateless SCORE operators it is possible
to perform unrolling and replication to exploit data-level
parallelism by exposing Instruction-Level Parallelism (ILP).
For example, in Listing 1, we can unroll or replicate the
stateless operator multiple times to improve performance.

C. Hybrid VLIW FPGA Architecture

Fully-spatial implementation of the Iteration Controller
can result in unreasonable FPGA resource requirements. For
sparse, irregular, control-oriented sequential computation, this
spatial mapping will also result in mostly underutilized re-
sources. If we are to implement this computation to maximize
overall application performance on a single chip, we will
have to virtualize (time share) the computation over limited
FPGA capacity. To limit FPGA resource requirements while
exploiting application-specific, customization potential of FP-
GAs, we develop a custom, hybrid VLIW FPGA architecture,
shown in Figure 3. The resource-shared VLIW architecture



combines tight static scheduling with limited dynamic evalua-
tion to fully implement the sequential computation. The VLIW
architecture consists of a heterogeneous collection of floating-
point datapaths coupled to high-bandwidth local memories
and interconnected through a time-multiplexed communication
network. A VLIW instruction for the architecture consists of
read/write addresses for the input and output memories along
with multiplexer select signals for the datapath. The time-
multiplexed switch also contains configuration instructions
that provide routing information to schedule communication
between the input and output ports. We can efficiently store the
VLIW configuration in on-chip memories (distributed RAMs).

SCORE Compatibility The SCORE framework [3] which
was originally designed for rapidly-reconfigurable, page-based
reconfigurable architectures like the HSRA [19] does not
immediately match commercial FPGA capability. The Hybrid
VLIW architecture shown in Figure 3 is a new implemen-
tation model for the SCORE framework. It is an effective
backend target for TDF as it can simultaneously support both
(1) streaming parallelism across SCORE operators and (2)
dataflow parallelism within each SCORE state. The SCORE
description allows a straightforward separation of computation
into static and dynamic portions. The dataflow within a state
can be considered static. For example, the code to compute
cvg in state dfg of operator convergence in Listing 1 is
a static dataflow expression. The data-dependent state tran-
sition and operator selection from multiple active SCORE
operators over resource-shared VLIW hardware is considered
dynamic. For example, we can fire state dfg in operator
convergence of Listing 1 only when we dynamically detect
data presence on both inputs. We compile static components
to the custom VLIW datapaths and the dynamic components
to the lightweight selection logic as shown in Figure 3.

VLIW-SCORE Compilation How do we compile this
mix of static and dynamic SCORE processing to an FPGA
effectively? We typically observe that we do not activate all
SCORE operators uniformly. Certain portions of the graph
are fired more often than others. Moreover, these graphs
contain a diverse set of floating-point functions such as adds,
multiplies, divides, square-roots. Not all functions are used
equally either. Both of these observations help us engineer our
custom compiler. We customize the number of VLIW engines
and the mix of hardware functions in each VLIW engine in a
manner that is proportional to the activation frequency of each
SCORE operator as well as instruction distribution with each
operator. For more details relevant to SPICE Iteration Control
see Section V-B.

Static Mapping: We statically schedule the individual state
expressions to ensure high utilization of VLIW resources. The
static scheduler generates a VLIW configuration [7] for the
execution that contains pre-computed datapath, memory and
switch controls. For example, for the SCORE code shown in
Listing 1, we show the custom datapath and a cycle-by-cycle
static schedule for the operators and the switch in Figure 4.
We can also map SCORE operators to separate VLIW engines
interconnected by streams. For example, the new and old

streams in Figure 4 connect to other VLIW engines.
Dynamic Mapping: We also compile dynamic state transi-

tion operations as well as SCORE operator selection to spatial
FPGA hardware. We support lightweight spatial evaluation of
state transition conditions as a function of stream full/empty
signals. This dynamic logic then loads the pre-compiled static
context for the active SCORE operator and state by simply
computing an address offset for the context. In Figure 4, the
static schedule is activated when the dynamic logic determines
that the stream ports have valid data and space to write outputs.

