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Abstract

Recent developments suggest both plausible fabri-
cation techniques and viable architectures for build-
ing sublithographic Programmable Logic Arrays us-
ing molecular-scale wires and switches. Designs
at this scale will see much higher defect rates than
in conventional lithography. However, these defects
need not be an impediment to programmable logic
design as this scale. We introduce a strategy for tol-
erating defective crosspoints and develop a linear-
time, greedy algorithm for mapping PLA logic around
crosspoint defects. We note that P-term fanin must be
bounded to guarantee low overhead mapping and de-
velop analytical guidelines for bounding fanin. We
further quantify analytical and empirical mapping
overhead rates. Including fanin bounding, our greedy
mapping algorithm maps a large set of benchmark
designs with 13% average overhead for random junc-
tion defect rates as high as 20%.

1. Introduction

Recent work shows how to build nanoscale Pro-
grammable Logic Arrays (nanoPLAs) using the
bottom-up synthesis techniques being developed by
physical chemists]] [2] [3]. With these bottom-
up techniques, it is possible to build featuresg(
wires and programmable junctions) without relying
on lithography. As such, these techniques provide a
path to continue the advance of field-programmable
technology beyond the end of the traditional, litho-
graphic roadmape(g.[4]).

Nonetheless, nanoscale features, both in the sub-
lithographic and lithographic arenas, come with a
new set of challenges. Notably, as devices become
smaller, they are constructed from fewer and fewer
atoms and molecules. Since individual atoms behave
statistically, this means we have higher variance in
the shape and makeup of our devices, and a higher
likelihood that devices are simply unusable. Designs
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at this scalemust be defect tolerant. This, and other
aspects of sublithographic assembly techniques, sug-
gest that all devices we build at these scales will be
reconfigurable.

Hewlett-Packard has recently demonstrated an
8x8 crosshar using molecular switches at the cross-
points p]. Inthe HP crossbar, they observed that 85%
of the crosspoint junctions were programmable (15%
were defective). The HP crossbar is an early lab-
oratory prototype, and we expect these defect rates
to decrease. Nonetheless, we are unlikely to achieve
100% crosspoint yield at this scale using these kinds
of bottom-up, statistical fabrication techniques. If de-
fects are randomly distributed, at a 15% crosspoint
defect rate, essentially every row and column in a
100x 100 crosspoint array will contain a defective
junction.

With the techniques in this paper, we show that
nanoPLA arrays with a 20% crosspoint defect rate are
still usable with modest (13% including fanin bound-
ing) overhead. That is, despite the fact that no rows
or columns are free of defective junctions, we can still
make use of more than 90% of the nanowires. Snider
et al. have also looked at defect tolerant mapping us-
ing a similar defect model and shown that a 4-bit mi-
croprocessor can tolerate defect rates up to 26]% [

This defect mapping must be applied on a per-
array basis. Thatis, each nanoPLA will have a unique
defect pattern. Since nanoPLAs are a few microns
tall and 10-20 microns wide?], we can easily have
millions of these nanoPLAs on a modest die. Con-
sequently, it is important that we minimize the time
required to map around defects. To this end, we intro-
duce a linear-time, greedy mapping algorithm for as-
signing logical P-terms to physical nanowires avoid-
ing defective junctions in a fabricated nanoPLA.

Novel contributions of this work include:

e Formulation of defective crosspoint mapping prob-
lem for nanoPLAs

¢ Introduction of simple, greedy algorithm for linear-
time mapping around defects

e Analytical estimates on mapping times
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e Analytical identification of bounds on P-term fanin
driven by array size and defect rate

e Empirical and analytical characterization of map-
ping overhead for our proposed algorithm

