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Abstract. The early decades of computing were marked by limited resources.
However, as we enter the twenty-first century, silicon is offering enormous com-
puting resources on a single die and molecular-scale devices appear plausible
offering a path to even greater capacities. Exploiting the capacities of these mod-
ern and future devices demands different computational models and radical shifts
in the way we organize, capture, and optimize computations. A key shift is to-
ward spatially organized computation. A natural consequence is that the domi-
nant effects which govern our computing space change from the total number of
operations and temporal locality to interconnect complexity and spatial locality.
Old computational models which hide, ignore, or obfuscate communication and
emphasize temporal sequences inhibit the exploitation of these modern capaci-
ties, motivating the need for new models which make communication and spatial
organization more apparent.

1 Introduction

Severely limited physical capacity has been a stark reality of computer design from the
1940’s. In the pre-VLSI era, we were limited by the physical bulk and cost of relays,
vacuum tubes, and discrete transistors. In the early VLSI era, we were limited by the ca-
pacity of a single chip. Consequently, practical computing devices have been organized
around clever ways to use small amounts of hardware to solve large problems.

The advent of compact memory technologies (core memory, IC memories, DRAMs)
coupled with the observation that we could describe a computation and its state com-
pactly, allowed us to reduce the size of a computation by time-multiplexing the active
hardware across many operations in the computation. The most familiar embodiment of
this is the sequentialprocessor, where we use a few tens of bits to store each instruction,
a large memory to store the state of the computation, and a single, or small number, of
active computing devices to evaluate the large computation sequentially.

Our conventional abstractions for describing computations (the Instruction Set Ar-
chitecture (ISA) at the machine code level, sequential programming languages like C,
FORTRAN, and Java at the programmer level) grew out of this poverty. They allowed
programmers and compilers to describe computations in a manner cognizant of the ca-
pacity limitations of these devices. They focused the developer on the costly items for
these machines: the operations and the use of memory. Programs were optimized by
reducing the number of operations and minimizing the amount of live state.

As we are all aware, the steady shrink of feature sizes in integrated circuit processing
has produced more capacity per die and per dollar at an exponential rate. Our computing
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devices have been steadily getting richer. While we may see the end of exponential IC
feature size scaling in the next couple of decades [12], advances in basic science are
suggesting ways to cheaply engineer computing devices at the molecular scale and in
three dimensions.

With exponentially increasing capacity, we inevitably reach a point where resource
capacity is no longer such a scarce capacity. That point may vary from task to task,
and there are some problems that may always feel the crunch of limited resources—
particularly problems we cannot attack today even with all of our well-honed tricks to
reduce system size. Nonetheless, for a larger and larger set of problems, we are crossing
the poverty threshold to the world of abundance.

By 2016, for example, silicon technology is promising 900 million gates in2.3 ×
1012λ2 of silicon [1]. However, we were already building quite competent single-chip
processors by the early 1990’s with less than2×109λ2 of silicon (e.g.[6] [23]). Various
estimates suggest we may be able to achieve1010 gates/cm2 using molecular scale
electronics [7] in only two dimensions; that is another 30× the density of 2016 silicon.

What happens when we have an abundance of resources?
Minimal existence has the advantage that it certainly continues to work in times of

plenty. But, it is not necessarily the best or more efficient way to implement a compu-
tation when more resources exist. It is this problem which computing has, for good and
practical reasons, largely ignored for the past 50 years. The current and future prospects
for high capacity devices and systems suggest it is now practical, beneficial, and nec-
essary to rethink the way we formulate computations. The abstractions, metrics, and
optimizations which suited capacity poor systems can be quite inappropriate when re-
sources are less limited. Consequently, we now need to find new models, optimizations,
and algorithms suitable to exploit our growing wealth of computational capacity.

2 Trend toward Spatial Computing

When capacity is abundant, we are not driven to the temporal extreme where we time-
multiplex a single active computation among a large number of operators. At the oppo-
site extreme, we give each operation its own active operator. Operations are intercon-
nected inspacerather thantime(See Figure1). Notably, this means we exploit the full
parallelism available in the task, completing the task in time proportional to the longest
path in the computation rather than in time proportional to the number of operations. In
fact, for many designs, we may be able to pipeline the computation and produce new
results every unit of operator delay.

