
Choose-Your-Own-Adventure Routing:
Lightweight Load-Time Defect Avoidance

Raphael Rubin
Computer and Information Science

University of Pennsylvania
3330 Walnut Street

Philadelphia, PA 19104
rafi@seas.upenn.edu

André DeHon
Electrical and Systems Engineering

University of Pennsylvania
200 S. 33rd Street

Philadelphia, PA 19104
andre@acm.org

ABSTRACT
Aggressive scaling increases the number of devices we can
integrate per square millimeter but makes it increasingly
difficult to guarantee that each device fabricated has the
intended operational characteristics. Without careful miti-
gation, component yield rates will fall, potentially negating
the economic benefits of scaling. The fine-grained recon-
figurability inherent in FPGAs is a powerful tool that can
allow us to drop the stringent requirement that every de-
vice be fabricated perfectly in order for a component to be
useful. To exploit inherent FPGA reconfigurability while
avoiding full CAD mapping, we propose lightweight tech-
niques compatible with the current single bitstream model
that can avoid defective devices, reducing yield loss at high
defect rates. In particular, by embedding testing operations
and alternative path configurations into the bitstream, each
FPGA can avoid defects by making only simple, greedy de-
cisions at bitstream load time. With 20% additional tracks
above the minimum routable channel width, routes can tol-
erate 0.01% switch defect rates, raising yield from essentially
0% to near 100%.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design aids—Placement and
routing ; B.7.3 [Integrated Circuits]: Reliability and Test-
ing; B.8.1 [Performance and Reliability]: Reliability,
Testing, and Fault-Tolerance

General Terms
Algorithms, Design, Experimentation, Reliability

Keywords
alternatives, bitstream load, defect tolerance, in-field repair,
programmable interconnect

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’09, February 22–24, 2009, Monterey, California, USA.
Copyright 2009 ACM 978-1-60558-410-2/09/02 ...$5.00.

1. INTRODUCTION
When we shrink feature sizes, the variation of component

characteristics increases, as do the chances that a device is
unusable. Coupled with increasing device count enabled by
smaller feature sizes, this reduces the probability of yielding
a chip with a perfect set of devices (Section 2.1). If this
issue is left unmitigated, chip yields will decrease, eventually
limiting chip capacity and feature scaling.

Since FPGAs provide a large pool of fine-grained inter-
changeable resources, FPGA architectures already have the
structural organization necessary to tolerate defective de-
vices (Section 2.2). If we can arrange to assign logic func-
tions in such a way as to avoid the defective devices, an
FPGA can accommodate relatively large defect rates. This
allows (1) earlier access to advanced technologies, (2) larger
chip sizes, and (3) beneficial scaling to smaller feature sizes
even if the smaller features come with higher defect rates.

If defect locations are known, it is relatively easy for CAD
mapping tools to avoid the defective devices. However, such
component-specific mapping disrupts the current single bit-
stream model and is not considered viable. Potentially un-
acceptable costs are associated with:
• producing a defect map, rather than simply checking if all

the devices are perfect
• performing an expensive CAD mapping per FPGA (re-

quiring workstation-class processor and memory capacity)
• tracking a different bitstream for each component
These costs include time on potentially expensive testers,
time and energy consumption on CAD workstations, and
flow complications due to the additional handling needed to
create and install the unique bitstream for each component.

To exploit the reconfigurability of FPGAs to avoid de-
fects while preserving the current single bitstream model,
we introduce the Choose-Your-own-Adventure (CYA) bit-
stream format and bitstream loader (Section 3). The CYA
bitstream includes both tests and pre-computed alterna-
tive configurations for each logical function mapped to the
FPGA. The associated bitstream loader uses the embed-
ded test to choose among the set of alternatives during the
load operation. Choices are made greedily in sequential bit-
stream order, so there is only a linear increase in bitstream
load time. This scheme shows how a very simple bitstream
remapping that can easily be embedded into the FPGA will
allow FPGAs to use manufacturing processes with high de-
fect rates. The CYA bitstream format does not require
changes to the core of the FPGA, including the FPGA rout-
ing architecture.

http://www.seas.upenn.edu/~andre

Novel contributions of this work include:
• an architecture for integrating design-specific testing
• a bitstream model with alternate routing
• an inexpensive (architecture neutral) load-time path se-

lection technique
• an algorithm for alternate route generation (Section 3)
• a quantitative characterization of the yield enhancement

benefit (Sections 4 and 5) of this technique as a function of
defect rates, alternatives, and extra and reserved channels
• estimates of bitstream size and load times (Section 6)

2. BACKGROUND

2.1 Scaling Challenges
Conventional semiconductor feature sizes will not scale

below the width of an atom (0.5 nm for a silicon lattice).
However, long before that point, the discrete nature and
statistical behavior of individual atoms may pose challenges
to scaling. Traditional semiconductor doping depends on
the statistics of large numbers of dopants to create consis-
tent devices, but variation increases as device size, and hence
nominal dopant count, decreases. Small features are more
susceptible to movement or displacement of a few atoms and
local variations in processing, such as etching and reaction
rates. As a result, we expect increasing parameter variation
in devices (e.g. [1] (Table 18, Design chapter), [4,8]). These
variation effects are in addition to the traditionally increas-
ing challenge of avoiding catastrophic photolithographic de-
fects (e.g. [9]). Some have gone so far as to suggest that 20%
of the transistors or other devices fabricated on a component
may be unusable by the time we reach processes with a half
pitch of 11 nm [7].

2.2 FPGA Defect Tolerance
Architectures that tolerate defects, such as RAMs with

row or column sparing, enjoy benefits over designs that must
be defect free. These benefits have traditionally included (1)
early access to advanced processes and (2) large capacity
dies. In the future they may also include (3) the ability to
economically exploit the most advanced process nodes where
the device defect rate cannot be made trivially small.

FPGAs have a regular structure of largely interchange-
able resources. Therefore it should be possible to exploit
this regularity for sparing-based defect tolerance. However,
the conventional model of a single bitstream that maps each
function to a single physical resource prevents us from ex-
ploiting this capability.
Perfect Component Model One approach to defect
tolerance is to perform the defect tolerance behind the scenes,
always presenting the view of a perfect component to the
end system. RAM, for example, undergoes row and column
sparing at the factory, such that the shipped RAMs appear
defect-free to the customers. Altera has employed this kind
of behind the scenes sparing at the level of rows and columns
to enhance yield and allow them to produce very high ca-
pacity devices [11, 19]. Yu and Lemieux show how to spare
at the finer-granularity of individual wire tracks [36]. These
techniques add additional reconfiguration mechanisms and
redundancy beyond the reconfigurability already inherent in
the FPGA. This results in additional area and delay over-
heads compared to simply configuring the base FPGA to
avoid defective elements.

