
Appearing inIEEE International Conference on Field-Programmable Technology(FPT 2004), December 6–8, 2004

A Greedy Algorithm for Tolerating Defective Crosspoints in NanoPLA
Design

Helia Naeimi
Department of Computer Science
California Institute of Technology

Pasadena, CA 91125
<helia@caltech.edu >

André DeHon
Department of Computer Science
California Institute of Technology

Pasadena, CA 91125
<andre@cs.caltech.edu >

Abstract

Recent developments suggest both plausible fabri-
cation techniques and viable architectures for build-
ing sublithographic Programmable Logic Arrays us-
ing molecular-scale wires and switches. Designs
at this scale will see much higher defect rates than
in conventional lithography. However, these defects
need not be an impediment to programmable logic
design as this scale. We introduce a strategy for tol-
erating defective crosspoints and develop a linear-
time, greedy algorithm for mapping PLA logic around
crosspoint defects. We note that P-term fanin must be
bounded to guarantee low overhead mapping and de-
velop analytical guidelines for bounding fanin. We
further quantify analytical and empirical mapping
overhead rates. Including fanin bounding, our greedy
mapping algorithm maps a large set of benchmark
designs with 13% average overhead for random junc-
tion defect rates as high as 20%.

1. Introduction

Recent work shows how to build nanoscale Pro-
grammable Logic Arrays (nanoPLAs) using the
bottom-up synthesis techniques being developed by
physical chemists [1] [2] [3]. With these bottom-
up techniques, it is possible to build features (e.g.
wires and programmable junctions) without relying
on lithography. As such, these techniques provide a
path to continue the advance of field-programmable
technology beyond the end of the traditional, litho-
graphic roadmap (e.g. [4]).

Nonetheless, nanoscale features, both in the sub-
lithographic and lithographic arenas, come with a
new set of challenges. Notably, as devices become
smaller, they are constructed from fewer and fewer
atoms and molecules. Since individual atoms behave
statistically, this means we have higher variance in
the shape and makeup of our devices, and a higher
likelihood that devices are simply unusable. Designs

at this scalemust be defect tolerant. This, and other
aspects of sublithographic assembly techniques, sug-
gest that all devices we build at these scales will be
reconfigurable.

Hewlett-Packard has recently demonstrated an
8×8 crossbar using molecular switches at the cross-
points [5]. In the HP crossbar, they observed that 85%
of the crosspoint junctions were programmable (15%
were defective). The HP crossbar is an early lab-
oratory prototype, and we expect these defect rates
to decrease. Nonetheless, we are unlikely to achieve
100% crosspoint yield at this scale using these kinds
of bottom-up, statistical fabrication techniques. If de-
fects are randomly distributed, at a 15% crosspoint
defect rate, essentially every row and column in a
100×100 crosspoint array will contain a defective
junction.

With the techniques in this paper, we show that
nanoPLA arrays with a 20% crosspoint defect rate are
still usable with modest (13% including fanin bound-
ing) overhead. That is, despite the fact that no rows
or columns are free of defective junctions, we can still
make use of more than 90% of the nanowires. Snider
et al. have also looked at defect tolerant mapping us-
ing a similar defect model and shown that a 4-bit mi-
croprocessor can tolerate defect rates up to 20% [6].

This defect mapping must be applied on a per-
array basis. That is, each nanoPLA will have a unique
defect pattern. Since nanoPLAs are a few microns
tall and 10–20 microns wide [2], we can easily have
millions of these nanoPLAs on a modest die. Con-
sequently, it is important that we minimize the time
required to map around defects. To this end, we intro-
duce a linear-time, greedy mapping algorithm for as-
signing logical P-terms to physical nanowires avoid-
ing defective junctions in a fabricated nanoPLA.

Novel contributions of this work include:
• Formulation of defective crosspoint mapping prob-

lem for nanoPLAs
• Introduction of simple, greedy algorithm for linear-

time mapping around defects
• Analytical estimates on mapping times

c© 2004 IEEE 1

http://www.icfpt.org/

• Analytical identification of bounds on P-term fanin
driven by array size and defect rate

• Empirical and analytical characterization of map-
ping overhead for our proposed algorithm

In the next section, we review the emerging, bottom-
up fabrication techniques for nanowires and cross-
points and the architectural building blocks for
restoration and nanoscale addressing. We then review
the nanoPLA architecture (Section3). In Section4,
we introduce our defect model. Section5 formulates
the problem and introduce the basic idea for the solu-
tion. Section6 reviews exact algorithms to solve the
identified mapping problem and develops our linear-
time heuristic algorithms. In Section7, we analyze
the algorithms based on expected case behavior and
derive bounds for input fanin (Section8). Section9
provides experimental results which ground and con-
firm the analysis.