In the next section, we review the emerging, bottom-

up fabrication techniques for nanowires and cross-

points and the architectural building blocks for

Lithographic-scale Address Decoder The pitch
of the nanowires can be much smaller than our litho-
graphic patterning. We will be using the crosspoint
programmability to configure logic functions into our
nanoscale devices. In order to do this, we need a
way to selectively place a defined voltage on a sin-
gle row and column wire in order to set the state of

restoration and nanoscale addressing. We then review the crosspoint. By constructing nanowires with dop-

the nanoPLA architecture (Secti@). In Section4,

we introduce our defect model. Sectibfiormulates
the problem and introduce the basic idea for the solu-
tion. Section6 reviews exact algorithms to solve the
identified mapping problem and develops our linear-
time heuristic algorithms. In Sectiofhy we analyze

ing profiles on their endslfl] [12], we can give each
nanowire an address (See left end of Figl(ed). The
dimensions of the address bit control regions can be
set to the lithographic pitch so that a set of crossed,
lithographic wires can be used to address a single
nanowire. Detailed information of this addressing

the algorithms based on expected case behavior and scheme can be found irl?] and [2].

derive bounds for input fanin (Secti@). Section9
provides experimental results which ground and con-
firm the analysis.

2. Substrate

Nanowire We can grow nanowires to controlled di-

mensions on the nanometer scale using seed catalysts

to define their diameter. Nanowires with diameters
down to 3nm have been demonstratéd With suit-
able doping, conduction through nanowires can be
controlled by an applied electrical field like Field-
Effect Transistorsg]. Techniques have been demon-
strated to align a set of nanowires into a single orien-
tation, close pack them, and transfer them onto a sur-

face. This step can be repeated and rotated by 90 de-

grees so that we get multiple layers of nanowi@s [

Programmable Crosspoints Over the past few

3. NanoPLA Architecture

NanoPLAs, like conventional PLAs, consist of
two programmable NOR planes (Figuté)). Each
of the NOR planes consists of two arrays: logic array
and buffer/inverter array.

The logic array is the programmable part of each
NOR plane. Its junctions are the bistable crosspoints
described in Sectio. The logic array implements
the OR function of its inputs, which is why the out-
puts of this array are called OR-terms. Each of the
connected junctions behaves like a diode, and each
OR-term is the wired OR logic of its inputs. The out-
put of each OR-term is pulled down weakly. If any of
the inputs is high, then it pulls up the OR-term output
(Figure1(b)).

The two states of the logic array junctions are:

years, many technologies have been demonstrated for 1) connected via a PN junction, 2) disconnected. If

molecular-scale memories. So far, they all seem to
have: (1) resistance which changes significantly be-
tween ON and OFF states, (2) the ability to be made
rectifying, and (3) the ability to turn the device ON
or OFF by applying a voltage differential across the
junction. UCLA and HP have demonstrated a number
of molecules which exhibit hysteresisl(].HP has
demonstrated an83 programmable crossbar and ob-
served that they could force an order of magnitude re-
sistance difference between ON and OFF state junc-
tions [B].

Restoring Crosspoint Programmable diode cross-
points in a crossbar array give us a programmable OR
array (See SectioBfor more detail). Diodes alone do
not give us cascadable logic. To achieve restoration,

these programmable diode stages can be followed by
dedicated, nonprogrammable restoring stages. The

restoring stages can also provide selective inversion.
DeHon and Wilson describe how to build a nanoscale

an input participates in an OR function, the junction
of that input and the OR-term nanowire representing
that function will be programmed “closed”; the junc-
tion will be left “open” when the input is not in the
OR function. The junctions are initially in the “open”
state. To program a junction “closed” a high voltage
difference is applied to the nanowires that cross the
junction. To change the junction state back to “open”,
we apply the opposite voltage polarity by switching
the place of the low voltage and high voltag# [

The second part of the NOR plane is the
buffer/inverter array. This array restores the input sig-
nals using the restoring, nonprogrammable junctions
(Section2). The OR-term signals can be selectively
inverted or buffered in this array. So the result of
the NOR plane is either a NOR function or an OR
function [2].

The restored outputs of the top NOR plane can be
the inputs of the bottom NOR plane; and vice versa;
e.g. a 4-level logic can be implemented by rotat-

nonprogrammable restoring stage using a stochastic ing the signals through the two NOR planes for 2

assembly of nanowires with doping profile§ [11].

rounds PJ.
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Figure 1. (a) NanoPLA Architecture. (b) Wired OR implemented with diodes.