Component-Specific Model An alternate approach
is to expose the defects in the FPGA and allow CAD soft-
ware to map around them. HP’s TERAMAC pioneered this
technique, demonstrating the ability to tolerate element de-
fect rates of 3–10% in their components [12]. Katsuki et
al. map out the delay of regions of a chip and use that
map during placement to keep critical paths away from the
slowest resources on the component [14]. The long runtime
for conventional FPGA mapping tools is seen as one of the
weaknesses of this approach. To accelerate the mapping pro-
cess, TERAMAC employed a richer and more regular inter-
connect architecture than conventional FPGAs [2], trading
density for mapping speed.

Local substitution of resources can potentially reduce or
avoid the high cost of complete FPGA remapping at the
cost of less optimal mapping solutions. Lach introduced
a design style for FPGAs that reserved one or more logic
blocks in an N × N tile so that defects could be repaired
with local sparing [15]; Lakamraju and Tessier note that
reserving spare LUTs in an island-style cluster also allows
local repair of logic [16]. These two solutions focus on logic
defects rather than interconnect defects. In this paper we
focus on interconnect defects and describe a general scheme
that could use one of these techniques for logic defects.
Component-Specific Designs In its EasyPath pro-
gram, Xilinx matches a component’s defects to the needs of
a particular design. Since no design uses all of the features
and resources in an FPGA, defects in the unused resources
are tolerable. This avoids additional CAD or resources for
defect tolerance, but does require design-specific testing [29],
and the components assigned to a design may not be func-
tional when changes are needed in the design.
Bitstream Alternatives Since there is never a sin-
gle way to map a design to an FPGA, we can exploit this
freedom to avoid defective or undesirable devices. At a
coarse granularity, one could place and route a design sev-
eral times to produce multiple bitstreams; then we could test
the bitstreams on the component. If any of the bitstreams
avoids all the defective devices, we have a successful map-
ping [18, 23, 28]. This fully exploits the FPGA redundancy
and avoids the need for per-component mapping. However,
it does demand a discipline for bitstream testing, validation,
and management. This monolithic scheme does not scale
well to higher defect rates; the finer granularity of our al-
ternatives gives us greater diversity impact, and hence yield
improvement, for a given size of bitstream (e.g. number of
alternatives stored).

Campergher et al. [10] and Trimberger [27] describe ap-
proaches most similar to our alternatives scheme where every
path is covered by an alternate path. Campergher also de-
tailed how to redesign switchboxes to increase the diversity
of routing options. Both Campergher and Trimberger only
suggest a single alternative to tolerate a few defects. We
detail a general scheme that can provide a tunable level of
defect tolerance and quantify the tradeoff space; we further
detail how we can embed simple testing and minimize the
complexity of the bitstream loader.

2.3 Defect Model
We model defects at the architectural level as stuck-open

switches. That is, we abstract the host of potential defect
causes (such as disconnected metal, or slow or leaky tran-
sistors caused by excessive voltage threshold variation) as

Figure 1: Channel with four tracks, one of which is
reserved. Three nets saturate the three base tracks.

C-Box or S-Box switches that cannot be used to form the
desired connection. This assumes that the SRAM control-
ling the switch can still be used to turn the switch off or
that the SRAM fails into the “off” state for the switch.

The CYA model can tolerate wire defects. A configuration
bit that fails in the stuck-on condition can be abstracted as
a failure of the driven wire. However, the experiments in
Sections 4 and 5 quantify only switch defects and not wire
defects. The model can further tolerate bridging defects at
the expense of more complicated test sequences.

One rationale for focusing initially on stuck-open switch
defects is that configuration bits can be made more tolerant
to variation than buffered switches without a power penalty.
In particular, one way reduce dependence on threshold volt-
age (Vt) variation is to increase Vt and the total voltage
swing. Increasing the voltage swing on active signal paths,
such as buffers, would increase the energy per operation.
With power consumption already a key limiter on computa-
tional density, there is pressure to reduce the signaling volt-
age swing as much as possible. However, since the configu-
ration SRAMs do not switch, they can use a higher nominal
Vt and voltage that reduces their sensitivity to variation.

3. CYA
The CYA bitstream bears some similarity to the epony-

mous Choose Your Own Adventure novels [21]. Unlike tra-
ditional FPGA routing, the CYA bitstream contains several
alternatives for each path, and, like a reader seeking the best
possible ending, the CYA loader tries each alternative one
by one. Each time it encounters a defect (comparable to the
novel’s protagonist being tossed into a raging volcano), it
tries the next alternative instead until it finds a path that
successfully avoids all the defects on the chip (the protago-
nist finds a vast treasure and lives happily ever after).

3.1 Illustrative Example
Consider a simple FPGA channel (Figure 1). We have four

tracks and need to route three nets through this channel.
Labeling the fourth track as “off limits” (reserved), we route
the channel, packing the nets into the first three tracks (base
tracks). Then, for each consumer, we find an alternate path
that uses the fourth track. When programming the FPGA,
the loader tries the default route, and, if it is bad, the loader
tries the alternate path. If the chip has at most one bad track
in the channel, it will either be in the fourth track and will
not disturb the default routes, or it will upset a single route
forcing it to use the alternate path on the fourth track.

We can expand the notion of tracks to domains. By
domains, we refer to architectures where the interconnect
network is partitioned into independent sets of routing re-
sources (e.g. [30]). With domains the initial track choice
leaving a source block determines the track that will be
used when entering the destination block. The indepen-
dence property of domains means that when we reserve a

domain, we do not affect the rest of the network. Resources
that are part of the reserved domain are not available to
the base domains and vice versa. Now we can look at a
whole chip and say that default paths are routed in the base
domains and alternatives are routed on the reserve domain
and unused portions of the base domains. This allows us to
guarantee that an FPGA with a single defect anywhere in
the interconnect has an unused alternate route which will
avoid the defect.

If we want to provide resilience to any two defects we can
add a second domain reserved for alternatives and prepare
alternative paths using each domain. We can add additional
domains to tolerate more defects. However, we should not
need a full alternate domain to tolerate each single defect.
In normal FPGA routing, we are able to both find multiple
paths between a source and sink in a single domain and route
multiple two-point nets in a single domain. Consequently,
each additional domain should allow us to tolerate multiple
additional defects.

3.2 CYA Components
We now describe CYA bitstream composition, generation,

and loading.