2. Substrate

Nanowire We can grow nanowires to controlled di-
mensions on the nanometer scale using seed catalysts
to define their diameter. Nanowires with diameters
down to 3nm have been demonstrated [7]. With suit-
able doping, conduction through nanowires can be
controlled by an applied electrical field like Field-
Effect Transistors [8]. Techniques have been demon-
strated to align a set of nanowires into a single orien-
tation, close pack them, and transfer them onto a sur-
face. This step can be repeated and rotated by 90 de-
grees so that we get multiple layers of nanowires [9].

Programmable Crosspoints Over the past few
years, many technologies have been demonstrated for
molecular-scale memories. So far, they all seem to
have: (1) resistance which changes significantly be-
tween ON and OFF states, (2) the ability to be made
rectifying, and (3) the ability to turn the device ON
or OFF by applying a voltage differential across the
junction. UCLA and HP have demonstrated a number
of molecules which exhibit hysteresis [10].HP has
demonstrated an 8×8 programmable crossbar and ob-
served that they could force an order of magnitude re-
sistance difference between ON and OFF state junc-
tions [5].

Restoring Crosspoint Programmable diode cross-
points in a crossbar array give us a programmable OR
array (See Section3 for more detail). Diodes alone do
not give us cascadable logic. To achieve restoration,
these programmable diode stages can be followed by
dedicated, nonprogrammable restoring stages. The
restoring stages can also provide selective inversion.
DeHon and Wilson describe how to build a nanoscale
nonprogrammable restoring stage using a stochastic
assembly of nanowires with doping profiles [2] [11].

Lithographic-scale Address Decoder The pitch
of the nanowires can be much smaller than our litho-
graphic patterning. We will be using the crosspoint
programmability to configure logic functions into our
nanoscale devices. In order to do this, we need a
way to selectively place a defined voltage on a sin-
gle row and column wire in order to set the state of
the crosspoint. By constructing nanowires with dop-
ing profiles on their ends [11] [12], we can give each
nanowire an address (See left end of Figure1(a)). The
dimensions of the address bit control regions can be
set to the lithographic pitch so that a set of crossed,
lithographic wires can be used to address a single
nanowire. Detailed information of this addressing
scheme can be found in [12] and [2].

3. NanoPLA Architecture

NanoPLAs, like conventional PLAs, consist of
two programmable NOR planes (Figure1(a)). Each
of the NOR planes consists of two arrays: logic array
and buffer/inverter array.

The logic array is the programmable part of each
NOR plane. Its junctions are the bistable crosspoints
described in Section2. The logic array implements
the OR function of its inputs, which is why the out-
puts of this array are called OR-terms. Each of the
connected junctions behaves like a diode, and each
OR-term is the wired OR logic of its inputs. The out-
put of each OR-term is pulled down weakly. If any of
the inputs is high, then it pulls up the OR-term output
(Figure1(b)).

The two states of the logic array junctions are:
1) connected via a PN junction, 2) disconnected. If
an input participates in an OR function, the junction
of that input and the OR-term nanowire representing
that function will be programmed “closed”; the junc-
tion will be left “open” when the input is not in the
OR function. The junctions are initially in the “open”
state. To program a junction “closed” a high voltage
difference is applied to the nanowires that cross the
junction. To change the junction state back to “open”,
we apply the opposite voltage polarity by switching
the place of the low voltage and high voltage [5].

The second part of the NOR plane is the
buffer/inverter array. This array restores the input sig-
nals using the restoring, nonprogrammable junctions
(Section2). The OR-term signals can be selectively
inverted or buffered in this array. So the result of
the NOR plane is either a NOR function or an OR
function [2].

The restored outputs of the top NOR plane can be
the inputs of the bottom NOR plane; and vice versa;
e.g. a 4-level logic can be implemented by rotat-
ing the signals through the two NOR planes for 2
rounds [2].

2

Lithographic to
sublithographic

decoder

Buffer
array

Logic array

NOR
plane

Buffer array

Logic array

Lithographic
scale wires

Lithographic
scale wires

Lightly doped
control region

Inverter
array

Inverter
array

Logic array

(b)(a)

Inputs

Output

Inverter
array

Buffer
array

NOR
plane

Logic array

Lithographic
scale wires

Inverter
array

Lithographic to
sublithographic

decoder

Lightly doped
control region

Figure 1. (a) NanoPLA Architecture. (b) Wired OR implemented with diodes.

4. Defect Model

In this section we discuss possible defects in the
nanoPLAs and the defect model used in this paper.
The two more probable defects that we focus on here
are: 1) Defects in programmable crosspoints, 2) De-
fects in nanowires. The defective nanowires can be
easily detected with the procedure suggested in [2].
The time required to test the nanowires of each ar-
ray is linear in the code space size of the stochas-
tic address decoder. The defect models are broken
nanowires, stuck-at-0 and stuck-at-1.