4. Defect Model

In this section we discuss possible defects in the
nanoPLAs and the defect model used in this paper.
The two more probable defects that we focus on here
are: 1) Defects in programmable crosspoints, 2) De-
fects in nanowires. The defective nanowires can be
easily detected with the procedure suggeste®jn [
The time required to test the nanowires of each ar-
ray is linear in the code space size of the stochas-
tic address decoder. The defect models are broken
nanowires, stuck-at-0 and stuck-at-1.

Defects in programmable crosspoints are due to
the structure of the junctions, which is a sandwich of
bistable molecules between two layers of nanowires.
In each crosspoint there are only a few molecules.
For example, nanowires of widtitnm having cross
sectional area df5snn? can hold about8 molecules
[5]. (In[5] they have different active area size. There-
fore here the number of molecules is scaled accord-
ingly.) The programmability of a crosspoint comes
from the bistable attribute of the molecules located in
the crosspoint area. If there are too few molecules at
the crosspoint then the junction may never be able to
be programmed “closed”, or the “closed” state may

have higher resistance than the designed threshold

chosen for correct operation and timing of the PLA.

We abstract this into a simple crosspoint defect
model. Crosspoints will be in one of two states:

e programmable — crosspoint can be programmed
into both a “closed” state and an “open” state.

e non-programmable — crosspoint cannot be pro-
grammed into an adequate “closed” state, but can
be set into a suitable “open” state.

Crosspoints which cannot be programmed into a suit-
able “open” state will result in the entire horizon-

tal and vertical nanowires being unusable. We treat
these as nanowire defects rather than junction de-

5. Problem Statement
5.1. Overview

To implement a specific circuit on a nanoPLA, we
program up the logic arrays. This means that each
OR function of a design will be mapped to an OR-
term nanowire.

For clarity, we define the following terminology.
Thelogical inputsare the set of inputs to the OR func-
tions. The logical inputs includes the primary inputs
of the nanoPLA and the signals that are fed back from
the other NOR plane. In each OR function the set of
logical inputs that participate in the OR function is
calledON-inputsand those that do not participate are
calledOFF-inputs

H1 H2 H3 H4 HS  OR-terms H1 H2 H3 H4 H5 OR-terms
Vi a Vi -
7
v 1 X ﬁ( P II \ )
+ V2 +—
I XT T X 7 v
V3 +—t V3 1
L l L
va va 1
[ 1
- \ - ﬁ( ﬁ( ‘\ /
IV V! <
T <H R

Inputs a b ¢ d e

(CY

Inputs @ b ¢ d e

(b)

Figure 2. (a) Alogic array of a nanoPLA.
(b) Programmed logic array.

Henceforth we assume that the input nanowires
of logic arrays are previously assigned to the logical
inputs; and order of the logical inputs is preserved.
This assumption lets us use the same programming
process for all the inputs irrespective of whether they
are primary inputs or intermediate signals. Interme-
diate signals do not have full freedom in placement
because they are the OR-terms of the previous logic
array and they may already be programmed and as-
signed to fixed location.

To map each OR function to an OR-term

fects. Based on the physical model suggested above nanowire, the crosspoints of the OR-term nanowire

and discussion with physical scientists, we expect
these defects which “short” horizontal and vertical
nanowires to be much less likely and, consequently,
believe it is reasonable to treat them as wire defects.

associated with the ON-inputs of the OR function
are programmed “closed”, and crosspoints of OFF-
inputs are left “open”. Figur@ shows an example
of mapping four OR functionsf; = a + b+ ¢ + d,



fo=a+c+e, f3=b+c andfy = d+ e, with
logical inputs,a, b, ¢, d, ande. The logic array inputs

a to e are assigned to input nanowirésl to H5, re-
spectively. In the case like Figugb) where there

is no defect in the array, each OR function can be
mapped to any nanowire. Here OR functian® 4

are mapped to nanowirésl to V4 respectively.

