
Appearing in IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), May 1–3, 2016

Continuous Online Self-Monitoring Introspection
Circuitry for Timing Repair by Incremental

Partial-reconfiguration (COSMIC TRIP)
Hans Giesen, Benjamin Gojman∗, Raphael Rubin, Ji Kim†, André DeHon

Department of Electrical and Systems Engineering,
University of Pennsylvania, 200 S. 33rd Street, Philadelphia, PA 19104
{giesen,bgojman,rafi}@seas.upenn.edu, ji@csl.cornell.edu, andre@ieee.org
∗Now affiliated with Google, Inc., †Now affiliated with Cornell University

Abstract—We show that continuously monitoring on-chip de-
lays at the LUT-to-LUT link level during operation allows an
FPGA to detect and self-adapt to aging and environmental effects
on timing. Using a lightweight (<4% added area) mechanism
for monitoring transition timing, a Difference Detector with
First-Fail Latch, we can estimate the timing margin on circuits
and identify the individual links that have degraded and whose
delay is determining the worst-case circuit delay. Combined with
Choose-Your-own-Adventure precomputed, fine-grained repair
alternatives, we introduce a strategy for rapid, in-system incre-
mental repair of links with degraded timing. We show that these
techniques allow us to respond to a single aging event in less
than 300 ms for the toronto20 benchmarks. The result is a step
toward systems where adaptive reconfiguration on the time-scale
of seconds is viable and beneficial.

I. INTRODUCTION

The delay of individual circuit elements changes over time
due to aging [1] and is also affected by environmental factors
such as local circuit temperature and supply voltage [2]. As
feature sizes shrink, the impact of aging increases. Conven-
tional solutions that margin for worst-case environment, worst-
case data sequences, and worst-case accumulated aging after
multi-year lifetimes impose large timing and energy margins
on circuits [3]. For instance, Gojman measured sub-2 ns delays
on a 65 nm FPGA for paths that Quartus estimated at over 3 ns
when accounting for composite worst-case conditions [4].

FPGAs can potentially mitigate some of these effects using
post-fabrication mapping [5]. By adapting the mapping to
the fabricated delays of elements, we can largely eliminate
margins for process variation. Nonetheless, it is still necessary
to margin for environmental factors and aging.

To address these margins it is necessary to measure and
repair timing in the final, operational circuit. We show how to
perform lightweight, in-system continuous monitoring to drive
online adaptive mappings. As a result, the circuit can run as
fast as the fabricated FPGA allows, detect when environment
or aging slows a component down, and rapidly identify and
repair the failing element. This exploits a unique feature of
FPGAs compared to ASICs—the ability to assign resources to
functions at a fine granularity after fabrication. Our solution
shows how to exploit partial reconfiguration to manage rapid

repair, potentially one repair every few seconds, as the FPGA
operates. This is a step toward the vision of reconfigurable
circuits that optimize and self-heal throughout their lifetime.

We use the Difference Detector with First-Fail Latch
(DDFFL), a lightweight structure that operates on skewed
clocks [6], to identify signal transition timing (Sec. III) and
exploit the fact that FPGAs have flip-flops on the output of
every LUT to capture fine-grained timing information at the
level of interconnect paths between pairs of LUTs (Sec. IV).
This allows us to identify the LUT-to-LUT link whose current
delay deviates most from expectations and most impacts the
critical path. Because all delays are measured during complete
operation of the circuit, environmental, data, coupling effects,
and clock skew are already factored into the measured delays.
We use Choose-Your-own-Adventure (CYA) precomputed,
fine-grained alternate paths [7] to provide concrete timing
repair options for our algorithm, responding to an aging event
that slows down a circuit element (Sec. IX) in tens to hundreds
of milliseconds.

Our contributions include:
1) Lateness calculus that works with a Difference Detector

with First-Fail Latch to assign lateness blame to individ-
ual LUT-to-LUT path links

2) Adaptive algorithm to rapidly identify the components
with the largest slack violation for repair

3) Timing repair algorithm based on DDFFL, the lateness
calculus, and CYA

4) Characterization of the speed of repair identifying and
replacing slow circuit elements that exceed their slack.

II. BACKGROUND

The small feature sizes of advanced process nodes means
more pronounced wear and aging effects that also change the
delay of resources [1]. Time-dependent-dielectric-breakdown
(TDDB) [8], Negative Bias Temperature Instability (NBTI)
[9], Hot-Carrier Injection (HCI) [10], and electromigration
[11] cause FPGA resources to slow down or fail over their
lifetime. The traditional approach has been to margin for
worst-case degradation over the expected lifetime, sacrificing
energy and performance. This can mean unreasonably poor

c© 2016 IEEE

http://www.fccm.org/

performance or short lifetimes [12]. Wear-leveling, which ex-
ploits FPGA configurability to load-balance potentially aging
portions of circuits across the FPGA resources, can partially
mitigate the worst-case lifetime effects [13], but many of the
aging effects are stochastic, such that open-loop wear-leveling
must still margin for worst-case effects.

A. Challenge

In 2004, Borkar suggested an extreme challenge: How can
we handle 100 billion transistors chips where 10% of the
transistors fail throughout the operational lifetime of the chip
[14]? Accumulating 1011 errors over 10 years (3×108 hours)
has a mean-time-between device failures on a chip of 30 ms.
Failures will not be evenly distributed in time. Nonetheless,
this suggests the need to develop repair strategies that work
in a seconds to milliseconds time frame—far beyond the
capabilities of traditional solutions.

While the work in this article does not completely solve this
extreme version of the challenge, we demonstrate a potential
path to addressing this problem. The CYA alternative selection
we build upon has been demonstrated to handle 0.1–1%
random defects [7], while full-knowledge mapping has been
able to tolerate 1–10% [5], [15]. While this previous work
demonstrated that the volume of defects is approachable, they
have not demonstrated the necessary speed of diagnosis and
repair, which we begin to demonstrate in this work.