Defects in programmable crosspoints are due to
the structure of the junctions, which is a sandwich of
bistable molecules between two layers of nanowires.
In each crosspoint there are only a few molecules.
For example, nanowires of width5nm having cross
sectional area of25nm2 can hold about18 molecules
[5]. (In [5] they have different active area size. There-
fore here the number of molecules is scaled accord-
ingly.) The programmability of a crosspoint comes
from the bistable attribute of the molecules located in
the crosspoint area. If there are too few molecules at
the crosspoint then the junction may never be able to
be programmed “closed”, or the “closed” state may
have higher resistance than the designed threshold
chosen for correct operation and timing of the PLA.

We abstract this into a simple crosspoint defect
model. Crosspoints will be in one of two states:

• programmable – crosspoint can be programmed
into both a “closed” state and an “open” state.

• non-programmable – crosspoint cannot be pro-
grammed into an adequate “closed” state, but can
be set into a suitable “open” state.

Crosspoints which cannot be programmed into a suit-
able “open” state will result in the entire horizon-
tal and vertical nanowires being unusable. We treat
these as nanowire defects rather than junction de-
fects. Based on the physical model suggested above
and discussion with physical scientists, we expect
these defects which “short” horizontal and vertical
nanowires to be much less likely and, consequently,
believe it is reasonable to treat them as wire defects.

5. Problem Statement

5.1. Overview

To implement a specific circuit on a nanoPLA, we
program up the logic arrays. This means that each
OR function of a design will be mapped to an OR-
term nanowire.

For clarity, we define the following terminology.
Thelogical inputsare the set of inputs to the OR func-
tions. The logical inputs includes the primary inputs
of the nanoPLA and the signals that are fed back from
the other NOR plane. In each OR function the set of
logical inputs that participate in the OR function is
calledON-inputsand those that do not participate are
calledOFF-inputs.

H1 H2 H3 H4 H5

V4

V5

V1

V2

V3

H1 H2 H3 H4 H5

V4

V5

V1

V2

V3

(a) (b)

Inputs

OR- terms

Inputs

OR- terms

a b c d e a b c d e

Figure 2. (a) A logic array of a nanoPLA.
(b) Programmed logic array.

Henceforth we assume that the input nanowires
of logic arrays are previously assigned to the logical
inputs; and order of the logical inputs is preserved.
This assumption lets us use the same programming
process for all the inputs irrespective of whether they
are primary inputs or intermediate signals. Interme-
diate signals do not have full freedom in placement
because they are the OR-terms of the previous logic
array and they may already be programmed and as-
signed to fixed location.

To map each OR function to an OR-term
nanowire, the crosspoints of the OR-term nanowire
associated with the ON-inputs of the OR function
are programmed “closed”, and crosspoints of OFF-
inputs are left “open”. Figure2 shows an example
of mapping four OR functions,f1 = a + b + c + d,

3

f2 = a + c + e, f3 = b + c, andf4 = d + e, with
logical inputs,a, b, c, d, ande. The logic array inputs
a to e are assigned to input nanowiresH1 to H5, re-
spectively. In the case like Figure2(b) where there
is no defect in the array, each OR function can be
mapped to any nanowire. Here OR functions1 to 4
are mapped to nanowiresV 1 to V 4 respectively.

5.2. Challenge

Logic arrays may contain defective junctions that
cannot be programmed closed, as described in Sec-
tion 4. An OR function can be assigned to a phys-
ical OR-term nanowire if and only if each of the
ON-inputs of the OR function has a correspond-
ing programmable junction on the physical OR-term
nanowire.

If a logic array of a nanoPLA has defective junc-
tions as marked in Figure4(a), then the OR function
a+c+e cannot be assigned to nanowiresw1 orw2 be-
cause junctions(w1, c), (w2, c) and(w2, e) are non-
programmable, but it can be assigned to nanowires
w3, w4, andw5. Although the nanowiresw1 andw2
cannot implement the OR functiona + c + e they are
still useful for some other OR functions such asb+d.

In spite of having defective junctions in a
nanowire, some OR functions can be successfully
mapped to that nanowire. The challenge is to find
an assignment of the OR functions to the OR-term
nanowires. Our key question is:How do we per-
form this assignment with a small number of spare
nanowires and in reasonable running time?

5.3. Idea

In each OR function there are always some OFF-
inputs,i.e. some of the junctions will always be left
open. If there is a nanowire with defective junctions
only at a subset of those positions, then this defec-
tive nanowire can be successfully assigned to the OR
function.

Let F be the set of OR functions andW be the set
of physical OR-term nanowires. The problem is find-
ing an assignment of OR functions to the nanowires.
This problem can be formally stated as finding abi-
partite matchingfrom the setF to the setW .