5.2. Challenge

Logic arrays may contain defective junctions that

1 While F' is not empty
2
3

0 J O U

9
10
11 EndWhile

\* General heuristic matching algorithm *\

Choose a node f; € F
While ((f; is not matched) and
(W has non-visited by f; vertex) )
Choose a node w; € W
It (fi,w;) € E
Mark(f;, w;) as match,
Remove f; from F and w; from W
Else
Set w; visited by f;
EndWhile

cannot be programmed closed, as described in Sec

@)

tion 4. An OR function can be assigned to a phys-
ical OR-term nanowire if and only if each of the
ON-inputs of the OR function has a correspond-
ing programmable junction on the physical OR-term
nanowire.

If a logic array of a nanoPLA has defective junc-
tions as marked in Figur4(a), then the OR function
a-+c+e cannot be assigned to nanowitesor w2 be-
cause junctiongwl, ¢), (w2, ¢) and(w2, e) are non-

. ) 7
programmable, but it can be assigned to nanowiresg

9

10
11
12 EndWhile

w3, w4, andwb. Although the nanowires)1 andw?2
cannot implement the OR functien+- ¢ + e they are
still useful for some other OR functions suchbasd.

1 Order the elements in F' in decreasing order of ¢;

2
3
4

5
6

\* The algorithm used in this paper*\

While F' is not empty
Choose the first f; € F
While (f; is not matched) and
(W has non-visited by f; vertex)
Choose a random w; € W

It (k IV v (Jjr == 1)) \* try programming
i k=

all the ¢;’s crosspoints™\
Mark( f;, w;) as match,
Remove f; from F' and w; from W
Else
Set w; visited by f;
EndWhile

In spite of having defective junctions in a
nanowire, some OR functions can be successfully
mapped to that nanowire. The challenge is to find
an assignment of the OR functions to the OR-term
nanowires. Our key question iddow do we per-
form this assignment with a small number of spare
nanowires and in reasonable running time?

5.3. Idea

In each OR function there are always some OFF-
inputs,i.e. some of the junctions will always be left
open. If there is a nanowire with defective junctions
only at a subset of those positions, then this defec-
tive nanowire can be successfully assigned to the OR
function.

Let F' be the set of OR functions ail be the set
of physical OR-term nanowires. The problem is find-
ing an assignment of OR functions to the nanowires.
This problem can be formally stated as findingia
partite matchingrom the setf” to the setV'.

Definition of Bipartite Matching In a bipartite
graphG(Vy, Vs, E), the setM C FE is amatching
from V; to V4 if and only if the following conditions
hold:

Y , exists exactly one € V5, s.t. (u,v) € M.

ueVy

and

VV, exists at mostone € V;, s.t.(u,v) € M.
veVs

HereV; = F andV; = W andF is defined below.

(b)

Figure 3. The algorithm frameworks.

5.4. Formal Problem Statement

Let fo, f1,..., fir|—1 be the OR functionsi”, and
wo, Wi, ..., ww|—1 be the OR-term nanowiredy’.
If the number of inputs isV, then for all f; € F,
fi ([L‘70,[i71, ...,[L‘7N_1), WherEIi,j is 1 if input
j of OR function f; is ON and0 if OFF. Similarly
forall w, € W, w; = (Ji’(), Ji,la ceny Ji_’Nfl), where
Jir has valuel if the corresponding crosspoint is
programmable and if non-programmable.

G(F,W, E) is a directed bipartite graph. For every
fiin Fandw; in W, (f;,w;) € E if and only if:

(Lig < Jjx)

0<k<N-1

1)

Every matching of siz¢F| on this bipartite graph
is a valid assignment of the OR functions to the OR-
term nanowires, because it finds an assignment for all
of the OR functions inF'. Figure4(b) shows a bipar-
tite graphG(F, W, E). SetF is the set of OR func-
tions in Figure2, and selV is the set of nanowires in
the nanoPLA of Figurel(a). Figure4(c) shows one
possible matching.
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Figure 4. (a) The crosses show defective
junctions. (b) The graph of the OR-term
nanowire of part (a) and OR-functions of
Figure 2. (c) One possible assignment.