B. Timing Extraction

It is possible to perform on-chip measurements of the path
delays on an FPGA with precisions down to 1–2 picoseconds
using the programmable clock generators on modern FPGAs
[16], [17] and calculate the delays at the level of individual
LUTs and interconnect segments in an FPGA down to <7 ps
[4], [18]. These can potentially be used with component-
specific mapping [5] to mitigate the impact of delay variation
on FPGAs. Periodic recharacterization could address aging on
a coarse time scale. However, this demands a long charac-
terization period (days for even a small FPGA), management
of per-FPGA resource delay maps, and a full placement-and-
routing for each circuit we map to each FPGA. As such, it
cannot supply the rapid characterization and repair required
to address the challenge of Sec. II-A.

C. Self-heating and Local Voltage Fluctuation

Furthermore, timing extraction does not address in-situ envi-
ronmental timing effects. The delay of the circuit will change
with ambient temperature and the supplied voltage. Activity
within the circuit will also impact the local temperature and
voltage seen by resources, in turn impacting their delays [2],
[19]. Consequently, even component-specific mapping based
on timing extraction must margin for environmental, short-
term aging, self-heating, and local voltage fluctuations.

III. DIFFERENCE DETECTOR WITH FIRST-FAIL LATCH

If we could put every signal on the chip on an oscilloscope,
we could determine their timing, including identifying which

Clk
D Q

operational
 clock

Clk
D Q

 early
sample
 clock

scan controlled
reset

Set
Q

Reset
(added logic)

Clk
D Qin

out
(existing logic)

First-Fail LatchDifference Detector

Fig. 1. Difference Detector with First-Fail Latch

paths limit the operating clock frequency and which paths are
operating slower than expected. We could integrate a digital
transition monitor on a chip by building a long chain of
registers, each of which handles a slightly delayed version
of the clock. We identify the last time the signal transitions to
its final value to identify its settling time.

Such a long sample register would be expensive, requiring
a chain of 100 registers just to sample a single signal at 40 ps
intervals over a 4 ns clock. We can approximate this monitor
using a single register that samples at a single delay offset
from the clock [6].1 That is, by setting the delay for the
sample register, we can capture the value at that delay. By
changing the delay and repeating the signal transitions, we can
approximate the sample chain over a number of clock cycles.
By comparing this value to the final value at the end of the
clock cycle (Difference Detector, DD), we can determine the
shortest delay period for which the final output settled.

The delay of the circuit depends on the circuit state and the
inputs that are propagating through it. The transition observed
on a single sample may not be the slowest path that determines
the clock cycle. However, if we run the experiment for a large
number of cycles, sampling the delays of a large number of
input vectors, and determine if the sampled value fails to match
the final value on any of the cycles, we can better approximate
whether or not the signal has settled to its final value at the
end of the delay period. Consequently, Levine [6] adds a first-
fail latch (FFL) after the DD flip-flop that will be set if the
signal failed on any of the cycles within an experiment. This
yields the Difference Detector with First-Fail Latch (DDFFL).

This setup (Fig. 1) adds only a single XOR gate, a pair of
flip-flops and a scannable set-reset flip-flop to the flip-flop that
already exists on the output of every LUT in a typical FPGA.
The new flip-flop connected to the input gets a configurably
delayed clock (early sample clock in Fig. 1) to sequentially
explore the various delay offsets. The XOR computes whether
or not the early sampled value matches the final value on the
operational flip-flop. If they differ, it sets the difference flip-
flop. The FFL effectively OR’s the error over a number of test
samples. At the end of the sample period, we can serially scan
out the FFL values using JTAG or a data readback path. By
scanning the delay across different offsets, we can identify the
latest time that the signal transitions to its final value.

1We use the early sample clock (M CLK in [6]) to register the difference
signal, placing the “blind-spot” just before the delay offset becomes as large
as the cycle—a region we do not intend to use in this application.

The DD also needs a programmable delay for the early
sample clock. We can drive all the early sample clocks with the
same delayed clock, so we only need one programmable delay
line on the chip. Programmable delay lines are commonly used
for Delay-Locked-Loops (DLLs) with a high resolution [20].
The Xilinx Ultrascale series has delay control on individual
input pins down to 5–15 ps [21]. Levine shows how to use
the programmable clock controls on an Altera Cyclone III to
implement a programmably-tunable delay line with 96 ps of
resolution on top of a conventional 65 nm FPGA [6]. Modern
FPGAs already distribute tens of clocks across the chip.

The DDFFL can be implemented as a modest change to
the base FPGA fabric with high timing resolution. Using
the estimates for flip-flop sizes (54 minimum width transistor
equivalents for a width 4 flip flop in a 40 nm process) [22] and
the VTR 7.0 [23] estimates for the tile area of a Stratix-IV
(84,375 minimum transistor width equivalents),2 we estimate
that adding three flip-flops and an XOR gate to each of the
20 flip-flops in the 10 logic elements in a Stratix-IV CLB
[24] would increase the tile area by about 4%. By integrating
the DDFFL into the FPGA fabric, we can keep the monitor
signals short, minimize their variation effects, control their
timing, and make sure that the monitoring circuitry does not
consume application logic or congest the programmable paths
used for application routing.

The DDFFL monitoring and early sample clock scanning
can run continuously, concurrent with the application. It is
exercised by the actual in-field data and monitors the delay of
the circuit during deployed operation.

IV. LINK TIMING

The most obvious use for the DDFFL is to measure the
register-to-register paths on an FPGA circuit, as in previous
work. This will allow us to determine the delay to each output
register. Then, we can identify which output is the latest to
arrive. This output sets a lower bound on the clock frequency.
However, once we know which output is late, we still have
little idea about which LUT or interconnect hop in the fan-in
cone of the output is responsible for making the output late.

We can do better by observing the timing not just at the
registered output of the FPGA circuit, but at every LUT in the
circuit. In particular, FPGAs have a flip-flop attached to the
output of every LUT, and that flip-flop is there whether or not
it is used. As a result, we can still use the DDFFL-augmented
flip-flop to capture the delay of the LUT. Once we have the
maximum delay to each LUT in the circuit, we can estimate
the lateness of every LUT-to-LUT link in the netlist.

Note that variation and configuration skew in the clock
network is factored into the sampled timing. If the clock
arrives earlier (or later) at a LUT than its predecessor, that
makes the link look slower (or faster). Since the scheme is
already expecting to see delay variation in links, this just adds
the clock distribution variation in with the link delay variation.

2Specifically, the model for the k6_frac_N10_mem32K_40nm.xml.