D. Microblaze Architecture

We also map the computation to an embedded Microblaze
soft-processor from the same high-level SCORE description.
We develop a code-generator backend for SCORE to produce
C code that is suitable for the embedded processor. The code-
generator targets a stream library we developed for support-
ing stream-level operations on the Microblaze. The library
transparently provides the same set of streaming interactions
with other SCORE operators that are (1) running on the Mi-
croblaze, or (2) spatial datapaths connected through streaming
FSL links. The Microblaze implementation interacts with the
rest of the spatial FPGA fabric through FSL streams. The
SCORE operators are implemented as light-weight PThreads
managed by the embedded OS (Xilkernel [22]). Certain data-
parallel interfacing computation is still implemented spatially
connected to FSL links. We develop a lightweight runtime
customized for the Microblaze to support operator and stream
allocation along with buffer management.

IV. APPLICATION CASE STUDY: SPICE

SPICE simulates the dynamic analog behavior of a circuit
described by non-linear differential equations. SPICE circuit
equations model the linear (e.g. resistors, capacitors, inductors)
and non-linear (e.g. diodes, transistors) behavior of devices and
the Kirchoff’s Current Law at the different nodes and branches
of the circuit. SPICE solves the non-linear differential circuit
equations by computing small-signal linear operating-point
approximations for the non-linear elements and discretizing
continuous time behavior of time-varying elements until ter-
mination ( 1© in Figure 5). The linearized system of equations
is represented as a solution of A~x = ~b, where A is the matrix
of circuit conductances, ~b is the vector of known currents and
voltage quantities and ~x is the vector of unknown voltages
and branch currents. The simulator calculates entries in A
and ~b from the device model equations that describe device
transconductance (e.g., Ohm’s law for resistors, transistor I-
V characteristics) in the Model-Evaluation phase ( 2© in
Figure 5). It then solves for ~x using a sparse linear matrix
solver in the Matrix-Solve phase ( 3© in Figure 5). The
Model-Evaluation and Sparse Matrix-Solve phases dominant
total SPICE runtime and have been accelerated using FPGAs
previously in [11], [12].

The Iteration-Control phase manages two kinds of iterative
loops: 1© a loop for linearizing the non-linear elements of the
circuit, and 2© another loop for advancing the timestep of the



simulation. We show these loops in Figure 5. The Newton-
Raphson algorithm is used to compute the linear operating-
point for the non-linear devices like diodes and transistors
with custom convergence conditions ( a©). Additionally, an
adaptive time-stepping algorithm based on truncation error
calculation ( b©) is used for handling the time-varying devices
like capacitors and inductors. SPICE also supports a dynamic
breakpoint processing logic for handling source transition
timesteps in the voltage and current sources ( c©). The analysis
state machines ( d©) implement the loop control algorithms for
performing DC and transient analysis.

We now look at SPICE Iteration Control in greater detail.
We show the high-level SCORE representation of the SPICE
Iteration Controller in Figure 6. In the remainder of this
section, we will explain the different computations within
the SPICE Iteration-Control phase and attempt to understand
performance characteristics that motivate a spatial FPGA map-
ping.

Convergence Condition (converge SCORE operator in
Figure 6): The simulator declares convergence when two
consecutive iterations generate solution vectors and non-linear
approximations that are within a prescribed tolerance re-
spectively (See Equation 1 and Equation 2). The closeness
between the values in consecutive iterations is parametrized
in terms of user-specified tolerance values: reltol (relative
tolerance), abstol (absolute tolerance), and vntol (voltage
tolerance). In these equations, ~Vi or ~Ii represent the voltage or
current unknowns in the i-th iteration of the Newton-Raphson
loop. The convergence conditions compare the current solution
vector in iteration (i) with the previous iteration (i−1). This is
a purely data-parallel computation on the voltage and current
vectors that can be trivially parallelized. We have previously
shown simplified SCORE code for Equation 2 in Listing 1 and
Listing 2.

|~Vi − ~Vi−1| ≤ reltol ·max (|~Vi|, |~Vi−1|) + vntol (1)

|~Ii − ~Ii−1| ≤ reltol ·max (|~Ii|, |~Ii−1|) + abstol (2)

