

Questions

Conventional GA/ASIC/VLSI:

- How much wiring do I need to support my logic?
- How does this scale with larger designs?

For reconfigurable devices (FPGA, PSoC)

- (also) How much switching do I need to support my logic?
- How does this scale with larger designs?

Answers

- First question (wiring):
- answer with Rent's Rule characterization
- subject of prior talks
- Second question (switches)
- can also approach in terms of Rent's Rule - that's what this talk is about

Why?

- With the silicon capacity available today, we find that we
- can build large, high performance, spatial computing organizations
- need flexibility in our large system chips
- build large
- FPGAs
- spatially configurable devices
- Programmable SoC designs
- single-chip multiprocessors

DeHon March 2001

Why?

Components with spatial flexibility (FPGAs, PSoCs, multiprocessors)

- need efficient, switchable interconnect

Outline

- Need
- Problem
- Review
- General case expensive
- Rent's Rule as a measure of locality
- Impact on wiring
- Impact on Switching
- practical issues
- design space
- Summary

Problem

- Given: Graph of operators
- gates, PEs, memories, ...
- today: 100 PEs, 100,000 FPGA 4-LUTs
- Goal: Implement "any" graph on programmable substrate
- provide flexibility
- while maintaining efficiency, compact implementation

Challenge

- "Obvious" direct solutions
- are prohibitively expensive - scale poorly
- E.g. Crossbar

- O(n^{2}) area and delay
- density and performance decrease as we scale upward

Multistage Networks

- Can reduce switch requirements
- at cost of additional series switch latency
- E.g. Beneš Network
- implement any permutation
- $\mathrm{O}(\mathrm{N} \log (\mathrm{N}))$ switches, $\mathrm{O}(\log (\mathrm{N}))$ delay

Multistage Wiring

- Wiring area in 2D-VLSI still $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- bisection width of Beneš
(all flat MINs) is $\mathrm{O}(\mathrm{n})$
$-\mathrm{O}(\mathrm{n})$ wires cross middle of chip
- with constant layers
- will imply O(n) chip width
- true when consider next dimension
- chip is $\mathrm{O}(\mathrm{n}) \times \mathrm{O}(\mathrm{n})$ or $\mathrm{O}\left(\mathrm{n}^{2}\right)$ wiring area

With "Flat" Networks

- Density diminishes as designs increase
- $\mathrm{O}(\mathrm{N} \log (\mathrm{N})$) switches for N nodes
$-\mathrm{O}\left(\mathrm{N}^{2}\right)$ wiring for N nodes

Locality Structure

- Is this the problem we really need to solve?
- Or, is there additional structure in our (typical) designs?
- allows us to get away with less?

Rent's Rule

- Characterization of Rent's Rule $\mathrm{IO}=\mathrm{c} \mathrm{N}^{\mathrm{p}}$
- Says:
- typical graphs are not random
- when we have freedom of placement
- can contain some connections in a local region

Rent's Rule and Locality

- Rent and IO capture locality
- local consumption
- local fanout

Locality Measure

- View of Rent's Rule:
-quantifies the locality in a design
- smaller p
-more locality -less interconnect

Traditional Use

- Use Rent's Rule characterization to understand wire growth

$$
\mathrm{IO}=\mathrm{c} \mathrm{~Np}^{p}
$$

- Top bisections will be $\Omega\left(\mathrm{N}^{p}\right)$
- 2D wiring area

$$
\Omega\left(\mathrm{N}^{\mathrm{p}}\right) \times \Omega\left(\mathrm{N}^{\mathrm{p}}\right)=\Omega\left(\mathrm{N}^{2 \mathrm{p}}\right)
$$

We Know

- How we avoid $\mathrm{O}\left(\mathrm{N}^{2}\right)$ wire growth for "typical" designs
- How to characterize locality
- How we exploit that locality to reduce wire growth
- Wire growth implied by a characterized design

Switching:

How can we use the locality captured by Rent's Rule to reduce switching requirements? (How much?)

Observation

- Locality that saved us wiring, also saves us switching $\mathrm{IO}=\mathrm{c} \mathrm{N}^{\mathrm{p}}$

Consider

- Crossbar case to exploit wiring:
- split into two halves
$-\mathrm{N} / 2 \times \mathrm{N} / 2$ crossbar each half
$-\mathrm{N} / 2 \times(\mathrm{N} / 2)^{\mathrm{p}}$ connect to bisection wires

DeHon March 2001

Recurse

- Repeat at each level
- form tree

Result

- If use crossbar at each tree node
$-\mathrm{O}\left(\mathrm{N}^{2 p}\right)$ wiring area
- $p>0.5$, direct from bisection
$-\mathrm{O}\left(\mathrm{N}^{2 p}\right)$ switches
- top switch box is $\mathrm{O}\left(\mathrm{N}^{2 p}\right)$

- switches at one level down is
$-2 \times\left(1 / 2^{p}\right)^{2} \times$ previous level
-coefficient < 1 for $p>0.5$
-get geometric series; sums to $\mathrm{O}(1)$

Good News

- Good news
- asymptotically optimal
- Even without switches area O($\mathrm{N}^{2 p}$)
- so adding $\mathrm{O}\left(\mathrm{N}^{2 p}\right)$ switches not change

Bad News

- Switches area >> wire crossing area
- Consider 6λ wire pitch \Rightarrow crossing $36 \lambda^{2}$
- Typical (passive) switch $\Rightarrow \quad 2500 \lambda^{2}$
- Passive only: 70x area difference
- worse once rebuffer or latch signals.
- Switches limited to substrate
- whereas can use additional metal layers for wiring area