3.2.1 CYA Bitstream
Base Route The base route is a normal FPGA route
which is prepared using only the base tracks.
Alternatives In addition to the traditional base route,
the CYA bitstream includes a set of alternative paths that
can be used for defect avoidance. An alternative path con-
sists of a set of resources that connects a single source to a
single sink and that differs by at least one resource from the
corresponding path found in the base route. Additionally an
alternative path may not use any resources which are part
of the base paths of other nets. This guarantees that we
are free to switch from a base path to any alternative path
without interfering with any of the base routes. Alternative
paths may use both the reserved spare resources and any
non-reserved resources which were left unused by the base
route.
Test Instructions To detect defective paths, the loader
must check the functionality of each path. For a net, the
test must simply check that a high-to-low and a low-to-high
transition of the source are each correctly observed at the
destination. The information needed for this test can be in-
ferred from the path definitions. To generalize testing for
more complex cases (e.g. LUT and Flip-Flop testing, test-
ing for bridging) and to simplify the design of the loader, we
embed testing instructions in the bitstream.
Composition Putting it all together, the bitstream is a
list of nets each with (1) a set of testing instructions, (2) a
base path, and (3) a list of alternatives. This means that bit-
stream programming is ordered by logical functions rather
than by physical location on the FPGA. For fabrics where
the configuration bits are not randomly addressable, such as
Virtex frames [32,33,35], we assume the presence of a trans-
lator (see Section 3.3) that can add or remove the portion
of the input path that applies to the configured frame.

3.2.2 Routing and Alternatives Generation
Base Route The base route can be generated with a
standard FPGA router such as Pathfinder [20]. The only
difference is that we may choose to reserve some resources

solely for use in the preparation of alternate paths. The
router must therefore be capable of acknowledging these re-
sources as being “off limits” to the base route.
Alternatives Generation As discussed earlier, the al-
ternatives are just paths that must not conflict with the base
route. We want a diverse set of alternatives for each base
path in order to maximize the opportunity for defect avoid-
ance. Much like in Pathfinder, this can be implemented with
repeated calls to a shortest path search, updating the cost of
each resource in the graph as it is used in order to promote
diversity (See Algorithm 1). Pathfinder-based routers can
easily be modified to add this functionality. During alterna-
tive generation, the cost for each resource is:

cost = alternatives using + 1 (1)

Future work should explore more sophisticated cost func-
tions (e.g. cost weightings which consider the likelihood the
resource will be available when the alternate is considered).

foreach Resource R ∈ {base route} do Disable R;
foreach Net N ∈ {all nets} do

foreach Resource R ∈ {N.base path} do
Enable R;

end
for i=1 to number of alternatives do

Path P := FindShortestPath(N);
foreach Resource R ∈ P do

R.alternatives using + +;
end
WriteAlternatePath(P);

end
foreach Resource R ∈ {all resources} do

R.alternatives using = 0;
end
foreach Resource R ∈ {N.base path} do

Disable R;
end

end
Algorithm 1: Alternatives Generation

3.2.3 Bitstream Loader
We decompose the loader into four components, a pro-

grammer, a deprogrammer, a tester, and a controller.
Programmer By the term “programmer” we refer to
that element of any FPGA bitstream loader that sets the
configuration bits. If the architecture supports the abil-
ity to set configuration bits in any order, then we need not
change the programmer from its standard design. Architec-
tures which do not have this ability may need a translator.
For example to support the Virtex series we need the ability
to edit frame configurations (see Section 3.3).
Deprogrammer When a path fails, the loader needs to
undo the configuration changes to free up resources for other
paths. Functionally, the deprogrammer must roll back the
configuration to its state before the last path was program-
med. One way to accomplish this is to record changes made
during programming so they can be reverted; this has the
advantage of demanding no semantic understanding of the
bitstream, but requires space to store the changes. An al-
ternate version might use the same path specification for
programming with the configuration sense reversed.

Tester The tester is responsible for testing each path and
reporting the success or failure of the test. The bitstream
loader only needs to know if the end-to-end path test fails.
It does not necessarily understand anything about the re-
sources which compose a path. The alternatives encoded in
the bitstream directly tell the loader what to try next when
a test fails. If the bitstream loader does not have random
access into the bitstream, the loader will need adequate lo-
cal space to store the current test specification to be used
with the sequence of alternatives.

One simple way to support testing is to drive and recover
data using the internal CLB flip flops. It may be possible to
set up the tests using bitstream configuration, trigger tim-
ing tests using readback capture, then view the results using
configuration and state readback [34, 35]. End-to-end con-
nectivity tests check that we can see both driven zeros and
driven ones at the destination. Timing tests can be per-
formed using a variant of “launch-from-capture” transition
fault testing (e.g. [22, 29]).
Controller At the top of the bitstream loader is a con-
troller which applies the simple procedure shown in Algo-
rithm 2 to the incoming bitstream. One key feature to note
is that the controller is a very straightforward entity which
makes no complex decisions and performs no complex ac-
tions. Notably, the controller does not need to understand
the FPGA architecture or the semantics of the configuration
bits. All the intelligence about the meaning of the bitstream
is effectively compiled into bitstream. The controller only
needs to mechanically follow the bitstream load program.
With suitable test support, the embedded PowerPC on Vir-
tex devices could be used to run this algorithm, using the
ICAP [35] to perform the configuration.

Bitstream B ← read from file;
foreach Net N ∈ {B} do

found← FALSE;
while (not(found)) do

if N.outOfPaths then
return failure;

P ← N.nextPath;
if P.isUsable /* interferes with no

existing configurations */

then
Program(P);
if Test(P) then

found← TRUE;
else

Deprogram(P);
end

end

end

end
return success;

Algorithm 2: Bitstream Load

3.3 Configuration Architecture
There is a rich design space for providing the logical con-

figuration architecture assumed by CYA. In the simplest
case, we might have random access to the configuration bits
(c.f. Xilinx 6200 [31]). This makes it fast and easy to set
each bit but demands greater area overhead for configura-
tion support than conventional configuration chains.

At the cost of more time and work loading the bitstream,
we can exploit the frame schemes that exist in modern FPGA
(e.g. [32, 33, 35]). Specifically, we could organize the bit-
stream to specify the frame address and the address of bits
to change within the frame. Then, the loader can (1) read
out the old frame, (2) change the specified bits in the frame,
and (3) load the modified frame. This is the same kind of
operation used by Xilinx J-bits to perform bitstream mod-
ification on Virtex series components [13]. Such a scheme
would require no changes to the core of the FPGA. The cost
is longer load times since we must spend an entire frame
read/write sequence for every frame touched by an alterna-
tive (See Section 6.2 and Table 3).