Local Truncation Error (LTE) (LTE SCORE operator
in Figure 6): Local Truncation Error is a local estimate of
accuracy of the Trapezoidal approximation used for integra-
tion. The truncation-error-based time-stepping algorithm in
spice3f5 computes the next stepsize δn+1 as a function of
the LTE (ε) of the current iteration and a Trapezoidal divided-
difference approximation (DD3) of the charges (Q) at a few
previous iterations (See Equation 3). For a target LTE, the
Iteration Controller can match the stepsize to the rate of change
of circuit quantities. If the circuit quantities are changing too
rapidly, it can slow down the simulation by generating finer
timesteps. This allows the simulator to properly resolve the
rapidly changing circuit quantities. Alternately, if the circuit
is quiescent (e.g. digital circuits between clock edges), the
simulator can take larger timesteps for a faster simulation.
The stepsize δn+1 is added to the current timestep to advance
the simulation as shown in Equation 4. The truncation error
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computation is also a data-parallel operation on the charge and
current vectors across a few previous timesteps.

δn+1 =

√
trtol · ε

max ( |DD3(Q)|
12 , abstol)

(3)

tn+1 = tn + δn+1 (4)

Breakpoints (breakpoint, accept SCORE operators
in Figure 6): The calculation of the timestep based on divided
differences in Equation 3 assumes that the physical circuit
quantities being approximated are continuously differentiable.
However, when the source elements suddenly change value
(e.g. Piece-Wise Linear sources), they introduce a discon-
tinuity. SPICE stores these timepoints as breakpoints and
forces a circuit evaluation at the breakpoint using a first-
order backward-Euler integration. The breakpoint computation
is specific to each circuit and data-dependent on the behavior
of the circuit simulation. There is limited dataflow parallelism
available when computing and updating breakpoints.

Analysis State Machines (spicestmc, nistmc SCORE
operators in Figure 6): The loop control logic is managed
by the SPICE analysis state machines. These state machines
are responsible for organizing the simulation steps, handling
error conditions, determining convergence and announcing
termination. We separate these state machines into two parts:
(1) a high-level controller spicestmc that manages the DC
and transient analysis along with the timestepping algorithm
(the outer-loop in Figure 5), and (2) the iteration controller
nistmc that invokes Model-Evaluation and Sparse Matrix-
Solve phases at the right time (the inner loop in Figure 5).
The state machine evaluation sequence is specific to each
circuit and data-dependent on the result of circuit behavior.
This stage is difficult to parallelize and we extract limited
dataflow parallelism (i.e. ILP) from state evaluations.
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V. METHODOLOGY

We now describe our experimental methodology that en-
ables comparing the different FPGA-based implementations
of the SPICE Iteration-Control phase. We show a high-level
representation of our experimental flow in Figure 7.

A. Verification Backend

To verify correctness of our implementation, we perform
a functional SCORE simulation of the Iteration Control al-
gorithms and compare our results with spice3f5 as shown
in Figure 7. We generate multi-threaded C++ code from the
SCORE compiler to obtain a functionally-correct implementa-
tion of the SCORE description of Iteration Control. Then, we
integrate the SCORE runtime into spice3f5 to communicate
relevant SPICE state to our SCORE implementation using
Inter-Process Communication (IPC). We perform modular
verification of individual SCORE operators by letting the
spice3f5 process handle the rest of the computation. We
then empirically compare the sequence of visited states in the
two processes to determine correct operation. A few cases
involving floating-point rounding resulted in a mismatched
state visit sequence but delivered the exact same timesteps
and simulation results.

B. Mapping Flow

As discussed in Section III, we develop a new implemen-
tation model for SCORE based on resource sharing and static
scheduling. We are now able to compile multiple SCORE
states and even multiple SCORE operators onto the same set
of VLIW datapaths if required. But how do we decide what is
resource-shared? We choose an allocation of states and oper-
ators to custom, hybrid VLIW engines through a combination
of compiler-driven and simulation-driven heuristic as shown
in Figure 7.