Definition of Bipartite Matching In a bipartite
graphG(V1, V2, E), the setM ⊂ E is a matching
from V1 to V2 if and only if the following conditions
hold:

∀
u∈V1

, exists exactly onev ∈ V2, s.t. (u, v) ∈ M.

and

∀
v∈V2

, exists at most oneu ∈ V1, s.t. (u, v) ∈ M.

HereV1 = F andV2 = W andE is defined below.

* General heuristic matching algorithm *\
1 While F is not empty
2 Choose a node fi ∈ F

3 While ((fi is not matched) and
(W has non-visited by fi vertex))

4 Choose a node wj ∈ W

5 If (fi, wj) ∈ E

6 Mark(fi, wj) as match,
7 Remove fi from F and wj from W

8 Else
9 Set wj visited by fi

10 EndWhile
11 EndWhile

(a)

* The algorithm used in this paper*\
1 Order the elements in F in decreasing order of ci

2 While F is not empty
3 Choose the first fi ∈ F

4 While (fi is not matched) and
(W has non-visited by fi vertex)

5 Choose a random wj ∈ W

6 If (∀
k,Ii,k=1

, (Jj,k == 1)) * try programming

all the ci’s crosspoints*\
7 Mark(fi, wj) as match,
8 Remove fi from F and wj from W

9 Else
10 Set wj visited by fi

11 EndWhile
12 EndWhile

(b)

Figure 3. The algorithm frameworks.

5.4. Formal Problem Statement

Let f0, f1, ..., f|F |−1 be the OR functions,F , and
w0, w1, ..., w|W |−1 be the OR-term nanowires,W .
If the number of inputs isN , then for allfi ∈ F ,
fi = (Ii,0, Ii,1, ..., Ii,N−1), whereIi,j is 1 if input
j of OR functionfi is ON and0 if OFF. Similarly
for all wi ∈ W , wi = (Ji,0, Ji,1, ..., Ji,N−1), where
Ji,k has value1 if the corresponding crosspoint is
programmable and0 if non-programmable.

G(F,W,E) is a directed bipartite graph. For every
fi in F andwj in W , (fi, wj) ∈ E if and only if:

∀
0≤k≤N−1

(Ii,k ≤ Jj,k) (1)

Every matching of size|F | on this bipartite graph
is a valid assignment of the OR functions to the OR-
term nanowires, because it finds an assignment for all
of the OR functions inF . Figure4(b) shows a bipar-
tite graphG(F,W,E). SetF is the set of OR func-
tions in Figure2, and setW is the set of nanowires in
the nanoPLA of Figure4(a). Figure4(c) shows one
possible matching.

4

a b c d e

w1
w2
w3
w4
w5

(a)

(b)

(c)

w1 f1

w5

w4

w3

w2 f2

f4

f3

w1 f1

w5
w4
w3
w2 f2

f4

f3

Figure 4. (a) The crosses show defective
junctions. (b) The graph of the OR-term
nanowire of part (a) and OR-functions of
Figure 2. (c) One possible assignment.

6. Algorithm

6.1. Graph Construction

To build the graphG(F,W,E) the first step is to
find the nodes in each of the setsF andW . Each
OR function in the design is a node inF . Marking
ON and OFF inputs of each OR function, (i.e. the
values ofIi,k) fi ∈ F and all the inputsk, 0 ≤ k ≤
N−1, takesO(|F |·N) computing operations. To find
the defect configuration of each OR-term nanowire
(i.e. the value of eachJj,k), one should check the
programmability of all the junctions of each OR-term
nanowire. This takes(N · |W |) programming and test
operations.

To make the setE, the condition (1) will be
checked for each pair of(fi, wj). Checking it once
takesN computing operations, and checking it over
all of the pairs takesO(N · |F | · |W |) computing op-
erations. So the total time complexity of the graph
construction is(N · |W |) programming and testop-
erations andO(N · |F | · |W |) computing operations.

6.2. Exact Algorithm

For now assume thatW is large enough so that
there exists a maximum matching of size|F |. Later,
in Section7, we calculate how largeW should be in
practice.

There are a number of exact algorithms to solve
the maximum bipartite matching problem, such as
the algorithm based on Ford-Fulkerson maximum
flow network algorithm [13] with time complexity
O (|V | · |E|) and Hopcroft-Karp [14] with time com-

plexity O
(√

|V | · |E|
)

. In our graph|V | = |F | +
|W | and |E| = O(|F | · |W |), which makes the to-

tal time complexityO
(√

(|F |+ |W |) · |F | · |W |
)

computing operations.
The time complexity of all of these matching al-

gorithm will be dominated by the time complexity
of graph construction of Section6.1. Therefore to

reduce the total time complexity, we suggest an ap-
proach that reduces theprogram and testoperations
of graph construction as well as the computing oper-
ations.