V. LATENESS CALCULUS

The DDFFL allows us to find the maximum delay value,
MDi, for each LUT output i; that is, the latest time that the
LUT i changes to its final value. Starting from this maximum
delay value, we identify how late each node is. Then, we can
look at the slack on the node to identify links that must be
repaired to restore timing.

The lateness, Li, of a node describes the delay difference
between the actual signal arrival at the LUT’s output and when
we need or expect the signal to arrive, the required time RTi:

Li =MDi −RTi. (1)

For aging, the required time constraint is based on the original
circuit operation delay before aging. Consequently, this timing
incorporates any clock skew variation into the delay expecta-
tions at each node. This raw lateness does not directly tell us
the delay of a single LUT-to-LUT link because it also includes
the delays accumulated in preceding LUTs along the path. To
assign lateness to a single LUT-to-LUT link, we compute a
relative lateness, RLi, that cancels out the prior LUT delays:

RLi = Li − max
j∈Inputs(i)

Lj . (2)

Inputs(i) is the set of LUTs immediately preceding LUTi.

A. Component-Specific Slack
A late LUT that is not on the critical path may not impact

the circuit delay. Therefore, we are primarily concerned with
identifying late signals that exceed their slack budget. The
slack is the amount of delay that can be added to a node before
exceeding its latest possible arrival time (ALAPi) delay and
will impact the critical path, i.e.:

Slacki = ALAPi −ASAPi. (3)

If we compute ASAP and ALAP values entirely from nominal
delay, we account neither for the fact that some elements
actually run faster than nominal, nor for the potential clock
skew variation. As a result, we get a more accurate and
useful value by defining ASAP/ALAP delays using the actual
measured delays. ASAPi is simply the maximum delay MDi,
while ALAPi can be derived using

ALAPj = min
i∈Outputs(j)

(ALAPi −Di,j), (4)

where Outputs(j) is the set of immediate successors of LUTi

and Di,j is the delay between the outputs of LUTs i and j.
We cannot exactly determine Di,j based on the MDi’s, but
we can approximate it. The lateness of LUT i can be caused
by both lateness of LUTj and increased propagation delay
through LUTi. Hence the lateness of LUT i is probably caused
by the predecessor j with the highest MDj +NDi,j , where
NDi,j is the nominal value of Di,j . If we assume that the
delay increase on all paths through LUTi are the same,

Di,j =MDi +NDi,j − max
k∈Inputs(i)

(MDk +NDi,k). (5)

If we determine and store the MDi values during operation
before an aging event, we can precompute the slack associated
with each node for use in prioritizing repairs.

VI. IDENTIFYING THE LATEST LUT

The simplest approach to determining timing, is to sweep
the early sample clock at regular precision steps, Precision,
across the entire clock cycle period, noting the latest time at
which the difference detector detects an erroneous value on
the early sampled output (Alg. 1).

Algorithm 1 Brute-force algorithm
for each LUTj do
MDj .delay ← 0; MDj .fail← false

for i← Clock Period downto 0 by Precision do
Reset difference detectors
EarlySampleOffset ← i
for j ← 1 . . . Cycles do

Run circuit
for each LUTj do

if error(LUTj) and MDj .fail then
MDj .delay ← i; MDj .fail← true

Slowest LUT ← LUT with highest RLi − Slacki

A. Adaptive Refinement Algorithm

The smaller the difference in relative lateness between
LUTs, the higher the Precision a search algorithm requires
to distinguish them. A major drawback of the brute-force
algorithm is that the entire delay range is measured at the
same precision. However, if our goal is to simply identify
the best repair candidate, we do not need that fine of a
resolution throughout the entire range. Typically, this means
high resolution measurements are only needed around the
repair target. To speed up late LUT identification, we develop
an adaptive algorithm that effectively reduces the sample
resolution outside areas of interest.

The adaptive algorithm replaces the fixed quantization steps
of the brute-force algorithm with variable intervals. Assuming
that MDi is located in the interval [MDl

i,MDh
i]:

Li ∈ [Ll
i, L

h
i] = [MDl

i −RTi,MDh
i −RTi]. (6)

The relative lateness in turn satisfies

RLi ∈ [RLl
i, RL

h
i] = [Ll

i −max
j∈Inputs(i)

Lh
j , L

h
i −max
j∈Inputs(i)

Ll
j].

As a result, at any point in our adaptive refinement, we have an
estimate on the delay and relative lateness of each signal. Our
goal is to tighten the RL intervals until we can identify a slow
LUT that most exceeds its available slack (RLi − Slacki >
RLj − Slackj for all j 6= i, with RL indicating the center of
interval RL). To refine our estimates, we pick a candidate LUT
with the largest RLh

i −Slacki. As long as its RLl
i−Slacki is

less than some other LUT’s RLh
i − Slacki, we do not know

if this really is the LUT that most exceeds its slack bound. By
performing a measurement at EarlySampleOffset , T , within
a delay interval [MDl

i,MDh
i], we can tighten the delay by

updating either MDh
i , if it fails, or MDl

i if it succeeds. As a
consequence, we will either tighten the upper bound for our
candidate, perhaps such that it no longer has the largest RLh

i ,

in which case we have a new candidate with maximum delay
to refine, or we will tighten its lower bound, reducing the set
of LUTs whose RL intervals overlap with it. A measurement
at a particular T will sample the outputs of all the LUTs and
allow us to update all the MD intervals that enclose T and,
consequently, all their associated RL intervals. We continue
refining until we are left with a LUT that unambiguously most
exceeds its slack (Alg. 2).

Algorithm 2 Adaptive Refinement Algorithm
Let m be the LUT that maximizes RLh

m − Slackm
Candidates← all LUTs whose intervals overlap RLm

while #Candidates > 1 or no refinement possible do
Pick EarlySampleOffset

based on MDm and {MDj | j ∈ pred(m)}
Run Cycles clock cycles
Update MD, RL intervals of all LUTs
Let m be the LUT that maximizes RLh

m − Slackm
Candidates← all LUTs whose intervals overlap RLm−
Slackm

return LUT with largest RLm − Slackm

In Fig. 3 we normalize the performance of the adaptive al-
gorithm to the brute-force algorithm, showing that the adaptive
algorithm converges 2–5× faster than Alg. 1.