6. Algorithm
6.1. Graph Construction

To build the graphG(F, W, E) the first step is to
find the nodes in each of the seisand /. Each
OR function in the design is a node in. Marking
ON and OFF inputs of each OR function.,e( the
values off; ;) f; € F and all the inputs, 0 < k£ <
N-—1, takesO(| F|-N) computing operations. To find
the defect configuration of each OR-term nanowire
(i.e. the value of each;;), one should check the
programmability of all the junctions of each OR-term
nanowire. This take§V - |1/ |) programming and test
operations.

To make the sett/, the condition {) will be
checked for each pair dff;, w;). Checking it once
takesN computing operations, and checking it over
all of the pairs take® (N - |F'| - |IW|) computing op-
erations. So the total time complexity of the graph
construction ig N - |W|) programming and tesbp-
erations and (N - |F| - |IW|) computing operations.

6.2. Exact Algorithm

For now assume thdl’ is large enough so that
there exists a maximum matching of sizg. Later,
in Section?, we calculate how larg®” should be in
practice.

There are a number of exact algorithms to solve
the maximum bipartite matching problem, such as
the algorithm based on Ford-Fulkerson maximum
flow network algorithm 13] with time complexity
O (|V| - |E|) and Hopcroft-Karp 4] with time com-
plexity O (\/m \E|). In our graph|V| = |F| +
|W| and|E| = O(|F| - |W]), which makes the to-
tal time complexityO (x/(|F| + W) - |F|- |W|)
computing operations.

The time complexity of all of these matching al-

gorithm will be dominated by the time complexity
of graph construction of Sectiof.l. Therefore to

reduce the total time complexity, we suggest an ap-
proach that reduces th@ogram and tesbperations

of graph construction as well as the computing oper-
ations.

6.3. Greedy Heuristic Algorithm

There are heuristic algorithms that, with high
probability, and small time complexity find the max-
imum matching. A general heuristic algorithm is
shown in Figure3(a).

We distinguish the different heuristic algorithms
by the way they choose the nodes in lines 2 and 4
of Figure3(a). One way is to choose boghandw
randomly. Another way is to choose each of them
in increasing order of node degree. A combination of
the above is another option. We obtain our best results
by choosing the least degrgefrom F' and choosing
w randomly.

Here we show how we can eliminate the need to
actually build the grapldtz(F, W, E). There are two
points in the algorithm that are dependent on gr@ph
1) Choosingf;’'s based on their degreés, 2) Line 5
of Figure3(a) that checks the matching condition by
checking the existence of the edgk, w;).

To select OR-terms based on least degree, we
would need to sorf'. Instead of sortingf;'s of F’
based on their degree, the nodes can be sorted based
on theexpected valuef their degree. Lef’; be the
probability that a junction is programmable, and
be the number of ON-inputs in the OR functigh
The probability that f;,w;) € E is P;“. This is the
probability that the OR functiorf; can be assigned to
the nanowirew;. So theexpected valuef node de-
gree of f; is (P; - |W|). OrderingF based on the
expected valuef node degrees is the same as order-
ing it based on the value ef. This means there is no
need to build the graph for sorting purpose.

To test the condition of line 5 of Figua), in the
case that there is no graph, we need to program and
test every single nanowire that is picked up to be as-
signed to each OR functiofi. The time complexity
of mapping and testing i©(c;) for each OR func-
tion f;. In order to have time complexity ad(c;)
instead ofO(N) the I; ;s need to be stored effi-
ciently (sparsely). Hence by paying this cost there is
no longer a need to build the gragi ', W, E'), and
the total time complexity is only due to the algorithm
of finding a matching (Figurg(b)).