The spatial design is larger than the minimum size temporal design, trading in-
creased area to hold more active operators for decreased time. As area becomes less of
a limiting factor in designs, we can accelerate our computation by moving to more spa-
tial designs. Further, even programmable spatial design are more effective at exploiting
high capacity than both conventional processors and multiprocessors.

Spatial designs were originally the sole domain of custom silicon application (e.g.
custom VLSI or ASICs for dedicated signal processing tasks, video compression). They
were only used for limited tasks which required computational rates infeasible with
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In spatial implementations, each operator exists at a different point in space, al-
lowing the computation to exploit parallelism to achieve high throughput and low
computational latencies. In temporal implementations, a small number of com-
pute resources are reused in time, allowing the computation to be implemented
compactly.

Fig. 1.Spatial versus Temporal Computation for the expressiony = Ax2 + Bx+ C

time-multiplexed, programmable designs. As capacity has grown, programmable spa-
tial designs have become increasingly practical using Field-Programmable Gate-Arrays
(FPGAs). With the capacity available in today’s FPGAs, many computing tasks can be
implemented entirely spatially in a single device (e.g.digital filters, video and cryp-
tographic encoding and decoding). It is worthwhile to note that the size of the FPGA
device is often equivalent to the size of the sequential processor, while providing orders
of magnitude greater performance [3].

Conventional, sequential processors struggle to extract more parallelism from tasks
described using the capacity poor sequential ISA abstraction. The abstraction, itself,
however limits and obfuscates available parallelism. Supporting the abstraction, re-
quires substantially more hardware capacity (e.g.renaming, issue logic, reorder buffers)
for model overhead than the capacity which is applied to the computational task.

Unlike conventional parallel processors, which are also based around heavily time-
multiplexed processing nodes using the ISA abstraction, spatial computations exploit
regularity in the computing task to build more compact, active processing nodes. A



spatial operator can be built or programmed to perform thesameoperation repeatedly
on a sequence of data. In the custom hardware world, this means we build a hardwired
datapath that does just one thing, but is used efficiently because we need to do that one
thing over and over again. In the FPGA or programmable spatial world, this means we
factor out the components of a computation which are needed repeatedly and configure
a spatial unit to compute them efficiently. Signal processing, encryption, compression,
and image manipulation are common examples of applications which require repeated
application of the same computation to a large set of data. More generally the oft-quoted
90/10 rule suggests that large portions of typical computations (90% of the dynamic
operation count) require the repeated application of identical or similar computational
functions (10% of the static task description). In contrast, parallel processing nodes still
require a large investment in memory to describe and hold state for a large number of
different operations. As a result, a spatial processing operator is less expensive than a
small sequential processing node. This, in part, is how an FPGA-like device can often
require as little area as a sequential processing device while offering orders of magni-
tude greater performance.

3 Interconnect Dominance

As we exploit more spatial parallelism by employing more active, communicating pro-
cessing elements, we must interconnect a greater number of components. For these
system sizes and relative delays, interconnect issues are of paramount importance as
interconnect can quickly becomes the dominant resource in the design consuming area,
delay, and energy.

If we simply placed operators randomly onto the available die space, with high
likelihood about half of the operators on the left half of the chip will want an input
from the right half of the chip, and vice-versa. That means, we have around N/2 wires
crossing the middle of the chip from left to right. We can make a similar argument from
top to bottom. Consequently, given a fixed number of wiring layers, it will require a
chip of sizeO(N2) simply to handleN communicating operators. In such a random
placement, the average distance between connected operators is1/3 of the length of the
chip in each dimension.

In the past we could ignore the effect of distance on delay because our components
were too small for interconnect delay across a chip to be a dominant delay component.
With growing chip capacity and shrinking feature sizes, the minimum delay across a
chip is now large compared to desirable computational cycles [1]. This is especially
troubling in light of the observation above that average communication distances for
random placement could be 2/3 of the length of the die side. Since we know that delay is
a function of distance with fundamental limits on the speed of propagation (e.g.speed of
light), the fact that distance between operators implies delays should not be surprising.
It was only the particular size and gate delay constants in early computing technologies
that allowed us to ignore this effect for so long. By the 45nm node in the ITRS Roadmap
[1], it looks like we will only be able to reach a radius of 200 custom 2-input gates [24]
or 10 programmable bit operators without making interconnect a large fraction of gate-
to-gate delay. This suggests we can, at most, travel a distance of a several thousand



custom gates or a several hundred programmable bit operators in a single cycle on an
optimally buffered wire. Since our systems will be large compared to these radii, it
becomes important both to layout computations to minimize communication distances
(See Section6) and to pipeline distant interconnect as in our HSRA [26].