B. Cycles per Offset

A key question in the timing algorithm is determining the
number of Cycles to sample and observe at each delay offset.
Since path sensitization can be data dependent, the slowest
path may not be sensitized after a small number of cycles.
If Cycles is too low, the worst-case delay paths may remain
unsensitized leaving the algorithm with too low of a maximum
delay estimate. If the value is too high, the algorithm converges
more slowly. If some paths are truly infrequent, or even never
activated for some data sets, it may be desirable to optimize
ignoring these infrequent slow paths and spend additional time
recovering in the rare case that they do occur.

If the inputs were random and the design were purely
combinational, we could treat this as a Coupon-Collector
Problem and see that it would take i×2i random input vectors
to have a 50% chance of seeing all 2i potential input vectors
[25]. As we increase the number of sample cycles, we increase
the chance of having a full set. For combinational inputs,
two factors cause our real logic to behave differently from
random: (1) many input vectors sensitize the same path, so
we do not need all input vectors; (2) inputs do not occur
with equal frequency. Registered inputs to internal logic cones
complicate the issue further. When there is logic in front
of the register, the data-processing inequality says that the
register value will not be more random than the input [26].
Furthermore, if the register is only loaded on select cycles,
the logic paths following the register may not be activated
with a unique input value on every cycle.

With the adaptive algorithm, we can use internal self-
consistency of the measurements to detect some cases where

Cycles / offset

U
n
e
x
p
e
c
te

d
 t
ra

n
s
it
io

n
s
 /
 c

y
c
le

10
2

10
4

10
6

10
−8

10
−6

10
−4

10
−2

10
0

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

alu4

apex2

apex4

bigkey

clma

des

diffeq

dsip

elliptic

ex1010

ex5p

frisc

misex3

pdc

s298

s38417

s38584.1

seq

spla

tseng

Fig. 2. Correlation between False Positive Rate and Cycles per Offset

the MDh
i estimate is too low; that is, if we run at an

EarlySampleOffset larger than MDh
i and see a timing fail-

ure, we know the MDh
i estimate is too low. We call such

transitions unexpected and use their rate to help identify the
appropriate number of Cycles to use in the algorithm.

We find that the algorithm makes reasonable forward
progress when the unexpected transition rate is below 10−6.
The Cycles setting to achieve this unexpected transition rate
differs from design to design. The probability of observing rare
transitions within one iteration decreases when the number of
cycles per offset increases as shown in Fig. 2.

Tab. I presents the number of cycles per offset for an
unexpected transition probability of 10−6 as used for all
simulation results. To gain some insight into the dependence of
cycles on design features, we used linear regression to attempt
to fit a model for the cycles per offset:

ŵ = argmin
w

∑
i

|xiwlin + EXP (xi)wexp + w0 − yi|2 (7)

Here, xi is a vector with the five metrics of Tab. I for design
i, each normalized to a standard deviation of 1. EXP (xi)
is similarly a vector with the exponentials of each of the
five metrics, and w0 is a constant determining the intercept.
The response, yi, is the number of cycles per offset from our
method. The obtained weights are summarized at the bottom
of Tab. I (w0 = −2236672), indicating a strong influence of
the flip-flops. Together, this achieves a correlation coefficient
of 0.93, predicting the largest Cycles values within 45%.

VII. TIMING REPAIR BY INCREMENTAL
PARTIAL-RECONFIGURATION (TRIP)

COSMIC TRIP can be used to reduce critical path delay to
deal with timing faults. Timing Repair by Incremental Partial-
reconfiguration (TRIP) employs CYA precomputed alterna-
tives [7] for repair. CYA reserves a set of FPGA resources
(e.g., LUTs, wiring tracks) for use during repair. Normal
routing is performed on a set of non-reserved base resources,
while alternate routes are allowed to use these reserved repair
resources as well as unused base resources. The CYA router
runs once for a design. It generates a large number of alternate

TABLE I
TORONTO20 [27] BENCHMARK DESIGN CHARACTERISTICS

Design LUTs Flip-flops Logic Reg. Total Cycles /
depth fan-in fan-in offset

alu4 824 0 6 0 14 22691
apex2 971 0 7 0 36 476919
apex4 793 0 6 0 9 4023
bigkey 579 224 4 2 10 512
clma 3223 33 11 274 282 409723
des 557 0 4 0 19 511
diffeq 666 377 8 84 85 741103
dsip 689 224 4 2 10 256
elliptic 1816 1122 10 325 326 3475941
ex1010 2589 0 7 0 10 8147
ex5p 578 0 5 0 8 2351
frisc 1744 886 12 121 124 666631
misex3 768 0 6 0 14 31421
pdc 2205 0 7 0 16 250880
s298 653 8 9 278 281 260465
s38417 2606 1463 6 64 64 2297882
s38584.1 2325 1260 7 101 109 1586519
seq 867 0 6 0 38 126826
spla 1853 0 7 0 16 202004
tseng 647 385 7 50 51 2609885
wlinj

-1077149 1634715 1214510 -1877499 144876
wexpj 97629 -94782 -15221 712832 -393838

LUT-to-LUT paths for every two-point net in the design and
stores those in an expanded bitstream. As a result, there is a
single bitstream generated for every design and used across all
chips. A simple FPGA bitstream loader FSM embedded in the
FPGA logic can test each LUT-to-LUT link as it is installed
and replace it if it is defective. Rubin’s CYA loader will only
detect defects, not timing faults. TRIP shows how to use the
CYA alternatives to repair timing faults.

A. Algorithm

COSMIC’s DDFFL and the lateness calculus are only able
to tell us which LUT is slow, not which input link to the LUT
is latest, making the LUT slow. However, the alternatives that
CYA offers are individual LUT-to-LUT links. Since we do
not know which input link is slow, we need to try repairing
each of them. Consequently, TRIP (Alg. 3) randomly selects
one of the K LUT inputs from the slowest LUT to repair.
It replaces the present alternative with the next one from a
cyclically ordered set with N alternatives. This method ensures
that each of the K ·N alternatives is tried in a short period.
If a single input link causes the LUT to be late, this will
repair it relatively quickly. It also deals with repairing multiple
input links. The strategy of successively, randomly selecting
and installing alternatives in a cyclic fashion will eventually
sample all potential NK combinations to deal with this case
where multiple inputs must be repaired. The TRIP algorithm
runs on a processor embedded in the FPGA fabric, such as an
ARM core on a Zynq or Arria SOC-FPGA.