6.3. Greedy Heuristic Algorithm

There are heuristic algorithms that, with high
probability, and small time complexity find the max-
imum matching. A general heuristic algorithm is
shown in Figure3(a).

We distinguish the different heuristic algorithms
by the way they choose the nodes in lines 2 and 4
of Figure3(a). One way is to choose bothf andw
randomly. Another way is to choose each of them
in increasing order of node degree. A combination of
the above is another option. We obtain our best results
by choosing the least degreef from F and choosing
w randomly.

Here we show how we can eliminate the need to
actually build the graphG(F,W,E). There are two
points in the algorithm that are dependent on graphG:
1) Choosingfi’s based on their degreesG, 2) Line 5
of Figure3(a) that checks the matching condition by
checking the existence of the edge(fi, wj).

To select OR-terms based on least degree, we
would need to sortF . Instead of sortingfi’s of F
based on their degree, the nodes can be sorted based
on theexpected valueof their degree. LetPJ be the
probability that a junction is programmable, andci

be the number of ON-inputs in the OR functionfi.
The probability that(fi, wj) ∈ E is PJ

ci . This is the
probability that the OR functionfi can be assigned to
the nanowirewj . So theexpected valueof node de-
gree offi is (PJ

ci · |W |). OrderingF based on the
expected valueof node degrees is the same as order-
ing it based on the value ofci. This means there is no
need to build the graph for sorting purpose.

To test the condition of line 5 of Figure3(a), in the
case that there is no graph, we need to program and
test every single nanowire that is picked up to be as-
signed to each OR functionfi. The time complexity
of mapping and testing isO(ci) for each OR func-
tion fi. In order to have time complexity ofO(ci)
instead ofO(N) the Ii,k ’s need to be stored effi-
ciently (sparsely). Hence by paying this cost there is
no longer a need to build the graphG(F,W,E), and
the total time complexity is only due to the algorithm
of finding a matching (Figure3(b)).

7. Analysis

7.1. Running Time Complexity

We first compute the worst-case time complex-
ity. As explained above, line 6 of the algorithm in
Figure3(b) takesO(ci) program and testoperations.
The maximum number of iterations of the line 4 loop

5

is the total number of unmatched nanowires which is
|W |−i. The line 2 loop runs exactly for|F | iterations
in order to map each of the OR functions. So the total
number ofprogram and testoperations in the worst-
case isO(

∑i=|F |−1
i=0 ((|W | − i) · ci)). It can be writ-

ten asO (|F | · |W | · cM) whencM is the maximum
of ci’s. In Section8 we show how to bound the size
of cM , without scaling|F | by more than a small con-
stant factor. SortingF in the first line of Figure3(b)
takesO(|F | log(|F |)) computing operations. So as-
suming|F | ≈ |W | ≈ N , our greedy algorithm takes
N2 program and testoperations andO(N log(N))
computing operations, while the exact approach takes
N2 program and testandO(N3) computing opera-
tions.

On average the number of iterations will be
smaller than this. Letmi be the number of iterations
that it takes to find a match for OR functionfi. If we
want the expected value of the matching forfi in mi

nanowires to be 1 then:

E(Number of matching inmi) = 1
mi · P ci

J = 1 ⇒ mi = P−ci

J (2)

So the average number of iterations of the line 4 loop
is P−ci

J for eachfi. and the total number of opera-
tions in the average case is:

O

i=|F |−1∑
i=0

(
P−ci

J · ci

) (3)

and replacingci’s with cM : O
(
|F | ·

(
P−cM

J · cM

))
If the value of cM is small, which it is after

bounding fanin sizes, then the greedy algorithm takes
O(|F |) program and testandO(|F | log(|F |)) com-
puting operations on average, while the time com-
plexity of the graph construction in the exact ap-
proach isN2 program and testoperations andO(N3)
computing operations. Figure6(b) shows the num-
ber of iterations to map each design (|F | · P−cM

J) for
bounded and unboundedc, which are nearly linear
graphs.