4 New Abstractions

To serve our increasingly spatial, increasingly communication dominated, computa-
tions, we need compute models which emphasize the parallelism and communication
which occurs in these devices.

Conventional models hide communication by layering it on top of memory opera-
tions to a single, monolithic memory space; this makes it hard to rediscover the links
which exist between operators and impossible to identify with certainty all the links
which may exist. Using memory for communication was necessary to communicate
data compactly in capacity poor, time-multiplexed systems; it also facilitated a num-
ber of optimization, such as memory location reuse, which allowed one to reduce the
amount of capacity needed to evaluate a computation. However, these descriptions do
not facilitate efficient spatial computations.

For spatial computation, graph-based computing models offer a number of impor-
tant advantages over sequential models. Most notably, they support parallelism and
make communication links between operators explicit. A number of graph-based com-
puting models exist, dating at least back to Kahn [13]. We summarize a number of such
models in [2] and introduce SCORE, our own version which attempts to pull the best
ideas from many sources and provide a suitable model for today’s spatial computing.

In SCORE, the computation is a graph of operator nodes connected by persistent
dataflow links, orstreams. The graph can be of arbitrary size and may evolve dur-
ing the computation. Once a graph or subgraph is created it operates on the data it is
given through its input streams, producing new results to its output streams. Data on the
streams is tagged with presence, providing deterministic, timing-independent behavior
for the graph. Operators may be composed hierarchically.

In addition to exposing parallelism and communications, the persistent operators
or subgraphs help capture the regularity which exists in the computation. Heavily used
subgraphs with long persistence merit spatial implementations, whereas transient or
infrequently used subgraphs may still benefit from temporal implementations. The di-
vision point between the spatial and temporal domain can depend on the available ca-
pacity and desired performance.

5 Architectures

Armed with these new abstractions, we can envision a class of spatial architectures
suitable for this Very Large Scale Spatial Computing domain. At the highest level, we
might imagine an arbitrarily large array of computation and memory nodes supported
by suitable interconnect.

To manage this space cleanly, we organize the computing operators into a series of
compute pagesand the memory into a set ofmemory blocks(See Figure2). A compute



page, for example, might hold a few hundreds or thousands of programmable bit opera-
tors or a few tens or hundreds of configurable datapath elements. The page organization
has several advantages, including:
• It allows us to manage computations in modest size aggregates similar to the way we

manage memory in pages in virtual memory systems. In both cases, this reduces the
overhead in both time and space required to manage the mapping between virtual
and physical resources.
• If we need to virtualize the physical space, pages become the unit of virtualization.
• The page size can be chosen relative to the technology so that intra-page communi-

cation can occur within an aggressive compute cycle while inter-page communica-
tions is pipelined to accommodate the greater distances.
As long as the compute pages obey the streaming dataflow communications disci-

pline identified in the compute model, their microarchitecture becomes irrelevant to the
rest of the computation. This makes it possible to build heterogeneous devices which
include a wide range of spatial and temporal processing nodes (See Figure2). The mix
allows us to support the low-frequency and uncommon portions of the computation
compactly in temporal form, while supporting the dominant, regular computation ef-
ficiently with a spatial implementations. The composition and mix of node types can
evolve with the capacity offered by the technology while always supporting a single,
unifying compute model.

6 Optimizing Spatial Computations

With abundant capacity such that it is not always necessary to time-multiplex operators
to fit within available capacity, the key optimization will be to reduce the maximum
distancealong critical paths and loops. Area reduction does play a role here to the
extent it makes designs more compact and reduces the distances over which critical
signals must travel. Commonly communicating blocks should be arranged to optimize
spatial locality. The presence of communication links in the design representation is
vital to enabling these kinds of optimizations.