B. Memory for Repair

We must represent the graph and the delay state of the LUTs
within the graph to support the TRIP algorithm. We capture
the graph by representing each of the K predecessors to each
LUT. For an Nlut-node design, this means K ·Nlut numbers.

Algorithm 3 TRIP Algorithm
Locate slowest LUTj (Alg. 2)
tl ← maxk∈LUTsMDl

k; th ← maxk∈LUTsMDh
k

Store current alternatives for inputs of LUTj

Attempt← 0
repeat

Replace random input of LUTj with alternative
Reset MD of LUTs affected by repair
Run Cycles with EarlySampleOffset = tl
Update MD intervals.
t← maxk∈LUTsMDh

k

Attempt← Attempt+ 1
Restore alternatives of LUTj if t ≥ tl

until t < tl or Attempt > Max attempts

If we use a 32b pointer (4B) for each predecessor, that means
4K · Nlut bytes. For state, we need to keep the intervals of
MD, RT , L, and Slack for each node, as well as D and
ND for each link. This gives us (8 + 4K)Nlut numbers to
store. A 16b (2B) delay value would allow us to represent 1 ps
resolution for up to 64 ns of delay; and 1B would support up to
256 ps. If we use 1B for D and ND and 2B for the rest, this
means we need (16 + 4K)Nlut bytes to store timing state.
For K = 6, the 40B per LUT for timing is about twice the
24B per LUT to store the graph. Together, this means 64MB
to support a one million 6-LUT design.

VIII. METHODOLOGY

We augmented a version of VPR 5.0.2 [28] to model in-
dependent transistor variation and CYA alternatives. We use a
Predictive Technology Mode (PTM) [29] for the base technol-
ogy. We assume a 22-nm CMOS process with µVth

=400mV,
σVth

=36mV, and typical operating Vdd =0.8V. The Vth of
individual transistors is sampled randomly and independently
from a Gaussian distribution with this σVth

. This models
both variation and the accumulated effects of random aging
events that may have preceded the point aging experiments
we perform. HSPICE simulations provide the delay model for
each buffer in the interconnect.

We use an island-style architecture [30] with 6-input LUTs
(K = 6) and 10 LUTs per cluster (N = 10) and a segment
length of 4, similar to a Stratix-IV [24]. Routing is directional
with a Wilton-style S-box and Fcin=0.15, Fcout=0.1 C-box
connectivity. Clusters have 33 inputs. To support CYA, we
reserve 2 LUTs, 6 inputs, and 20% channel width beyond what
is needed for base low-stress route for repairs. This means the
initial mapping is to an N = 8 cluster with 27 inputs targeting
a low-stress route (20% channels over minimum for the N = 8
design) consistent with previous work [31]. Base routes are
mapped with full-knowledge of delays [5], providing a high-
quality mapping as our repair target. We generate 64 alternate
routes for each two-point net in the original design.

Standard static timing analysis as in VPR does not capture
the delays as a function of data. Consequently, to model data-
dependent transition timing and the samples captured by the
difference detector, we developed a custom simulator that

0.1 0.2 0.3 0.4 0.5

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

Percentage Delay Increase (PI)

C
y
c
le

s

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

● ●

●

●
●

●
●

●
●

●
●

●
● ●

●
● ●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

alu4

apex2

apex4

bigkey

clma

des

diffeq

dsip

elliptic

ex1010

ex5p

frisc

misex3

pdc

s298

s38417

s38584.1

seq

spla

tseng

Fig. 3. Aging Experiment: Cycles Dependency on Delay Increase

tracks all transitions and their timing through the mapped
circuit netlist. Since the Toronto 20 benchmarks do not come
with representative test vectors, we used random data for the
inputs, with care to treat clocks and resets appropriately. The
simulator works on path delays from our modified VPR and
has the ability to revise the path delays based on the selected
CYA alternatives.

The key issue in aging is delays that exceed the available
slack. Delays below the slack for a node or link will not impact
the operational frequency for the circuit. Consequently, for our
experiments, when we add delay to a link, we add the sum of
the slack for the link, Slacki,j , and the added delay, dadd, for
a total of Slacki,j + dadd.

IX. AGING REPAIR

We perform two sets of experiments. In the first set, we add
delays that increase the delay of a link above the slack by a
fixed percentage, PI , of the link delay (daddi,j

= PI×Di,j).
This allows us to characterize how the time to localize and
repair a link varies with the amount by which the delay ex-
ceeds the previous critical path delay. We expect that localizing
delays becomes easier as the delay increases. We pick 100
random nodes and inject a delay for the specified PI . The
number of cycles spent for PI values from 5% to 50% in
increments of 5% is shown in Fig. 3, normalized to cycles
required with a brute-force algorithm for PI = 20%. Fig. 3
shows that the time to locate the injected delay typically does
decrease with the magnitude of the delay increase, but the
decrease is less than a factor of two across this range.

In the second experiment, we also inserted delays at random
LUT-to-LUT links in the circuit. Here, we both pick a random
node and a random delay percentage for dadd. The absolute
value for dadd is sampled from a Gaussian distribution with
µ = dnominal and σ = 0.3·dnominal. Fig. 4 shows the average
time-to-locate the slowest resource across a series of 100 aged-
delay-insertion experiments on each of 5 chips, where each
“chip” has an independent set of transistor Vth delays.