To do this, we first count the number of state and operator
activations corresponding to the SCORE operator graph of
the Iteration Control computation from a spice3f5 run. An
activation corresponds to a state within that SCORE operator
getting fired. This happens when the state transition condition
is met i.e. stream inputs have valid data and stream outputs
have sufficient spare capacity. In Table I, we show the dynamic
activation counts for the different SCORE operators for a
representative run. We observe that the LTE and Converge

TABLE I: SCORE Operator Activation Frequency for a
simple Resistor-Capacitor-Diode circuit

Operator Total Activations/ Iteration Percent of Total
converge 1088465 64.394
LTE 601076 35.560
accept 299 0.017
breakpoint 48 0.002
nistmc 152 0.009
spicestmc 262 0.015

T = Tclk ·

( ∑
i∈operator

( ∑
n∈state

active(i, n) ∗ cycles(i, n)
))

Fig. 8: FPGA Cycles for Iteration-Control

calculation dominate the activation counts. The activity mea-
surement also allows us to determine the runtime of the two
FPGA implementations by multiplying the state activations
with the cycle count per state as shown in Figure 8.

Next, we measure the number of floating-point instructions
and their types in the different SCORE operators as shown
in Table II. These statistics are obtained from the optimized
operation graphs generated by tdfc, the SCORE compiler.
We observe that If-Mux and Rest instructions dominate total
count but can be implemented cheaply on VLIW fabric. The
floating-point Add is the next most frequent instruction which
influences our VLIW datapath mix. We also note that we need
only one SQRT floating-point operation and no other expen-
sive floating-point functions (e.g. logarithm, exponential).

As shown in Figure 7, we first choose the number of VLIW
engines and then choose a datapath-mix within each engine.
We assign LTE and converge operators each to their own
VLIW engines (12 datapaths each) scheduled using software-
pipelining to exploit data-parallelism. We combine the rest of
the Iteration Control computation into a single VLIW engine
(4 datapaths) compiled using straight-line dataflow scheduling.
We tabulate resource costs in Table IV.

C. Hybrid, Custom VLIW Backend

For the statically-scheduled implementation, we obtain the
cycle counts from the scheduler for each state of every SCORE
operator. We implement the data-parallel computation in LTE
and Converge operators using the software-pipelined sched-
uler [11] with an unroll factor of 10. We implement the sequen-
tial state-machine logic in nistmc and spicestmc along
with the breakpoint operators using a simple Dataflow
scheduler (without any unrolling). We combine these two
schedules to assemble the spatial implementation of the It-

TABLE II: Compiled Instruction Counts

Operator Add Mult. Div Sqrt If Rest Total
converge 7 1 0 0 6 6 20
LTE 16 8 9 1 21 20 75
accept 81 2 1 0 56 80 220
breakpoint 95 2 1 0 110 122 330
nistmc 2 0 0 0 8 14 24
spicestmc 29 15 6 0 79 83 212
Total 230 28 17 1 280 327 733
Column Rest includes compare, bool, floor, ceiling, and other special func.
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TABLE III: Scheduled and Measured cycle counts
(sum of all SCORE states)

Operator Target Scheduler Cycles
converge VLIW Graphstep 16
LTE VLIW Graphstep 47
accept VLIW Dataflow 400
breakpoint VLIW Dataflow 422
nistmc VLIW Dataflow 124
spicestmc VLIW Dataflow 1406
accept Microblaze - 17271
breakpoint Microblaze - 15764
nistmc Microblaze - 5696
spicestmc Microblaze - 58555

eration Controller as represented in Figure 7. Presently, our
statically-scheduled implementation operates at 200 MHz. We
may be able to improve the frequency of our implementation
but are currently limited by the frequency of the Xilinx
Coregen double-precision floating-point divider. We use the
scheduled cycle counts from our VLIW compiler to compute
the total time required (see Table III).