7.2. Area Overhead Estimation

Here we compute how largeW should be in prac-
tice. In the average case as shown before, if the size
of the unmatched set of nanowires when matching the
ith OR function is at leastP−ci

J then theexpected
valueof finding a match in this set is 1. Therefore

∀
0≤i≤|F |−1

(
P−ci

J ≤ |W | − i
)

(4)

defines a lower bound on the size ofW .
Remember that in our algorithm the set of

nanowires thatfi can choose from, is of size
(|W | − i). Therefore the probability of successfully
assigningfi to a nanowire is1 − (1− PJ

ci)|W |−i

Hence the probability of successfully mapping all the
OR functions is:

|F |−1∏
i=0

(
1− (1− PJ

ci)|W |−i
)

(5)

Let Y be the yield of mapping designs to nanoPLA.
Then the following inequality gives a tighter lower
bound on the size ofW :

|F |−1∏
i=0

(
1− (1− PJ

ci)|W |−i
)

> Y (6)

8. Bounded Fanin

We show the effect of bounding the size ofci’s
with an example from the IWLS93 benchmark [15].
In this example|F | = 1186, cM = 772, andPJ =
0.95. The lower bound on|W | for mapping a single
nanowire withci = cM = 772 from Equation (4), is:

(0.95)−772 ≤ W ⇒ 1017 ≤ W

If we decompose this OR function to 8 OR functions,
such that 7 of them haveci = 100, and 1 hasci = 72,
then the lower bound on|W | to map all of these OR
functions is:

Max

(
∀

0≤i≤6

(
(0.95)−100 + i

)
,
(
(0.95)−72 + 7

))
⇒ 173 ≤ W

Applying Equation (3) we also see that bounding the
fanin improves the mapping running time from1020

to 105 program and testoperations.
Figure5 shows how an OR function with c=8, will

be decomposed into OR functions withc ≤ 3. Fig-
ure 6(a) shows which OR functions in each design
need to be divided to smaller fanin OR functions if
the size of|W | is desired to be|F | or 1000×|F |. The
x-axis in this graph is the number of OR functions in
each design,i.e. |F |. Each point on the x-axis is ded-
icated to a single design with|F | equal to the value
of x at that point. For example the highlighted yellow
diamonds show theci value of all the OR functions
of a design with|F | = 1186. The curves show the
estimation in Equation (4) of the maximum size of
ci if |W | = |F | or |W | = 1000 × |F |. Assum-
ing |W | = |F | and using Equation (2) and (4) the
value of the maximumci’s on the lower curve result
from PJ

−cM < |F |, and further we can estimate the
lower bound oncM by cM < − logPJ

|F |. Similarly
the lower bounds forci’s related to the case when
|W | = 1000× |F | will be − logPJ

(1, 000 · |F |).
The graphs of Figure6(a) show that the number

of OR functions with large ON input set is relatively
small, and we also observed they cause very long
running time and large area overhead in mapping.
This suggests we should bound the size ofcM with
− logPJ

|F | to get the ratio of1 for |W |/|F | on aver-
age. Since the size ofci’s is bounded, in order to sort

6

Logic array 1Buffer array 1

Buffer array 2Logic array 2

a

d
c

a1

b

d

c

a2
a3

a

b

e

Buffer array 2Logic array 2

Logic array 1Buffer array 1

Logic array 1Buffer array 1

Buffer array 2Logic array 2

a

d
c

a1

b

d

c

a2
a3

a

b

e

Buffer array 2Logic array 2

Logic array 1Buffer array 1

(a) (b)
In (a) the OR functiona has c=8. In (b) it is divided into 3 OR functionsa1, a2anda3. They are OR-ed together in logic
array 2 and make signale, which is the same as the logic of the originala OR function. The OR functione is rotated
to logic array 1 and then to buffer array 1, which wasa’s original position. Two logic levels of delay are added to the
OR functiona. If the size of ON inputs of signale is more thancM then the decomposition process will be repeated for
signale. For an OR function withc ON inputs, the decomposition process happenslogcM

(c) times.

Figure 5. (a) The original design, (b) design with c value bounded by cM = 3.

F in the first line of the algorithm in Figure3(b) we
can use a radix sort with time complexity ofO(|F |),
bringing the total computation time of our greedy al-
gorithm toO(|F |).

9. Experimental Results

The mapping algorithm is tested over three dif-
ferent benchmarks: 1) Selected elements of data-
path (See [2]), 2) Small examples from IWLS93
benchmark suit [15], 3) PLA book examples [16].
For statistical purposes each benchmark is mapped
100 times. The designs of these benchmarks have
been first synthesized to multilevel logic and rotated
through two NOR planes of a nanoPLA [2].

Figure6(b) shows the graphs for estimation of to-
tal number of iteration to map OR functions of a de-
sign for bounded and unboundedc and also the sim-
ulation results for boundedc. Figure6(b) shows that
the total number of iterations is generally linear in the
number of OR functions,|F |, and well matched with
the calculation in Equation (3). Figure6(c) shows the
average area overhead ratio over all the benchmark
set designs. Bounding the fanin scales the number
of OR functions by an average factor of1.11 for a
defect rate (PJ) of 0.20. The additional average fac-
tor of 1.02 is incurred after physically mapping these
OR functions onto nanowires. This brings the total
average overhead factor to1.13. The total number of
program and testoperations to map each design, are
plotted in Figure6(d). The blue line shows the size of
the OR functions. The slope of the pink graph is close
to the slope of the blue line that is one. This indicates
that the total number ofprogram and testoperations
are linear to the size of the OR functions as explained
in Section7.1.