Since the repair algorithm is unaware of the speed of input
links and alternatives, it may need to try many alternatives
(Sec. VII) to repair the aged link. The average number of
repairs, Na, required to restore timing is shown in Tab. III with

●

●
●●
●
●
●
●
●

●

●
●
●●
●

●●
●

●

●
●●●
●●

●

●
●●●●●
●
●

●
●
●

●●
●
●
●

●●●●●●
●
●
●●
●●●●●●●
●●●
●●●
●●●●●
●●●
●
●●●●●●●●●●
●
●●●●●
●

●

●●●

●

●●●●●●●●●

●

●
●
●●●●●●

●

●●●●●●●●

●
●●●●●●●●
●●

●
●
●
●●●
●
●
●
●

●
●

●

●●●

●

●
●
●

●

●●

●

●●

●
●

●

●●●
●
●
●

●●

●

●●
●

●

●●

●

●
●

●

●●

●

●●●●

●

●●●
●●

●

●●●●●●●

●

●
●●●●●●●

●

●●●●
●●

●●●●●

●●

●

●

●●

●

●

●

●
●
●

●
●
●

●

●

●
●
●
●
●
●●

●

●
●
●●

●

●
●
●

●

●

●

●

●●
●
●
●
●

●

●
●
●

●

●

●
●
●
●
●

●

●
●
●

●

●

●

●

●
●
●

●●
●

●●

●●

●

●
●
●
●

●

●

●
●
●

●●

●●
●●
●

●●

●
●
●
●
●

●
●●

●

●

●
●

●

●
●

●

●●
●
●●

●

●●●
●●
●

●

●●
●

●

●●

●

●
●●●

●

●●●●●

●●●●●●
●●
●●
●
●●
●
●
●●
●
●
●
●

●●●●
●●●

●

●
●
●●●●
●

●

●●

●●
●●●●
●●

●

●

●
●●●●●
●●●●●
●
●
●

●

●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●

●

●
●●
●
●●
●
●●●
●●●
●●●
●

●●
●
●●
●
●
●●●
●

●

●●●●●

●

●

●●

●●●●●
●
●●

●

●
●●

●

●●●
●
●●

●
●●●●
●●
●
●
●●●●
●●●●
●●
●
●
●●
●
●
●●

●●
●
●●●
●

●
●
●
●●●
●
●●
●
●●●●●●
●
●●●●●

●●●

●●
●
●●●●
●
●
●
●
●●●●●
●

●●●

●
●
●●●●●●●
●
●●●●
●
●
●

●●

●

●

●
●
●●
●●●
●

●●
●
●
●

●
●●●
●
●
●
●●
●●●●
●

●●
●●

●

●●●●●
●

●

●●
●
●●●

●

●

●●●●●●
●
●

●

●

●

●●

●●
●

●

●
●
●●

●
●●●●

●
●

●●
●●●●●
●
●●
●
●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●
●●
●●●●●●●●●●●

C
y
c
le

s
−

to
−

L
o
c
a
te

 S
lo

w
 L

in
k

a
lu

4

a
p
e
x
2

a
p
e
x
4

b
ig

k
e
y

c
lm

a

d
e
s

d
if
fe

q

d
s
ip

e
lli

p
ti
c

e
x
1
0
1
0

e
x
5
p

fr
is

c

m
is

e
x
3

p
d
c

s
2
9
8

s
3
8
4
1
7

s
3
8
5
8
4
.1

s
e
q

s
p
la

ts
e
n
g

10
4

10
5

10
6

10
7

10
8

Fig. 4. Aging Experiment: Cycles-to-Locate Slowest Resource

TABLE II
ABSOLUTE REPAIR TIME MODEL PARAMETERS

Var. Description Value
Noff Number of values needed for

EarlySampleOffset to find slowest LUT
Tcoff Time to configure the sample clock offset [32] 20µs

Cycles Cycles per iteration Tab. I
Tage Clock cycle time for unrepaired logic
Nlut Number of LUTs on the FPGA (assume small-

est square that encloses design)
Tbit Rate to scan bits into device [7] 1b/ns
Tnxt Compute time to update ranges and decide next

EarlySampleOffset (Intel Xeon, 2.7 GHz)
Na Number of alternatives installed to recover

from aging event
Lp Number of segments in repaired path

Tfrm Time to load a frame [7] 1.3µs

5×100 injected delays. The designs require on average 5.2
repair trials, suggesting that 0.87 alternatives are evaluated for
each of the 6 inputs before finding an available and adequate
performance alternative.

A. Time-to-Repair

In addition to time to run experiments, it will also cost
time to (a) set the EarlySampleOffset and clear difference
detectors, (b) read out a set of detector values, (c) decide which
sample offset to use next, and (d) reconfigure from one CYA
alternative to another. To get an estimate of these effects, we
use the following model for total repair time:

Trepair = (Noff +Na) (Tcoff + Cycles · Tage +NlutTbit)

+Noff · Tnxt +Na · 2LpTfrm

Tab. II describes the variables and the technology parameters
we use in estimation. This assumes a frame-oriented config-
uration model similar to the Virtex series [33], and we make
the conservative assumption that every segment is in a distinct
frame (LpTfrm); the multiplier of two accounts for the fact
that an old path must be removed along with the mapping of
a new path. Tab. III shows the time to repair. From Fig. 5, it
is clear that the time running samples (next to last column in
Tab. III, (Noff +Na) ·Cycles ·Tage) and the time computing
the next offset (Noff · Tnxt) dominate total repair time.

We capture Tnxt from a Java implementation of Alg. 1 and
Alg. 3 on our Intel Xeon simulation machines. In practice, we

TABLE III
COMPARISON OF TIME-TO-REPAIR

Tnxt Time (ms)
Design Noff Tage (µs) Na Lp Samples Trepair

alu4 23 1.03 ns 95 4.6 11.7 0.55 3.6
apex2 35 1.22 ns 94 13.6 15.4 20.38 33.2
apex4 33 1.61 ns 64 4.5 15.6 0.21 3.3

bigkey 22 0.64 ns 101 3.8 15.2 0.01 2.9
clma 30 2.07 ns 193 3.4 15.6 25.17 34.7

des 20 0.84 ns 101 4.9 17.0 0.01 2.8
diffeq 22 0.86 ns 139 4.3 15.5 13.97 20.6

dsip 18 0.68 ns 123 3.2 12.5 0.00 2.8
elliptic 36 1.94 ns 608 5.0 15.7 241.12 297.8
ex1010 40 2.71 ns 82 3.9 16.9 0.89 5.4

ex5p 27 0.99 ns 79 4.0 13.2 0.06 3.0
frisc 37 1.39 ns 278 8.7 5.0 34.85 53.7

misex3 27 1.10 ns 81 4.1 12.5 0.93 4.0
pdc 45 2.89 ns 103 14.2 19.8 32.91 49.8

s298 37 1.41 ns 76 6.1 12.9 13.64 19.8
s38417 25 1.43 ns 1101 4.3 17.2 80.59 123.1

s38584.1 25 1.08 ns 467 4.9 13.4 42.62 63.4
seq 29 1.34 ns 66 4.2 13.6 4.98 8.5

spla 38 2.12 ns 62 4.8 15.9 16.10 21.6
tseng 29 0.85 ns 75 3.6 12.6 64.78 75.8

0.00
0.05
0.10
0.15
0.20
0.25

A
b
s
.
(s

)

a
lu

4

a
p
e
x
2

a
p
e
x
4

b
ig

k
e
y

c
lm

a

d
e
s

d
if
fe

q

d
s
ip

e
lli

p
ti
c

e
x
1
0
1
0

e
x
5
p

fr
is

c

m
is

e
x
3

p
d
c

s
2
9
8

s
3
8
4
1
7

s
3
8
5
8
4
.1

s
e
q

s
p
la

ts
e
n
g

0
20
40
60
80

100

R
e
l.
 (

%
)