4. EXPERIMENTS
We designed a series of experiments to determine:
• How much yield improvement can we get from CYA at

each defect rate and over what defect rates is it effective?
• How many alternatives does CYA need to store? How

does this impact bitstream size and load time?
• How does CYA yield improve with dedicated reserved

tracks available only for alternatives?
• How does the presence of extra base tracks beyond the

minimum number required for the design to be routable
impact CYA yield?
• How should additional tracks be partitioned between ex-

tra and reserved tracks?

4.1 Experimental Framework
Defect Map We want to characterize the the likeli-
hood that a given chip can be made to function correctly
in the presence of a given level of initial fabrication defects
(the yield). To do this we need to be able to model de-
fects and vary the defect rate. If we simply varied the defect
rate and generated independent sets of defects for each ex-
periment, it would (a) make experiments non-repeatable,
(b) prevent direct comparisons between techniques or op-
tions (i.e., because experiments never see the same set of
defects), (c) create occasional anomalies where an experi-
ment at a higher defect rate outperformed an experiment
at a lower defect rate (e.g. due to less favorable location
of defects in the lower defect rate experiment). To provide
clean experiments and avoid these pitfalls, we generate a
collection of partially defective “chips” (defect maps) with a
tunable defect rate. Specifically, we assign an independent,
uniformly distributed, random value to each resource in the
chip. Then we apply the target defect rate as a threshold to
differentiate good resources from bad. This guarantees that
defects monotonically increase with defect rates. That is,
as we apply higher and higher defect rates, this process will
simply add more and more defects to the existing set with-
out removing any of the initial defects, making the results at
each defect rate easily comparable to each other. By reusing
the same collection of defect maps across experiments, we
guarantee consistent comparisons across different techniques
and defect rates.
Simulator VPR 4.3 [5] provided a scaffolding for a func-
tional CYA simulator. We implemented each of the compo-
nents in Section 3 using or modifying existing portions of
the router. Some portions required more significant addi-
tions such as the ability to read route and bitstream files.
Since the simulator has the advantage of global knowledge,
the simulator does testing before programming. This does

not alter the semantics at a functional level but means we
did not need to simulate the deprogrammer.

4.2 Experimental Flow
Placement We prepare our placements with the unal-
tered placer in VPR with no extra options. A single place-
ment is generated for each benchmark before all other work.
That fixed placement is used for all subsequent operations.
Minimum Channel Width For experiments where
channel width (the number of tracks per channel) is a con-
trolled parameter, we needed to find the minimum routable
channel width (Wmin). For this purpose we used VPR with
the “verify binary search” option. All other options remain
at their default settings. Note that this means that the
router uses a timing-driven alpha-beta path search.
Extra Channels Designs are seldom mapped to FPGAs
at their absolute minimum channel width. Typically some
“extra” channels are available, making it both easier to find
a route (e.g. [26]) and possible to find faster, more direct
routes (e.g. [17]). The number of extra channels we allocate
is proportional to the number of minimum channels (e.g.
0.2Wmin), similar to prior work.
Base Route To generate the base route we use our mod-
ified version of VPR’s fixed-width router with the option
“–max router iterations 100”. We route each design with a
target channel width determined by the minimum channel
width and the extra channels (e.g. 1.2Wmin when we allo-
cate 20% extra channels). We also specify the the number
of additional reserved tracks to use only during alternative
generation.
Generating Alternatives The base route is passed to
the alternatives generator. Initially, all resources are avail-
able to the alternative paths, except those belonging to the
base route, which are marked as “off limits”. The block I/O
pins belonging to each base path are also marked as avail-
able during the generation of its corresponding alternatives,
but they remain off limits to the alternatives associated with
any other base path.

We generate 40 alternatives for each path. We chose this
number to be sufficiently large that this step need be per-
formed only once for each base route. Loading a bitstream
with these alternatives onto each defect map will then allow
us to determine a sufficient number of alternatives needed
to successfully load the design as a function of defect rate.
Loading the Bitstream Once we have generated a
defect map, a base route, and a set of alternatives, we can
simply feed them back into a bitstream loader simulating
Algorithm 2 which we added to VPR. VPR then reports the
success or failure of the load and, for successful loads, also
reports the number of alternatives used.

4.3 Architecture Details
We used an architecture based on “4x4lut sanitized.arch”

that is distributed with the VPR source code. We kept the
following key features:
• “subset” Switch boxes (S-Boxes)
• Uniform segment length of 4 (Lseg = 4)
• CLB contains 4 4-LUTs (O = 4)
• CLB has 10 input pins (I = 10)
To better fit the uniform defect rate model (Section 2.3),
we use a single buffered switch for all S-Box switches. Also
the addition of reserved tracks alters the staggering distri-
bution of segments in the default staggering pattern. In our

 0

 20

 40

 60

 80

 100

 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

Y
ie

ld
 (

%
)

Defect Rate (log scale)

Perfect Yield
alternatives= 0
alternatives= 1
alternatives= 5
alternatives=10
alternatives=20
alternatives=30
alternatives=40

Figure 2: Yield vs. defect rate for DES with 20%
extra base tracks and 20% additional reserved tracks

architecture we therefore use a staggering pattern where in-
creasing the number of tracks does not change the position
of segments in the tracks that are already present.

Finally, for Connection Box (C-Box) population we present
results with fully populated C-Boxes (Fcin = 1 and Fcout =
1) as well as Fcin = 0.50 and Fcout = 0.25 as found in the
original architecture files distributed with VPR. We focus on
the fully populated C-Boxes; C-Boxes should be assumed to
be fully populated except when explicitly stated otherwise.

4.4 Experimental Design
We ran our experiments on the Toronto 20 benchmark

set [6]. We collected two primary types of data from our
simulations: the yield of functioning devices at each defect
level and the number of alternatives needed to produce a
functioning device. We also collected data on path lengths
in order to estimate bitstream costs (Section 6).

Data was collected from 100 independently generated de-
fect maps, each used for multiple defect rates. With 100
Bernoulli trials, the 90% confidence interval for the results
reported as 100% yield is 97.5–100%; in the midrange (around
50% yield), the 90% confidence interval is ±8.1%.

5. RESULTS
Figure 2 illustrates the yield benefits of CYA. With 20%

extra base tracks and an additional 20% reserved tracks,
DES sustains essentially 100% yield at defect rates five or-
ders of magnitude above the point where we begin to see
defects in the FPGA (i.e. “Perfect Yield” curve). Even with
only a single alternative, CYA achieves yield near 100% for
defect rates two orders of magnitude higher than the point
where one achieves high design-specific yield (i.e. alterna-
tives=0 case). The figure further shows how the benefits
vary with the number of available alternatives. Note that
40 alternatives provide only a slight improvement in yield
over the case of 30 alternatives. This trend suggests that
the addition of further alternatives beyond this point will
offer little benefit.