The area overhead of this greedy algorithm is com-
pared with an exact matching algorithm for a4 × 4
multiplier that is implemented in two logic planes.
The first plane has 697 OR functions and 33 inputs

and the other one has 25 OR functions and 697 in-
puts. In Figure7(a) area overhead of each of the
planes is plotted for both greedy and exact algorithm.
In Figure7(b) the ratio of the total area of the exact
algorithm over the total area of the greedy algorithm
is plotted. This shows that our greedy algorithm is
within a few percent of optimal on average for mod-
est fault rates.

10. Summary

A plausible architecture for nanoPLA design is
suggested in [2]. The defect rate of different fabri-
cation processes is unknown but expected to be on
the order of a few defects per 100 junctions. This
suggests searching for an efficient programming op-
eration that tolerates the defective junctions. In this
paper we compare the exact matching algorithm with
a suggested greedy algorithm. Assuming that|F | ≈
|W | ≈ N , the time complexity of our algorithm is,
O(N) program and testoperations andO(N log(N))
computing operations, while the time complexity of
the exact algorithm plus graph construction isN2

program and testoperations andO(N3) computing
operations. We also showed that it is necessary to
bound the fanin size in order to achieve reasonable
running time and area overhead for matching. After
bounding the fanin, the time complexity of our algo-
rithm will be O(N) computing andprogram and test
operations. Including bounding the fanin and map-
ping, our algorithm can tolerate defect rates as high
as 20% with an average overhead factor of less than
13%.

11. Acknowledgments

This research was funded in part by the DARPA
Moletronics program under grant ONR N00014-01-
0651 and N00014-04-1-0591.

7

Bound on maximum size of Fanin (c)

1186
1

10

100

1000

10000

1 10 100 1000 10000|F|

C

c

0% Overhead

1000% Overhead

Total number of iterations

1

10

100

1000

10000

100000

1000000

10000000

1 10 100 1000 10000|F|

N
um

be
r o

f i
te

ra
tio

ns

Estimation w/ out bound

Estimation w/ bounded c

Simulation w/ bounded c

The dots show theci’s of each OR functions of each design.
The curves show two maximum sizes ofc for each design. Number of iterations to map the whole design.

(a) (b)

Area Overhead ratio

0.95
0.96
0.97
0.98
0.99
1.00
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.10
1.11
1.12

0.8 0.85 0.9 0.95PJ

A
re

a
ov

er
he

ad
 ra

tio

|F_bc|/|F|
|W_bc|/|F_bc|

Total number of Program and Test Operations

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000
|F|

Pr
og

. a
nd

 T
es

t O
p.

Prog. and Test Op.
Org. Pterm (|F|)

The average ratio of|F bounded c|
|F | and |W bounded c|

|F | .
The average number ofprogram and testoperations to map
each design.

(c) (d)

Figure 6. PJ = 0.95, and c is bounded by − logPJ
|F | in (b).

12. References

[1] S. C. Goldstein and M. Budiu, “NanoFabrics: Spatial
Computing Using Molecular Electronics,” in ISCA,
June 2001, pp. 178–189.

[2] A. DeHon and M. J. Wilson, “Nanowire-Based Sub-
lithographic Programmable Logic Arrays,” in FPGA,
February 2004, pp. 123–132.

[3] Y. Luo, P. Collier, J. O. Jeppesen, K. A. Nielsen,
E. Delonno, G. Ho, J. Perkins, H.-R. Tseng,
T. Yamamoto, J. F. Stoddart, and J. R. Heath,
“Two-Dimensional Molecular Electronics Circuits,”
ChemPhysChem, vol. 3, no. 6, pp. 519–525, 2002.

[4] “International Technology Roadmap for Semiconduc-
tors,” <http://public.itrs.net/>, 2003.

[5] Y. Chen, G.-Y. Jung, D. A. A. Ohlberg, X. Li, D. R.
Stewart, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart,
and R. S. Williams, “Nanoscale Molecular-Switch
Crossbar Circuits,”Nanotechnology, vol. 14, pp. 462–
468, 2003.

[6] G. Snider, P. Kuekes, and R. S. Williams, “CMOS-
like Logic in Defective, Nanoscale Crossbars,”Nan-
otechnology, vol. 15, pp. 881–891, June 2004.

[7] Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, and
C. M. Lieber, “Diameter-Controlled Synthesis of Sin-
gle Crystal Silicon Nanowires,”Applied Physics Let-
ters, vol. 78, no. 15, pp. 2214–2216, 2001.