T
im

e
−

to
−

re
p
a
ir

Setup ((Nof f + NA)Cof f)
Samples ((Nof f + NA)CyclesTage)
Readout ((Nof f + NA)N lutTbi t)

Update (Nof fTnxt)
Repair(NA2LPT f rm)

Fig. 5. Breakdown of Execution Time

envision the repair algorithm running in tightly coded C on
an embedded processor on the FPGA, such as the ARM on
a Zynq or Arria. We see that the total algorithm computation
time (Noff · Tnxt) is less than 28 ms and only dominates in
cases where Cycles <105. Even if it ran 30× slower, total
repair time would still be less than a second in the worst-case.

While these are small designs and the repair time is still
large for the Borkar challenge (Sec. II-A), this shows how
we can bring repair time down to the right magnitude. We
believe this is enabling and can be paired with a few additional
techniques to fully address the challenge.

X. DISCUSSION AND FUTURE WORK

COSMIC TRIP implementations must be prepared to cap-
ture aging failures that exceed the operational clock cycle.
As we have already noted, using only the data inputs to the
system to drive timing measurements, there is no guarantee
the system will see all the delay paths in any bounded
number of cycles. This means it will also need to catch
operational timing failures when these paths are sensitized.
As a result, implementations will need to employ a technique

for detecting timing-delay faults (e.g., [34]) or circuit logic
errors (e.g., [35]) alongside our continuous monitoring and
repair. This technique will work most naturally in a system and
application environment that can tolerate variable frequencies
and potential stalls, such as a best-effort accelerator, streaming
operators with data presence, and latency-insensitive systems.

COSMIC TRIP monitoring and repair could be used to
address many problems beyond aging. Incremental repair
could address variation and the on-chip coupling impacts such
as self-heating and local Vdd drop [19], and it will be useful
to evaluate its effectiveness in these contexts. The ability to
improve timing in system could also be translated into the abil-
ity to reduce voltage, and hence energy, to meet fixed timing
requirements. We expect that there is room to optimize beyond
the simple algorithms we employ, accelerating localization and
repair and consuming alternatives more judiciously.

XI. CONCLUSIONS

Fine-grained, continuous monitoring of the delay of signals
on an FPGA during operation can be very lightweight. This
monitoring can be used to identify the resources impacted by
an aging event to prioritize them for repair. This localization
and repair allows us to reduce the timing and energy margins
that must be applied when the FPGA is run open-loop with no
knowledge of aging or environmental effects. Coupled with a
source of spare resources that can be installed in milliseconds,
this allows in-system repairs in the sub-second range.

REFERENCES

[1] E. A. Stott, J. S. J. Wong, P. Sedcole, and P. Y. K. Cheung, “Degradation
in FPGAs: measurement and modelling,” in FPGA, 2010, p. 229.

[2] K. M. Zick and J. P. Hayes, “On-line sensing for healthier FPGA
systems,” in FPGA, 2010, pp. 239–248.

[3] E. Mintarno, J. Skaf, R. Zheng, J. Velamela, Y. Cao, S. Boyd, R. Dutton,
and S. Mitra, “Self-tuning for maximized lifetime energy-efficiency in
the presence of circuit aging,” IEEE Trans. Computer-Aided Design,
vol. 30, no. 5, pp. 760–773, May 2011.

[4] B. Gojman, S. Nalmela, N. Mehta, N. Howarth, and A. DeHon,
“GROK-LAB: Generating real on-chip knowledge for intra-cluster
delays using timing extraction,” ACM Tr. Reconfig. Tech. and
Sys., vol. 7, no. 4, pp. 5:1–5:23, Dec. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2597889

[5] N. Mehta, R. Rubin, and A. DeHon, “Limit Study of Energy & Delay
Benefits of Component-Specific Routing,” in FPGA, 2012, pp. 97–106.

[6] J. M. Levine, E. Stott, G. A. Constantinides, and P. Y. Cheung, “Online
measurement of timing in circuits: for health monitoring and dynamic
voltage & frequency scaling,” in FCCM, 2012, pp. 109–116.

[7] R. Rubin and A. DeHon, “Choose-Your-Own-Adventure Routing:
Lightweight Load-Time Defect Avoidance,” ACM Tr. Reconfig. Tech.
and Sys., vol. 4, no. 4, December 2011.

[8] E. Rosenbaum, P. Lee, R. Moazzami, P. Ko, and C. Hu, “Circuit
reliability simulator-oxide breakdown module,” in IEDM, December
1989, pp. 331–334.

[9] D. K. Schroder and J. A. Babcock, “Negative bias temperature instabil-
ity: Road to cross in deep submicron silicon semiconductor manufac-
turing,” J. App. Phys., vol. 94, no. 1, pp. 1–18, July 2003.

[10] S.-H. Renn, C. Raynaud, J.-L. Pelloie, and F. Balestra, “A thorough
investigation of the degradation induced by hot-carrier injection in deep
submicron n- and p-channel partially and fully depleted unibond and
SIMOX MOSFETs,” IEEE Trans. Electron Devices, vol. 45, no. 10, pp.
2146–2152, October 1998.

[11] S. Alam, G. C. Lip, C. Thompson, and D. Troxel, “Circuit level
reliability analysis of Cu interconnects,” in ISQED, 2004, pp. 238–243.

[12] L. Condra, J. Qin, and J. B. Bernstein, “State of the art semiconductor
devices in future aerospace systems,” in Proc. FAA/NASA/DoD Joint
Council on Aging Aircraft Conf., April 2007.