5.1 C-Box Population
Our initial experiments with depopulated C-Boxes show

more modest benefits from CYA (See Figure 3). While the
yield is definitely higher with CYA than without, we do be-
gin to see some yield-loss at much lower defect rates than

 0

 20

 40

 60

 80

 100

 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

Y
ie

ld
 (

%
)

Defect Rate (log scale)

Fcin=1 Perfect Yield
Fcin=1 alternatives= 0
Fcin=1 alternatives=40
Fcin=0.50 Perfect Yield
Fcin=0.50 alternatives= 0
Fcin=0.50 alternatives=40

Figure 3: Yield vs. defect rate for DES with depop-
ulated and fully populated C-Boxes (no extra base
tracks, 20% reserved tracks, depopulated case sets
Wmin)

 0

 20

 40

 60

 80

 100

 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

Y
ie

ld
 (

%
)

Defect Rate (log scale)

alternatives= 0 channels=minc
alternatives= 0 channels=minc(1.2)
alternatives=40 channels=minc
alternatives=40 channels=minc(1.2)

Figure 4: Effects of extra base tracks (DES with
20% reserved tracks)

with full population. It is not surprising that the lower con-
nectivity of depopulation results in lower defect tolerance.
However, we have anecdotal evidence that the depopulated
cases should be more robust to defects than shown. This
motivates future work to tune the CYA alternative genera-
tion or load strategy to achieve greater yield with the more
limited connectivity associated with the C-Box depopulation
typical of modern FPGAs.

5.2 Additional Tracks
Since a typical FPGA design is seldom routed at Wmin, we

wanted to understand the impact of larger channel widths.
The larger channel width designs mean a smaller fraction
of the routing resources are used, potentially leaving more
resources available for alternatives. As such, designs with
more extra channels might work even better with CYA. In
fact, if we were fortunate, designs with many extra channels
might not require that we reserve many channels exclusively
for alternatives.

With our assumption of full C-Box population in place,
we examined the effects of varying numbers of extra base
tracks and reserved alternative tracks on CYA yields. In

 0

 20

 40

 60

 80

 100

 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

Y
ie

ld
 (

%
)

Defect Rate (log scale)

Reservation
0
1
2
3
4
5

Figure 5: Effects of reserved tracks (DES with 20%
extra base tracks)

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9

Y
ie

ld
 (

%
)

Reservation

Alternatives
0
1
5
10
20
30
40

Figure 6: Effects of dividing extra tracks between
the base route and alternatives (DES with 1.4Wmin

total tracks, defect rate 0.001)

Figure 4, we see that adding 20% extra base tracks to DES
with 20% reserved tracks provides essentially no benefit as
compared to a case with no extra base tracks. Conversely,
Figure 5 shows that adding a single reserve track per channel
to DES with 20% extra base tracks can provide two orders
of magnitude improvement in the tolerable defect rate as
compared to the same device with no reserve tracks. This
demonstrates that there is value to reserving tracks exclu-
sively for alternatives even when there are a number of extra
channels. Paths in the non-reserved tracks get fragmented,
preventing them from serving as effective alternatives.

Figure 6 makes this contrast between the usefulness of
extra base tracks vs. reserved alternative tracks more ex-
plicit. In this graph, we fix at 9 (40%) the number of ad-
ditional tracks (above Wmin) while varying the division of
these tracks between extra base tracks and reserved alter-
native tracks. These data show benefits for CYA from each
additional track that is converted from an extra track to a
reserved track; however, the most significant improvements
come from the addition of the first four (roughly 0.2Wmin).
In practice, the number of useful reserved tracks will be a
function of defect rate.

reserved tracks → +0% +20%
alternatives → 0 1 40 0 1 40
name LUTs % yield

tseng 1064 65 76 76 54 100 100
ex5p 1120 44 50 50 49 99 99
apex4 1336 48 51 51 48 100 100
dsip 1372 48 56 56 45 100 100

misex3 1448 48 49 49 49 98 100
diffeq 1516 47 56 56 48 100 100
alu4 1556 44 49 49 48 99 99
des 1660 41 60 60 37 100 100

bigkey 1708 47 56 56 41 99 100
seq 1792 41 51 51 37 100 100

apex2 1940 39 44 44 31 96 100
s298 1956 43 48 48 44 95 100
frisc 3572 8 14 14 15 97 100

elliptic 3624 15 24 24 17 89 100
spla 3820 15 20 20 5 94 99
pdc 4760 3 5 5 4 95 100

ex1010 4804 3 10 10 3 96 100
s38417 6440 3 19 19 4 97 100

s38584.1 6452 5 15 15 4 97 100
clma 8548 0 1 1 1 84 98

Geometric Mean 18 27 27 17 96 99

Table 1: CYA Yield Improvement for Toronto 20
designs, (no extra base tracks, defect rate 0.0001)

Symbol Definition

s Number of CLBs across the side of the FPGA;
s2 is the total number of CLBs in the FPGA

N2pt Number of 2-point nets in the design
Tpl Total path length of a configuration:PN2pt

i=0 (net2pt[i].path length)
Talt Total number of alternatives tried during a

configuration (average across our 100 chips)
Tplalt Total path length of all alternatives tried during a

configuration:
PTalt

i=0 (alt[i].path length) (average)
Ftch Number of frames touched setting and clearing

paths

Table 2: Bitstream Table Parameters

5.3 Summary
While our examples above all discuss results for DES only,

the results for the other Toronto 20 designs were similar. Ta-
ble 1 shows the results for simulations with a defect rate of
0.01% and no extra base tracks. The larger designs show
dramatic yield improvements upon the addition of alterna-
tives, improving from single-digit to near-100% yield as we
go from 0 to 40 alternatives in the presence of reserve tracks.

6. BITSTREAM IMPACT
Storing and loading alternatives will make the bitstream

larger and lengthen bitstream load time. Table 3 records
design and experimental statistics and estimates bitstream
sizes and load times. These estimates suggest that the CYA
bitstream may be a factor of 2–50 larger than a conventional
bitstream depending on the number of alternatives stored
(Section 6.1) and take 2–200 times longer to load depending
on the configuration architecture (Section 6.2).