Area Our first concern is to place computations to reduce requisite wiring and switch-
ing. This is the traditional domain of placement and can reduce wiring requirements
from theO(N2) area identified above toO(N2p) [5], wherep is the exponent in Rent’s
Rule [16] and typically has a value around 2/3. With sufficient wiring layer growth, it
may be possible to even contain the two-dimensional active area toO(N) [4].

We have some control in the design of our algorithms over the interconnect richness,
p. It will be important to explore the extent to which we can design or optimize com-
puting structures to reducep. In the early days of VLSI, the systolic design style [14]
focused on planar structures with ap of 1/2 such that interconnect scaled conveniently
with computation. With interconnect area and delays becoming the truly dominating
effects, these ideas may now attain even greater practical importance than when they
were first introduced. Logic replication, which has long been used to minimize wires
crossing chip boundaries [20] [11], may play an important role here as well.
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Fig. 2. Compute Model Facilitates Heterogeneous Compute Pages and Component
Scaling

Space and TimeA key optimization will be understanding how much to fold and unfold
computations to match computational throughput rates, fit within the available area, and
minimize total path delay distances. Time multiplexed designs require more area be-
tween active computing operations but allow entire computations to be compact. Some-
times it will still be desirable to make a computation compact in this manner in order to
reduce the distance required to communicate to it or across it. This should be quite evi-
dent for off-critical path computations, operators in loops with large cycle bounds, and
operations with low relative operating frequency. An interesting question for the future
will be: when it is faster to time-multiplex even a critical path computation in order to
reduce the size of the circuit and hence the distance which the signals must travel?

Spatial Locality With interconnect playing such a dominant role, we want to optimize
the spatial locality of heavily communicating blocks. Some of this will arise out of
the area and path delay minimizing optimization described above. However, we can do
better in a number of important cases.



The computation may be composed of many cyclic subgraphs connected together,
perhaps even nested in larger cycles of computation. The distance around each cycle
will often limit the rate of computation. Consequently, it is important to place each
cycle as compactly as possible. Techniques such as cycle partitioning and replication
[21] may be important here. In many cases, we can cluster cycles tightly at the expense
of increasing the distances between the clustered cycle and the rest of the graph; to
the extent these links in and out of the cycle are not themselves on critical loops, they
can be pipelined to accommodate the additional delay without adversely impacting the
computation. Capturing this kind of timing freedom is an important function of the
computational model.

Communication among operators will often be dynamic and data dependent. When
not all communications are equally likely, we have the opportunity to preferentially
cluster the blocks involved in common communications more closely than less com-
monly communicating blocks. In the sequential processor world, people have long ex-
ploited instruction placement to increase spatial locality and hence virtual memory [9]
and cache performance [25]. Here, we need to cluster operations into spatial clusters to
reduce the distance delay along the most commonly used communication paths.

7 Spatial Algorithms

The algorithms suitable for spatially organized computations may be different from the
ones we have found suitable for temporal computations. The work in systolic architec-
tures provides a number of important algorithms, such as: matrix multiplication [15],
dynamic programming [8], sorting [17], and image processing. In many cases these
algorithms are specifically designed to minimize and regularize interconnect. Contem-
porary work in FPGA computation has offered a number of additional spatial algo-
rithms, including: sequence matching (dynamic programming) [10], satisfiability [28]
and set covering [19] search, regular expression matching [22], and image processing
[27] [18]. These algorithms demonstrate the power that comes from properly reformu-
lating algorithms for spatial computation. The development and understanding of new
spatial algorithms will be an important component of understanding how to exploit the
rich capacities available to us. In the capacity poor past, the kinds of techniques used
in spatial algorithms were almost unfathomable compared to the resources available;
today and tomorrow they may be essential.

8 Conclusions

We are rapidly entering a future where the capacity of our basic computing media is
more than sufficient to contain a significant fraction of our computing problems. This
opens up a much larger range of implementation options for us. However, the computing
models and abstractions developed during the era of limited capacity make it difficult
for us to exploit the capacity now available. Spatial computing architectures and designs
offer a promising alternative to temporal organization that can better exploit the rich
capacity becoming available. In these spatial designs, communication is a first order
concern. Consequently, it is important to develop models that expose communications



for optimization and to develop algorithms which are conscious of the costs and effects
of communications in order to fully exploit the performance potential of modern and
future capacity rich devices.
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