[8] Y. Huang, X. Duan, Y. Cui, L. Lauhon, K. Kim, and
C. M. Lieber, “Logic Gates and Computation from
Assembled Nanowire Building Blocks,”Science, vol.
294, pp. 1313–1317, 2001.

[9] D. Whang, S. Jin, and C. M. Lieber, “Nanolithog-
raphy Using Hierarchically Assembled Nanowire
Masks,”Nanoletters, vol. 3, no. 7, pp. 951–954, July
9 2003.

[10] C. Collier, G. Mattersteig, E. Wong, Y. Luo, K. Bev-
erly, J. Sampaio, F. Raymo, J. Stoddart, and J. Heath,
“A [2]Catenane-Based Solid State Reconfigurable
Switch,” Science, vol. 289, pp. 1172–1175, 2000.

[11] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith,
and C. M. Lieber, “Growth of Nanowire Superlattice
Structures for Nanoscale Photonics and Electronics,”
Nature, vol. 415, pp. 617–620, February 7 2002.

[12] A. DeHon, P. Lincoln, and J. Savage, “Stochastic
Assembly of Sublithographic Nanoscale Interfaces,”
IEEE Transactions on Nanotechnology, vol. 2, no. 3,
pp. 165–174, 2003.

[13] T. Cormen, C. Leiserson, and R. Rivest,Introduction
to Algorithms. MIT Press, 1990.

[14] J. E. Hopcroft and R. M. Karp, “Ann2.5 Algorithm
for Maximum Matching in Bipartite Graphs,”SIAM
Journal on Computing, vol. 2, no. 4, pp. 225–231,
1973.

8

http://www.cs.cmu.edu/~seth/papers/isca01.pdf
http://www.cs.cmu.edu/~seth/papers/isca01.pdf
http://www.cs.caltech.edu/research/ic/abstracts/nanopla_fpga2004.html
http://www.cs.caltech.edu/research/ic/abstracts/nanopla_fpga2004.html
http://public.itrs.net/
http://www.cs.caltech.edu/research/ic/abstracts/nanodecode_tnano2003.html
http://www.cs.caltech.edu/research/ic/abstracts/nanodecode_tnano2003.html

Exact and Greedy algorithm

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00

0.50 0.60 0.70 0.80 0.90 1.00
Pj

A
re

a
O

ve
rh

ea
d

1st Plane, Greedy
2nd Plane, Greedy
1st Plane, Exact
2nd Plane Exact
1st Plane OH of breaking
2nd Plane OH of breaking

Exact and Greedy Algorithm Ratio

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Pj

Th
e

A
re

a
R

at
io

 o
f G

re
ed

y
A

lg
or

ith
m

 o
ve

r E
xa

ct
 A

lg
or

ith
m 1st Plane

2nd Plane

(a) (b)
Figure 7. (a) An exact algorithm and our greedy algorithm area overhead for a 4 × 4
multiplier. The area over |F | is plotted. (b) |Wgreedy|

|Wexact| .

[15] K. McElvain, “LGSynth93 Benchmark Set: Ver-
sion 4.0,” online <http://www.cbl.ncsu.edu/pub/
Benchmarkdirs/LGSynth93/doc/iwls93.ps>, May
1993.

[16] U. C. Group, “Espresso Examples,” On-
line <ftp://ic.eecs.berkeley.edu/pub/Espresso/
espresso-book-examples.tar.gz>, June 1993.

Web link for this document:<http://www.cs.caltech.edu/research/ic/abstracts/xpoint_defect_fpt2004.html >

http://www.cbl.ncsu.edu/pub/Benchmark_dirs/LGSynth93/doc/iwls93.ps
http://www.cbl.ncsu.edu/pub/Benchmark_dirs/LGSynth93/doc/iwls93.ps
http://www.cbl.ncsu.edu/pub/Benchmark_dirs/LGSynth93/doc/iwls93.ps
http://www.cbl.ncsu.edu/pub/Benchmark_dirs/LGSynth93/doc/iwls93.ps
ftp://ic.eecs.berkeley.edu/pub/Espresso/espresso-book-examples.tar.gz
ftp://ic.eecs.berkeley.edu/pub/Espresso/espresso-book-examples.tar.gz
http://www.cs.caltech.edu/research/ic/abstracts/xpoint_defect_fpt2004.html

	. Introduction
	. Substrate
	. NanoPLA Architecture
	. Defect Model
	. Problem Statement
	. Overview
	. Challenge
	. Idea
	. Formal Problem Statement

	. Algorithm
	. Graph Construction
	. Exact Algorithm
	. Greedy Heuristic Algorithm

	. Analysis
	. Running Time Complexity
	. Area Overhead Estimation

	. Bounded Fanin
	. Experimental Results
	. Summary
	. Acknowledgments
	. References