Design Bitstream Size Experiment Load Time
(in Kbits) Data conv. Random Frame

name s W N2pt Tpl conv. CYA-1 CYA-40 Talt Tplalt Access Mod.
(µs) (µs) (ms)

tseng 17 29 2069 6231 131 333 (2.5) 4448 (34) 2075 6273 168 292 (1.7) 28 (164)
ex5p 17 48 2516 7564 217 409 (1.9) 5499 (26) 2532 7628 278 359 (1.3) 34 (121)
apex4 19 46 2908 11660 260 598 (2.3) 8926 (35) 2935 11794 333 497 (1.5) 44 (132)
dsip 27 28 3260 13076 319 686 (2.2) 10026 (32) 3270 13148 409 574 (1.4) 49 (119)

misex3 20 41 3215 12894 257 661 (2.6) 9871 (39) 3260 13131 328 553 (1.7) 49 (149)
diffeq 20 32 2987 8971 200 479 (2.4) 6402 (33) 2994 8996 256 420 (1.6) 40 (154)
alu4 20 38 3367 13531 238 674 (2.8) 9952 (42) 3384 13630 304 561 (1.8) 51 (166)
des 32 28 3612 14456 448 766 (1.7) 11227 (26) 3629 14484 574 639 (1.1) 54 (94)

bigkey 27 24 3661 14701 274 771 (2.8) 11272 (42) 3722 15076 350 657 (1.9) 56 (160)
seq 22 44 4000 16032 333 822 (2.5) 12272 (37) 4014 16096 426 679 (1.6) 60 (140)

apex2 23 44 4386 17592 364 923 (2.5) 13488 (38) 4463 17990 466 785 (1.7) 67 (144)
s298 23 32 4107 16479 265 865 (3.3) 12635 (48) 4173 16739 339 732 (2.2) 63 (184)
frisc 30 49 7427 29786 690 1621 (2.4) 24030 (35) 7445 29916 882 1344 (1.5) 111 (126)

elliptic 31 45 7153 35840 676 1855 (2.7) 29158 (44) 7244 36446 865 1501 (1.7) 121 (139)
spla 31 60 8757 43823 901 2285 (2.5) 36001 (40) 8796 44060 1154 1828 (1.6) 145 (126)
pdc 35 68 10968 54972 1302 3005 (2.3) 46977 (37) 11050 55702 1666 2430 (1.5) 184 (110)

ex1010 35 49 10772 43354 938 2431 (2.6) 35465 (38) 10843 43772 1201 2044 (1.7) 162 (135)
s38417 41 38 12284 36942 999 2259 (2.3) 29934 (30) 12314 37122 1278 1991 (1.6) 163 (127)

s38584.1 41 36 11185 44776 946 2514 (2.7) 36622 (39) 11248 45315 1211 2118 (1.7) 168 (139)
clma 47 58 18266 91805 2002 5140 (2.6) 79280 (40) 18422 93804 2563 4215 (1.6) 309 (121)

Parenthesized data at right of columns is ratio to conventional case.

Table 3: Bitstream Size and Load Time (defect rate 0.0001)

6.1 Bitstream Size
We estimate the number of routing configuration bits,

Bconv for a conventional, unencoded FPGA bitstream as:

Bconv = s2 ·W · (Fcin · I + Fcout ·O + 1 + 4/Lseg) (2)

I, O, and Lseg are defined in Section 4.3. We assume 5
bits to configure switchpoints at the end of a segment (2
bits to specify which of the 4 sides is the source and 3 bits
to specify drive into each of the other 3 directions) and 1
bit to configure mid-segment switchpoints. s is the side as
defined in Table 2. Routing configuration make up 80–90%
of a typical FPGA bitstream.

Assuming sparse storage where we must provide an ad-
dress for each configuration bit in the CYA component or
CLB flip-flop, we estimate the number of bits required to
specify a CYA bitstream as follows:

Balt = N2pt ·
`˚

log2

`
s2I ·W · Fcin

´ˇ
+˚

log2

`
s2O ·W · Fcout

´ˇ´
+ (Tpl − 2N2pt) ·

`˚
log2

`
s2W

´ˇ
+ 5

´
(3)

Btpath = N2pt ·
`˚

log2

`
s2O

´ˇ
+ 1

´
· 5 (4)

Bcya = (Nalt + 1) ·Balt + Btpath (5)

N2pt and Tpl are as defined in Table 2. Bcya is the total size
of a bitstream with Nalt alternatives. Btpath are the bits
required to specify the test, while Balt is the number of bits
required for one alternative for every 2-point net. To test a
two point net, we need to (1) set a zero into the driver, (2)
set up a one for transition on the driver, (3) read out the
result of the zero-one test, (4) set up a zero for transition on
the driver, and (5) read out the result of the one-zero test;
this sets the multiplier of 5 in Eq. 4. Each path starts and
ends at a C-Box, so the first term in Eq. 3 is for specifying

the start and end C-Box connections, while the second term
is for specifying the S-Box switch settings. We again assume
that an S-Box switchpoint requires 5 bits.

Beyond simply storing multiple configurations, the size
overhead for the estimated CYA bitstreams comes from pro-
viding a complete address for every configuration or test
resource. Exploiting locality and regularity, it should be
possible to reduce this overhead cost significantly. Our ap-
proach here deliberately avoided making assumptions about
the structure of the FPGA architecture and bitstream; ex-
ploiting architectural structure (e.g. domain) would allow
more compact expression of paths and alternatives.

6.2 Bitstream Load Time
A conventional bitstream load is typically limited by load

bandwidth:

Lconv = Bconv/BWload (6)

For concreteness, assume a system that can load 16-bit val-
ues at 50MHz (BWload =16b/20ns) (e.g. Virtex-5 [35]).

Assuming random access into the stored bitstream, CYA
can skip over alternatives that it does not need to load. The
number of bits we need to read in this case is:

Rcya = Talt ·
`˚

log2

`
s2I ·W · Fcin

´ˇ
+˚

log2

`
s2O ·W · Fcout

´ˇ´
+ (Tplalt − 2Talt) ·

`˚
log2

`
s2W

´ˇ
+ 5

´
+Talt ·

`˚
log2

`
s2O

´ˇ
+ 1

´
· 5 (7)

Talt and Tplalt are as defined in Table 2. If we have random
access to set configuration bits and set and read CLB flip-
flops for testing, then the time to read the Rcya bits from
the CYA bitstream will determine CYA load time.

Alternately, if we use a frame modification scheme (Sec-
tion 3.3), time will be determined not by the number of bits
changed, but by the number of frames touched and the time
to shift and modify each frame. We assume the C-Box con-
nections at the beginning and end of a path are each in one
frame; for a conservative estimate, we assume that every S-
Box switch in the path touches a separate frame. This means
the path length is equal to the number of frames touched,
so we estimate the frames touched as Tplalt. When a path is
bad, we must unload it. So, all but Tpl of the frames must
be touched twice.