D. Microblaze Backend

A Microblaze implementation of the data-parallel, floating-
point intensive computation in LTE and Converge blocks
will result in extremely poor performance that is substantially
worse than what we present here. This is primarily due to
poor double-precision floating-point support (10–100 cycles/-
operation). Hence, we do not consider that implementation
for our comparisons and implement these two data-parallel
computations as VLIW engines. The Microblaze implemen-
tation only maps the SPICE analysis state-machine logic as
illustrated in Figure 7. The Microblaze soft-processor along
with supporting logic is designed to operate at 100 MHz while
consuming 3734 slices of area [20]. The Microblaze uses
low-latency onchip insruction memories connected over the
PLB bus. Streaming data connections between the Microblaze
processors is implemented using FSL links. We tabulate the
cost model for these two designs in Table IV. We measure
the number of Microblaze clock cycles to implement each
state of every SCORE operator using a hardware counter (see
Table III).

Finally, we compare both of these implementations with
spice3f5 running on a 2.67 GHz Intel Core i7 965 under
two scenarios. We first consider the Iteration-Control phase

TABLE IV: FPGA Resource Usage (Virtex-6 LX760)

SCORE VLIW Area Memory
Operators Datapaths (Slices) (BRAMs)
LTE (1) 12 10917 28
converge (2) 12 10389 9
breakpoint, nistmc,
accept, spicestmc (3)

4 3644 6

Microblaze+Peripherals (4) 1504 16
Custom, Hybrid VLIW Total (1+2+3) 24950 43
Microblaze Total (1+2+4) 22810 53

running on the host CPU while the Model-Evaluation and
Matrix-Solve phases are implemented on an FPGA PCI board.
In this model, we count the cost of PCI transfer in our
sequential runtime. To compute overall application speedups,
we compare fully sequential implementation of spice3f5
with the FPGA implementation of the complete simulator. We
measure runtime using the PAPI 4.0 [14] performance counters
on a 64-bit Linux workstation running Ubuntu Lucid Lynx
10.04. We perform experiments with the SPICE simulator
across circuits collected from Simucad [16] (RAM netlists),
University of Michigan [17] (Clocktrees), UBC [18] (Wave-
Pipelined Circuits) and IBM [2] (ISCAS 98 benchmarks).

VI. EVALUATION

In this section, we characterize the speedup of the SCORE
implementation of SPICE. Our studies show how we could
avoid limiting overall speedup due to potential Amdahl’s Law
bottlenecks. We first show complete application-level impact
of the different FPGA mappings while considering full-system
partitioning to deliver a balanced overall design. We then
explain the speedup behavior of Iteration-Control.

A. Application-Level Impact

We will first evaluate the impact of mapping the sequential
fraction of SPICE under the three implementation targets on
overall SPICE performance (1) host, offchip CPU (2) Mi-
croblaze and (3) Hybrid VLIW. We show speedups equations
for these three implementation configurations in Figure 9.
The composite SPICE FPGA accelerator is projected to use
≈90% of the total FPGA resources of the Virtex-6 LX760
with the Iteration-Control phase accounting for ≈17% of total
resources. Remember, the Iteration-Control phase accounted
for about 7% of sequential runtime but now accounts for a
disproportionate 17% of area. This suggests that we pay a



Speeduphybrid vliw =
Tseq(LTE + convergence+ breakpoint+ nistmc+ spicestmc)

Thybrid vliw(LTE + convergence+ breakpoint+ nistmc+ spicestmc)
(5)

Speedupmicroblaze =
Tseq(LTE + convergence+ breakpoint+ nistmc+ spicestmc)

Thybrid vliw(LTE + convergence) + Tmicroblaze(breakpoint+ nistmc+ spicestmc)
(6)

Speedupcpu−fpga =
Tseq(LTE + convergence+ breakpoint+ nistmc+ spicestmc)

Thybrid vliw(LTE + convergence) + Tseq(breakpoint+ nistmc+ spicestmc)
(7)

Tseq(x) = Sequential CPU time, Thybrid vliw(x) = Parallel VLIW time, Tmicroblaze(x) = Sequential Microblaze time

Fig. 9: Speedup Calculation Equations for SPICE Iteration-Control Phase
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Fig. 10: Complete SPICE Application Speedups
(Virtex-6 LX760 vs. Intel Core i7 965)

higher area cost to accelerate the hard-to-parallelize sequential
component of SPICE to avoid Amdahl’s Law bottleneck.