Additional Structure

- This motivates us to look beyond crossbars
- can depopulate crossbars on up-down connection without loss of functionality
- can replace crossbars with multistage networks

N-choose-M

- Up-down connections
- only require concentration
- choose M things out of N
- not full option for placement
- i.e. order of subset irrelevant

- Consequent:
- can save a constant factor ~ $2^{\mathrm{p} /\left(2^{\mathrm{p}}-1\right)}$
- $(\mathrm{N} / 2)^{\mathrm{p}} \times \mathrm{N}^{\mathrm{p}}$ vs $\left(\mathrm{N}^{\mathrm{p}}-(\mathrm{N} / 2)^{\mathrm{p}}+1\right)(\mathrm{N} / 2)^{\mathrm{p}}$
- Similary, Left-Right

DeHon Marct_Order not important \Rightarrow reduces switches

Beneš Switching

- Flat networks reduced switches
$-N^{2}$ to $N(\log (N))$
- using multistage network
- Replace crossbars in tree with Beneš switching networks

Beneš Switching

- Implication of Beneš Switching
- still require $\mathrm{O}\left(\mathrm{W}^{2}\right)$ wiring per tree node
- or a total of $\mathrm{O}\left(\mathrm{N}^{2 p}\right)$ wiring
- now $\mathrm{O}(\mathrm{W} \log (\mathrm{W}))$ switches per tree node
- converges to $\mathrm{O}(\mathrm{N})$ total switches!
$-\mathrm{O}\left(\log ^{2}(\mathrm{~N})\right)$ switches in path across network
- strictly speaking, dominated by wire delay ~ $\mathrm{O}\left(\mathrm{N}^{\mathrm{p}}\right)$
- but constants make of little practical interest except for very large networks

Linear Switch Population

- Can further reduce switches
- connect each lower channel to O(1) channels in each tree node
- end up with $\mathrm{O}(\mathrm{W})$ switches per tree node

Linear Consequences: Good News

- Linear Switches
- O(log(N)) switches in path
$-\mathrm{O}\left(\mathrm{N}^{2 p}\right)$ wire area
$-\mathrm{O}(\mathrm{N})$ switches
- More practical than Beneš case

Linear Consequences: Bad News

- Lacks guarantee can use all wires
- as shown, at least mapping ratio > 1
- likely cases where even constant not suffice
- expect no worse than logarithmic
- open to establish tight lower bound for any linear arrangement
- Finding Routes is harder
- no longer linear time, deterministic
- open as to exactly how hard

Mapping Ratio

- Mapping ratio says
- if I have W channels
- may only be able to use W / mr wires
-for a particular design's connection pattern
- to accommodate any design
-forall channels
physical wires $\geq \mathrm{mr} \times$ logical

Area Comparison

Multi-layer metal?

- Preceding assumed
- fixed wire layers
- In practice,
- increasing wire layers with shrinking tech.
- Increasing wire layers with chip capacity
- wire layer growth ~ $\mathrm{O}(\log (\mathrm{N}))$

Multi-Layer

- Natural response to $\Omega\left(\mathrm{N}^{2 p}\right)$ wire layers
- Given N^{p} wires in bisection
- rather than accept N^{p} width
-use $\mathrm{N}^{(p-0.5)}$ layers
-accommodate in $\mathrm{N}^{0.5}$ width
- now wiring takes $\Omega(\mathrm{N}) 2 \mathrm{D}$ area
-with $N^{(p-0.5)}$ wire layers
- for $p=0.5$,
$-\log (N)$ layers to accommodate wiring

Linear + Multilayer

- Multilayer says can do in $\Omega(\mathrm{N}) 2 \mathrm{D}$-area
- Switches require 2D-area
- more than $\mathrm{O}(\mathrm{N})$ switches would make switches dominate
- Linear and Benes have $\mathrm{O}(\mathrm{N})$ switches
- There's a possibility can achieve $\mathrm{O}(\mathrm{N})$ area
- with multilayer metal and linear population

Butterfly Fat-Tree Layout

DeHon March 2001

Fold Sequence

Compact, Multilayer BFT
 Layout

Fold and Squash Result

- Can layout BFT
- in O(N) 2D area
- with $\mathrm{O}(\log (\mathrm{N}))$ wiring layers

Summary

- Rent's Rule characterizes locality in design
- Exploiting that locality reduces
- both wiring and switching requirements
- Naïve switches match wires at $\mathrm{O}\left(\mathrm{N}^{2 \mathrm{p}}\right)$
- switch area >> wire area
- prevent using multiple layers of metal
- Can achieve $\mathrm{O}(\mathrm{N})$ switches
- plausibly $\mathrm{O}(\mathrm{N})$ area with sufficient metal layers

Additional Information

- http://www.cs.caltech.edu/research/ic/

Consider

- Crossbar case to exploit wiring:
- split into two halves
$-N / 2 \times N / 2$ crossbar each half
$-\mathrm{N} / 2 \times(\mathrm{N} / 2)^{\mathrm{p}}$ connect to bisection wires
$-2\left(1 / 4 N^{2}+1 / 2^{(p+1)} N^{(p+1)}\right)$
$-1 / 2 \mathrm{~N}^{2}+1 / 2^{\mathrm{p}} \mathrm{N}^{(\mathrm{p}+1)}<\mathrm{N}^{2}$