Ftch = 2Tplalt − Tpl (8)

For concreteness we assume 1312 bit frames similar to Virtex-
5 [35] and define frame load time to match the previous
bandwidth assumptions (Tframe = 1312/BWload). Using
Eq. 8, we estimate the CYA load time:

Lframe = Ftch · Tframe + Talt · 5 · Tframe (9)

As Table 3 shows the frame scheme loads two orders of
magnitude slower than a conventional bitstream load. This
is the tradeoff it makes to guarantee that no changes are
required to the core of the FPGA architecture. The random
read case is a factor of 2–3 slower than the conventional case,
and its slowdown is driven largely by the simplistic encoding
assumed to estimate bitstream size. We expect both cases
can be reduced significantly with minor modifications.

7. EXTENSIONS AND FUTURE WORK
Our work to date highlights the promise and viability of

the CYA approach. It also raises many additional questions
and suggests several directions for future work.
Tuning The results presented here are based on a simple
diversity metric for the alternatives of a single net (Eq. 1).
This leaves open the possibility that more sophisticated cost
functions for alternate selection, alternate ordering, and net
ordering may allow even higher robustness. As suggested in
Section 5.1, we expect this may be particularly important
when the C-Boxes are depopulated.
Defect Models and Chip Yield In this work we only
characterized the impact of CYA on routing of stuck-open
switch defects. Future work should characterize the effec-
tiveness of CYA for stuck-closed switch defects, wire defects,
bridging, and intra-cluster interconnect and LUT defects.
Complete chip yield calculations will also need to account
for the non-repairable portions of the FPGA die.
Scaling Since the benchmark designs in the Toronto 20
set are small compared to modern FPGAs, it is important
to understand how effective CYA is as design and chip sizes
scale up. For example, it will be important to characterize
how the required percentage of spare tracks or alternatives
scale compared to chip sizes.
Variation The CYA techniques may be adapted to deal
with variations and timing. Rather than simply identifying a
path as good or bad, we can identify whether or not a path
is fast enough to be usable to achieve a particular timing
goal. These extensions will demand time-sensitive tests and
time targets for nets (e.g. delay budget distribution [24]).
Interaction with Architecture In this work, we have
deliberately focused on characterizing the benefit of CYA
on the most standard FPGA architectures. It will be useful
to characterize the impact of common architectural options
(e.g. alternate S-Box, C-Box, and LUT cluster designs) on

CYA benefits, including exploring additional architectural
options which may enhance CYA effectiveness.
Lifetime Extension CYA alternatives can also be used
to compensate for lifetime wear. That is, at these small fea-
ture sizes, component characteristics change by large amounts
during operation (e.g. NTBI, electromigration, hot-carrier
effects) [4, 8, 25] and potentially fail completely. With the
CYA bitstream loader performing tests and alternative se-
lection as an integral part of the load operation, it is also ca-
pable of avoiding in-field failure of individual resources. Sim-
ply reloading the bitstream after a new in-field defect will
reroute around new defects just as it does manufacturing-
time defects. We can view the defect rates shown on the
graphs in the previous section as estimating the total accu-
mulated defect fractions the component can tolerate before
it becomes unusable. A lifetime extension strategy might be
to make sure shipped devices have a sufficiently lower defect
rate and use the residual defect tolerance to support in-field
repair. To fully realize this benefit, we will also need to
develop techniques for online detection of timing violations
(e.g. Razor latches [3]).

8. CONCLUSIONS
We have introduced the Choose-Your-own-Adventure rout-

er, a new, component-specific mapping algorithm for FP-
GAs, and shown that it can tolerate high defect rates. The
use of a single bitstream means that we only pay for CAD
once for all chips instead of once for each chip. By keeping
the loader simple and adding at most 20% additional tracks,
we limit the hardware cost of CYA. In exchange for this com-
paratively small cost, we reap major improvements in defect
tolerance and substantial yield recovery. With 0.01% switch
defects we show an improvement from 17% yield without
CYA to near 100% with CYA; even a single alternative raises
yield to 96%.

9. ACKNOWLEDGMENTS
This research was funded in part by National Science

Foundation grants CCF-0403674 and CCF-0726602. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foun-
dation. Anne Hanna provided significant review and editing
assistance. Benjamin Gojman and Nikil Mehta provided
valuable feedback on several drafts.

10. REFERENCES
[1] International technology roadmap for semiconductors.

<http:

//www.itrs.net/Links/2005ITRS/Home2005.htm>,
2005.

[2] R. Amerson, R. Carter, W. B. Culbertson, P. Kuekes,
and G. Snider. Plasma: An FPGA for million gate
systems. In FPGA, pages 10–16, February 1996.

[3] T. Austin, D. Blaauw, T. Mudge, and K. Flautner.
Making typical silicon matter with Razor. IEEE
Computer, 37(3):57–65, March 2004.

[4] K. Bernstein, D. J. Frank, A. E. Gattiker,
W. Haensch, B. L. Ji, S. R. Nassif, E. J. Nowak, D. J.
Pearson, and N. J. Rohrer. High-performance CMOS
variability in the 65-nm regime and beyond. IBM J.
Res. and Dev., 50(4/5):433–449, July/September 2006.

http://www.itrs.net/Links/2005ITRS/Home2005.htm
http://www.itrs.net/Links/2005ITRS/Home2005.htm

[5] V. Betz. VPR and T-VPack: Versatile Packing,
Placement and Routing for FPGAs. <http:

//www.eecg.toronto.edu/~vaughn/vpr/vpr.html>,
March 27 1999. Version 4.30.

[6] V. Betz and J. Rose. FPGA Place-and-Route
Challenge. <http://www.eecg.toronto.edu/

~vaughn/challenge/challenge.html>, 1999.

[7] S. Borkar. Microarchitecture and design challenges for
gigascale integration. <http://www.microarch.org/

micro37/presentations/MICRO37f>, December 2004.
Keynote Talk at the 37th Annual IEEE/ACM
International Symposium on Microarchitecture.

[8] S. Borkar. Designing reliable systems from unreliable
components: the challenges of transistor variability
and degradation. IEEE Micro, 25(6):10–16,
November–December 2005.

[9] N. Campregher, P. Y. K. Cheung, G. A.
Constantinides, and M. Vasilko. Yield modelling and
yield enhancement for FPGAs using fault tolerance
schemes. In FPL, 2005.

[10] N. Campregher, P. Y. K. Cheung, G. A.
Constantinides, and M. Vasilko. Reconfiguration and
fine-grained redundancy for fault tolerance in FPGAs.
In FPL, 2006.