[13] S. Srinivasan, R. Krishnan, P. Mangalagiri, Y. Xie, V. Narayanan,
M. Irwin, and K. Sarpatwari, “Toward increasing FPGA lifetime,” IEEE
Trans. on Dep. and Secure Comput., vol. 5, no. 2, pp. 115–127, April
2008.

[14] S. Borkar, “Microarchitecture and design challenges for gigascale inte-
gration,” http://www.microarch.org/micro37/presentations/MICRO37%
20Sborkar.pdf, December 2004, keynote talk Int. Symp. on Microar-
chitecture.

[15] A. DeHon and N. Mehta, “Exploiting partially defective LUTs: Why
you don’t need perfect fabrication,” in ICFPT, December 2013.

[16] J. S. Wong, P. Sedcole, and P. Y. K. Cheung, “Self-measurement
of combinatorial circuit delays in FPGAs,” ACM Tr. Reconfig. Tech.
and Sys., vol. 2, no. 2, pp. 1–22, June 2009. [Online]. Available:
http://doi.acm.org/10.1145/1534916.1534920

[17] T. Tuan, A. Lesea, C. Kingsley, and S. Trimberger, “Analysis of within-
die process variation in 65nm FPGAs,” in ISQED, March 2011, pp.
1–5.

[18] B. Gojman and A. DeHon, “GROK-INT: Generating real on-chip
knowledge for interconnect delays using timing extraction,” in FCCM,
2014, pp. 88–95.

[19] T. A. Linscott, B. Gojman, R. Rubin, and A. DeHon, “Pitfalls and
tradeoffs in simultaneous, on-chip FPGA delay measurement,” in FPGA,
February 2016, pp. 100–104.

[20] S. Sidiropoulos and M. Horowitz, “A semidigital dual delay-locked
loop,” IEEE J. Solid-State Circuits, vol. 32, no. 11, pp. 1683–1692,
Nov 1997.

[21] Xilinx, “Ultrascale architecture and product overview (ds890),”
http://www.xilinx.com/support/documentation/data sheets/
ds890-ultrascale-overview.pdf, August 2015.

[22] J. Goeders and S. J. Wilton, “VersaPower: Power estimation for diverse
FPGA architectures,” in ICFPT, 2012, pp. 229–234.

[23] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,
M. Nasr, S. Wang, T. Liu, N. Ahmed, K. B. Kent, J. Anderson,
J. Rose, and V. Betz, “VTR 7.0: Next generation architecture
and CAD system for FPGAs,” ACM Tr. Reconfig. Tech. and
Sys., vol. 7, no. 2, pp. 6:1–6:30, Jul. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2617593

[24] D. Lewis, E. Ahmed, D. Cashman, T. Vanderhoek, C. Lane,
A. Lee, and P. Pan, “Architectural enhancements in Stratix-III
and Stratix-IV,” in FPGA, 2009, pp. 33–42. [Online]. Available:
http://doi.acm.org/10.1145/1508128.1508135

[25] F. G. Maunsell, “A problem in cartophily,” The Mathematical Gazette,
vol. 22, pp. 328–331, 1937.

[26] T. Cover and J. Thomas, Elements of Information Theory. New York:
John Wiley and Sons, Inc., 1991.

[27] V. Betz and J. Rose, “FPGA Place-and-Route Challenge,” <http://www.
eecg.toronto.edu/∼vaughn/challenge/challenge.html>, 1999.

[28] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. M.
Fang, and J. Rose, “VPR 5.0: FPGA CAD and architecture
exploration tools with single-driver routing, heterogeneity and process
scaling,” in FPGA, 2009, pp. 133–142. [Online]. Available: http:
//doi.acm.org/10.1145/1508128.1508150

[29] W. Zhao and Y. Cao, “New generation of predictive technology model
for sub-45 nm early design exploration,” IEEE Trans. Electron Dev.,
vol. 53, no. 11, pp. 2816–2823, 2006.

[30] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs. Norwell, Massachusetts, 02061 USA: Kluwer
Academic Publishers, 1999.

[31] A. Marquardt, V. Betz, and J. Rose, “Timing-driven placement for
FPGAs,” in FPGA, 2000, pp. 203–213.

[32] Altera, “Implementing PLL reconfiguration in stratix & stratix GX de-
vices (an282),” https://www.altera.com/content/dam/altera-www/global/
en US/pdfs/literature/an/an282.pdf, 2005.

[33] Virtex-5 FPGA Configuration User Guide, Xilinx, Inc., 2100 Logic
Drive, San Jose, CA 95124, September 2008, UG191 <http://www.
xilinx.com/bvdocs/userguides/ug191.pdf>.

[34] T. Austin, D. Blaauw, T. Mudge, and K. Flautner, “Making typical
silicon matter with Razor,” IEEE Computer, vol. 37, no. 3, pp. 57–65,
March 2004.

[35] E. Kadric, K. Mahajan, and A. DeHon, “Energy reduction through
differential reliability and lightweight checking,” in FCCM, 2014.

Web link for this document: <http://ic.ese.upenn.edu/abstracts/cosmic fccm2016.html>

http://doi.acm.org/10.1145/2597889
http://ic.ese.upenn.edu/abstracts/cspec_limit_fpga2012.html
http://ic.ese.upenn.edu/abstracts/cspec_limit_fpga2012.html
http://ic.ese.upenn.edu/abstracts/cya_trets2011.html
http://ic.ese.upenn.edu/abstracts/cya_trets2011.html
http://www.microarch.org/micro37/presentations/MICRO37%20Sborkar.pdf
http://www.microarch.org/micro37/presentations/MICRO37%20Sborkar.pdf
http://doi.acm.org/10.1145/1534916.1534920
http://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
http://doi.acm.org/10.1145/2617593
http://doi.acm.org/10.1145/1508128.1508135
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://doi.acm.org/10.1145/1508128.1508150
http://doi.acm.org/10.1145/1508128.1508150
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/an/an282.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/an/an282.pdf
http://www.xilinx.com/bvdocs/userguides/ug191.pdf
http://www.xilinx.com/bvdocs/userguides/ug191.pdf
http://www.xilinx.com/bvdocs/userguides/ug191.pdf
http://ic.ese.upenn.edu/abstracts/cosmic_fccm2016.html