7. Analysis
7.1. Running Time Complexity

We first compute the worst-case time complex-
ity. As explained above, line 6 of the algorithm in

Figure3(b) takesO(c¢;) program and tesbperations.
The maximum number of iterations of the line 4 loop



is the total number of unmatched nanowires which is
|W|—i. The line 2 loop runs exactly foF'| iterations

in order to map each of the OR functions. So the total
number ofprogram and tesbperations in the worst-
case iO(X =17 (W] = i) - ;). It can be writ-
ten asO (|F| - |W| - cpr) wheney, is the maximum

of ¢;'s. In Section8 we show how to bound the size
of ¢, without scaling F'| by more than a small con-
stant factor. Sorting” in the first line of Figure3(b)
takesO(|F'|log(|F'|)) computing operations. So as-
suming|F'| ~ |W| ~ N, our greedy algorithm takes
N? program and tesbperations and) (N log(NV))
computing operations, while the exact approach takes
N? program and tesand O(NN3) computing opera-
tions.

On average the number of iterations will be
smaller than this. Letn; be the number of iterations
that it takes to find a match for OR functigh If we
want the expected value of the matching foin m;
nanowires to be 1 then:

E(Number of matching inm;) =1
m; - P§ =1=m; = P;“

)

So the average number of iterations of the line 4 loop
is P, “ for eachf;. and the total number of opera-
tions in the average case is:

i=|F|—1

Y (P

=0

(0] Ci) 3)

and replacing:;’s with cp;: O (|F| - (P - car))

If the value of ¢;; is small, wh|ch it is after
bounding fanin sizes, then the greedy algorithm takes
O(|F|) program and tesand O(|F|log(|F’|)) com-
puting operations on average, while the time com-
plexity of the graph construction in the exact ap-
proach isN? program and tesbperations an@(N?)
computing operations. Figum&b) shows the num-
ber of iterations to map each desig#i’(- P, “) for
bounded and unbounded which are nearly linear
graphs.

7.2. Area Overhead Estimation

Here we compute how largé” should be in prac-
tice. In the average case as shown before, if the size
of the unmatched set of nanowires when matching the
ith OR function is at leasP; “* then theexpected
value of finding a match in th|s set is 1. Therefore

Vo

0<i<|F|—1

Pre < W[ —1) 4)
defines a lower bound on the sizeldf.

Remember that in our algorithm the set of
nanowires thatf; can choose from, is of size
(|[W| —1). Therefore the probability of successfully

assigningjf; to a nanowire isl — (1 — PJCi)lw‘_i

Hence the probability of successfully mapping all the
OR functions is:

[F|-1

I1 (1 —(1- PJCi)‘W"f‘)

=0

®)

Let Y be the yield of mapping designs to nanoPLA.
Then the following inequality gives a tighter lower
bound on the size dfV’:

[Fl-1

11 (1 —(1- PJW)‘W'*Z’) >y

=0

(6)

8. Bounded Fanin

We show the effect of bounding the size gfs
with an example from the IWLS93 benchmadd.
In this example F'| = 1186, ¢p; = 772, andP; =
0.95. The lower bound ofi¥/| for mapping a single
nanowire withc; = ¢j; = 772 from Equation §), is:

(095" <W = 10" <W

If we decompose this OR function to 8 OR functions,
such that 7 of them hawg = 100, and 1 has; = 72,
then the lower bound ofi¥| to map all of these OR
functions is:

Mazx (0<Y<6 ((0.95)71% +4), ((0.95)~" +7)>
ST < W

Applying Equation 8) we also see that bounding the
fanin improves the mapping running time frorg2°
to 10° program and tesbperations.

Figure5 shows how an OR function with c=8, will
be decomposed into OR functions with< 3. Fig-
ure 6(a) shows which OR functions in each design
need to be divided to smaller fanin OR functions if
the size of IW| is desired to b&F'| or 1000 x |F'|. The
x-axis in this graph is the number of OR functions in
each design,e. | F|. Each point on the x-axis is ded-
icated to a single design witl#’| equal to the value
of x at that point. For example the highlighted yellow
diamonds show the; value of all the OR functions
of a design with|F'| = 1186. The curves show the
estimation in Equation4) of the maximum size of
¢ If |W| = |F|or [W] = 1000 x |F|. Assum-
ing |[W| = |F| and using Equation2j and @) the
value of the maximune;’s on the lower curve result
from P;~°“ < |F|, and further we can estimate the
lower bound oreys by ey < —logp, [F|. Similarly
the lower bounds for;’s related to the case when
|W| = 1000 x |F| will be —logp, (1,000 - |F]).