[11] R. G. Cliff, R. Raman, and S. T. Reddy.
Programmable logic devices with spare circuits for
replacement of defects. United States Patent Number:
5,434,514, July 18 1995.

[12] W. B. Culbertson, R. Amerson, R. Carter, P. Kuekes,
and G. Snider. Defect tolerance on the TERAMAC
custom computer. In FCCM, pages 116–123, April
1997.

[13] S. Guccione, D. Levi, and P. Sundararajan. JBits:
Java based interface for reconfigurable computing. In
Proc. MAPLD, 1999.

[14] K. Katsuki, M. Kotani, K. Kobayashi, and
H. Onodera. A yield and speed enhancement scheme
under within-die variations on 90nm LUT array. In
CICC, pages 601–604, 2005.

[15] J. Lach, W. H. Mangione-Smith, and M. Potkonjak.
Efficiently Supporting Fault-Tolerance in FPGAs. In
FPGA, pages 105–115, February 1998.

[16] V. Lakamraju and R. Tessier. Tolerating operational
faults in cluster-based FPGAs. In FPGA, pages
187–194, 2000.

[17] A. Marquardt, V. Betz, and J. Rose. Timing-driven
placement for FPGAs. In FPGA, pages 203–213, 2000.

[18] Y. Matsumoto, M. Hioki, T. K. H. Koike,
T. Tsutsumi, T. Nakagawa, and T. Sekigawa.
Suppression of intrinsic delay variation in FPGAs
using multiple configurations. ACM Tr. Reconfig.
Tech. and Sys., 1(1), March 2008.

[19] C. McClintock, A. L. Lee, and R. G. Cliff.
Redundancy circuitry for logic circuits. United States
Patent Number: 6,034,536, March 7 2000.

[20] L. McMurchie and C. Ebeling. PathFinder: A
Negotiation-Based Performance-Driven Router for
FPGAs. In FPGA, pages 111–117. ACM, February
1995.

[21] E. Packard. The Cave of Time. Bantam Books, 1979.

[22] J. Saxena, K. M. Butler, J. Gatt, R. Raghuraman,
S. P. Kumar, S. Basu, D. J. Campbell, and J. Berech.
Scan-based transition fault testing - implementation
and low cost test challenges. Proc. Intl. Test Conf.,
pages 1120–1129, 2002.

[23] P. Sedcole and P. Y. K. Cheung. Parametric yield
modeling and simulations of FPGA circuits
considering within-die delay variations. ACM Tr.
Reconfig. Tech. and Sys., 1(2), June 2008.

[24] K. So. Enforcing long-path timing closure for FPGA
routing with path searches on clamped lexicographic
spirals. In FPGA, pages 24–33, 2008.

[25] S. Srinivasan, R. Krishnan, P. Mangalagiri, Y. Xie,
V. Narayanan, M. J. Irwin, and K. Sarpatwari.
Toward increasing FPGA lifetime. IEEE Trans. on
Dep. and Secure Comput., 5(2):115–127, 2008.

[26] J. S. Swarz, V. Betz, and J. Rose. A Fast
Routability-Driven Router for FPGAs. In FPGA,
pages 140–149. ACM/SIGDA, February 1998.

[27] S. M. Trimberger. Structures and methods of
overcoming localized defects in programmable
integrated circuits by routing during the programming
thereof. United States Patent Number: 7,251,804, July
31 2007.

[28] S. M. Trimberger. Utilizing multiple test bitstreams to
avoid localized defects in partially defective
programmable integrated circuits. United States
Patent Number: 7,424,655, September 9 2008.

[29] R. W. Wells, Z.-M. Ling, R. D. Patrie, V. L. Tong,
J. Cho, and S. Toutounchi. Application-specific testing
methods for programmable logic devices. United
States Patent Number: 6,817,006, November 9 2004.

[30] Y.-L. Wu, S. Tsukiyama, and M. Marek-Sadowska.
Graph based analysis of 2-D FPGA routing. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 15(1):33–44, January 1996.

[31] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124.
XC6200 FPGA Advanced Product Specification,
version 1.0 edition, June 1996.

[32] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124.
Xilinx Virtex-II 1.5V Platform FPGAs Data Sheet ,
July 2002. DS031
<http://www.xilinx.com/partinfo/ds031.pdf>.

[33] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124.
Xilinx Virtex-4 Family Overview, June 2005. DS112
<http://direct.xilinx.com/bvdocs/publications/

ds112.pdf>.

[34] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124.
Virtex FPGA Series Configuration and Readback,
March 2005. XAPP 138 <http:

//www.xilinx.com/bvdocs/appnotes/xapp138.pdf>.

[35] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124.
Virtex-5 FPGA Configuration User Guide, September
2008. UG191 <http:

//www.xilinx.com/bvdocs/userguides/ug191.pdf>.

[36] A. J. Yu and G. G. Lemieux. Defect-tolerant FPGA
switch block and connection block with fine-grain
redundancy for yield enhancement. In FPL, pages
255–262, 2005.

Web links for this document: <http://ic.ese.upenn.edu/abstracts/cya_fpga2009.html>

http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html
http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html
http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html
http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.microarch.org/micro37/presentations/MICRO37f
http://www.microarch.org/micro37/presentations/MICRO37f
http://doi.acm.org/10.1145/275107.275125
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://www.eecg.toronto.edu/~vaughn/papers/fpga98.pdf
http://www.eecg.toronto.edu/~vaughn/papers/fpga98.pdf
http://www.xilinx.com/partinfo/ds031.pdf
http://www.xilinx.com/partinfo/ds031.pdf
http://direct.xilinx.com/bvdocs/publications/ds112.pdf
http://direct.xilinx.com/bvdocs/publications/ds112.pdf
http://direct.xilinx.com/bvdocs/publications/ds112.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp138.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp138.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp138.pdf
http://www.xilinx.com/bvdocs/userguides/ug191.pdf
http://www.xilinx.com/bvdocs/userguides/ug191.pdf
http://www.xilinx.com/bvdocs/userguides/ug191.pdf
http://ic.ese.upenn.edu/abstracts/cya_fpga2009.html

	Introduction
	Background
	Scaling Challenges
	FPGA Defect Tolerance
	Defect Model

	CYA
	Illustrative Example
	 CYA Components
	CYA Bitstream
	Routing and Alternatives Generation
	Bitstream Loader

	Configuration Architecture

	Experiments
	Experimental Framework
	Experimental Flow
	Architecture Details
	Experimental Design

	Results
	C-Box Population
	Additional Tracks
	Summary

	Bitstream Impact
	Bitstream Size
	Bitstream Load Time

	Extensions and Future Work
	Conclusions
	Acknowledgments
	References