B. Overall SPICE Speedups

In Figure 10 we summarize the speedups achieved for the
complete SPICE simulator under the same three scenarios as
before. The custom, hybrid VLIW implementation provides
the highest overall mean speedups of 2.6×(1.3×–11.1×).
The Microblaze implementation is outperformed by even the
Sequential implementation of Iteration Control. We are able
to achieve a mere 1.9× mean speedups (0.94×–7.8×) across
our benchmark set if we implement the Iteration Controller on
the Microblaze. This approach only delivers this speedup for
very large circuits where the Iteration Control phase is a tiny
fraction of total runtime. For the circuits in our benchmark
set, even the naı̈ve CPU-FPGA implementation of Iteration-
Control phase deliver 2.4×(mean) speedup.

C. Iteration-Control Performance

Let us now understand the performance trends within the
Iteration-Control phase for the Microblaze and VLIW map-
pings. We first compare the CPU and FPGA implementations
of the Iteration-Control phase of SPICE as a stand-alone
computation. In Figure 11, we plot the speedup achieved by
our hybrid FPGA architecture over the sequential implemen-
tation on an Intel Core i7 965. We are able to accelerate
this phase of SPICE by 1.07–3.3× across the benchmark set
(mean of 2.12×). We deliver the higher speedups of around
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Fig. 11: Hybrid VLIW Speedups
(12-datapath Virtex-6 LX760 vs. Intel Core i7 965)

3.3× for the larger circuit sizes. This is because the data-
parallel evaluation of the convergence and LTE equations
increasingly dominate at large circuit sizes.

Next, we consider a Microblaze implementation of the
state-machine and breakpoint-processing logic. In
this arrangement, the LTE and Converge operations continue
to be implemented over custom, hybrid VLIW hardware.
We compute speedup for this phase using the formula rep-
resented in Figure 9. The performance of this lightweight
implementation is shown in Figure 12. Unfortunately, this
implementation actually slows down the computation by as
much as 30× for small circuits while delivering speedups of
2.9× for the larger benchmarks. In contrast, we can achieve
≈30% higher speedups (up to 3.3×) for all circuit sizes for
the custom, hybrid VLIW FPGA architecture as shown earlier
in Figure 11. The reasons for this slowdown include (1) lower
clock frequency of the processor, (2) sequential nature of the
processor architecture and (3) poor double-precision floating-
point support (10s-100s of cycles/function).

Finally, in Figure 13, we show performance scaling with
FPGA area of the complete Iteration Controller averaged
across multiple benchmarks. As shown, in our current design
configuration, we only allocate a small fraction (≈ 15%)
of the entire Virtex-6 LX760 to this phase while devoting
the rest of the of the area to Model-Evaluation and Sparse
Matrix-Solve phases for maximum overall SPICE acceleration.
With increasing FPGA capacity, our VLIW design can scale
gracefully beyond the current configuration. This suggests that
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Fig. 12: Microblaze Speedups
(Virtex-6 LX760 FPGA vs. Intel Core i7 965
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Fig. 13: Performance Scaling

there is an additional 2–3× worth of parallelism left in the
Iteration Control phase that can be exploited with additional
area.

VII. CONCLUSIONS

Applications like SPICE often contain control components
(Iteration-Control phase) that make it challenging to fully
parallelize the application on an FPGA accelerator. If we map
these control components to embedded soft-processors like
an off-the-shelf Xilinx Microblaze, our overall speedups are
limited to a mean of 1.9× (max 7.8×). In contrast, if we use
the SCORE framework to map the control components to a
custom hybrid VLIW architecture, we can deliver higher mean
speedups of 2.6× (max 11.1×). We are able to deliver these
speedups through higher-level, parallel expression in SCORE
that enables exploiting a combination of dataflow and coarse-
grained parallelism in the computation and implementing this
parallelism efficiently on a hybrid, VLIW substrate. In future
work, we will examine the opportunity to generate stand-alone
FPGA designs for a range of other applications.

VIII. DOWNLOAD

The source code for the SCORE framework is publicly
available at: http://www.github.com/nachiket. We encourage
the community to download, use and contribute to these tools.
We will continue to add language refinements, extensions, and
new backends into the public repository. We would also like
to acknowledge the help of Eylon Caspi in our efforts.
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