The graphs of Figuré(a) show that the number
of OR functions with large ON input set is relatively
small, and we also observed they cause very long
running time and large area overhead in mapping.
This suggests we should bound the size:gf with
—logp, |F| to getthe ratio ofl for [W|[/|F'| on aver-
age. Since the size of’s is bounded, in order to sort
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In (a) the OR functiora has c=8. In (b) it is divided into 3 OR functiolad, a2anda3. They are OR-ed together in logic
array 2 and make signal which is the same as the logic of the origimaDR function. The OR functioe is rotated

to logic array 1 and then to buffer array 1, which was original position. Two logic levels of delay are added to the
OR functiona. If the size of ON inputs of signal is more tharc,, then the decomposition process will be repeated for
signale. For an OR function witle ON inputs, the decomposition process hapgegs, , (c) times.

Figure 5. (a) The original design, (b) design with

F in the first line of the algorithm in Figurg(b) we
can use a radix sort with time complexity Of | F|),
bringing the total computation time of our greedy al-
gorithm toO(| F).

9. Experimental Results

The mapping algorithm is tested over three dif-
ferent benchmarks: 1) Selected elements of data-
path (See 7)), 2) Small examples from IWLS93
benchmark suit15], 3) PLA book examples16].

For statistical purposes each benchmark is mapped
100 times. The designs of these benchmarks have
been first synthesized to multilevel logic and rotated
through two NOR planes of a nanoPL2]]

Figure6(b) shows the graphs for estimation of to-
tal number of iteration to map OR functions of a de-
sign for bounded and unbounde@nd also the sim-
ulation results for bounded Figure6(b) shows that
the total number of iterations is generally linear in the
number of OR functiongF|, and well matched with
the calculation in Equatior8]. Figure6(c) shows the
average area overhead ratio over all the benchmark
set designs. Bounding the fanin scales the number
of OR functions by an average factor ofi1 for a
defect rate Py) of 0.20. The additional average fac-
tor of 1.02 is incurred after physically mapping these
OR functions onto nanowires. This brings the total
average overhead factor tol 3. The total number of
program and tesbperations to map each design, are
plotted in Figures(d). The blue line shows the size of
the OR functions. The slope of the pink graph is close
to the slope of the blue line that is one. This indicates
that the total number girogram and tesbperations
are linear to the size of the OR functions as explained
in Section7.1

The area overhead of this greedy algorithm is com-
pared with an exact matching algorithm forlax 4
multiplier that is implemented in two logic planes.
The first plane has 697 OR functions and 33 inputs

c value bounded by ¢, = 3.

and the other one has 25 OR functions and 697 in-
puts. In Figure7(a) area overhead of each of the

planes is plotted for both greedy and exact algorithm.
In Figure7(b) the ratio of the total area of the exact

algorithm over the total area of the greedy algorithm
is plotted. This shows that our greedy algorithm is

within a few percent of optimal on average for mod-

est fault rates.

10. Summary

A plausible architecture for nanoPLA design is
suggested ing]. The defect rate of different fabri-
cation processes is unknown but expected to be on
the order of a few defects per 100 junctions. This
suggests searching for an efficient programming op-
eration that tolerates the defective junctions. In this
paper we compare the exact matching algorithm with
a suggested greedy algorithm. Assuming it~
|W| = N, the time complexity of our algorithm is,
O(N) program and tesbperations an@ (N log(N))
computing operations, while the time complexity of
the exact algorithm plus graph constructionN&
program and tesbperations and)(N?3) computing
operations. We also showed that it is necessary to
bound the fanin size in order to achieve reasonable
running time and area overhead for matching. After
bounding the fanin, the time complexity of our algo-
rithm will be O(N') computing angprogram and test
operations. Including bounding the fanin and map-
ping, our algorithm can tolerate defect rates as high
as 20% with an average overhead factor of less than
13%.
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