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Area-Efficient Near-Associative Memories on FPGAs

UDIT DHAWAN and ANDRÉ DEHON, University of Pennsylvania

Associative memories can map sparsely used keys to values with low latency but can incur heavy area over-
heads. The lack of customized hardware for associative memories in today’s mainstream FPGAs exacerbates
the overhead cost of building these memories using the fixed address match BRAMs. In this article, we
develop a new, FPGA-friendly, memory system architecture based on a multiple hash scheme that is able
to achieve near-associative performance without the area-delay overheads of a fully associative memory on
FPGAs. At the same time, we develop a novel memory management algorithm that allows us to statistically
mimic an associative memory. Using the proposed architecture as a 64KB L1 data cache, we show that it
is able to achieve near-associative miss rates while consuming 3–13× fewer FPGA memory resources for a
set of benchmark programs from the SPEC CPU2006 suite than fully associative memories generated by
the Xilinx Coregen tool. Benefits for our architecture increase with key width, allowing area reduction up
to 100×. Mapping delay is also reduced to 3.7ns for a 1,024-entry flat version or 6.1ns for an area-efficient
version compared to 17.6ns for a fully associative memory for a 64-bit key on a Xilinx Virtex 6 device.
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1. INTRODUCTION
With increasing use of high-frequency soft processors on FPGAs (e.g., [Yiannacouras
et al. 2007; LaForest and Steffan 2012]) and an increasing use of FPGAs for processor
emulation (e.g., [Wunderlich and Hoe 2004; Wee et al. 2007; Wawrzynek et al. 2007; Lu
et al. 2008]), we need to be able to implement high-performance memory subsystems on
FPGAs (such as caches and TLBs). However, FPGAs are notoriously poor at supporting
the associative memories that are often needed in high-performance processors. For
example, a recent work [Wee et al. 2007] observed:

“Lesson 2: The major challenges when mapping ASIC-style RTL for a CMP system
on an FPGA are highly associative memory structures...”
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3:2 U. Dhawan and A. Dehon

The Content-Addressable Memories (CAMs) needed to implement associative memo-
ries cannot be built efficiently out of LUTs and the hardwired SRAM blocks provided
in modern, mainstream FPGAs (e.g., Xilinx BRAM, Altera M4K). While Xilinx Core-
gen can produce parameterized CAMs [Xilinx, Inc. 2011a], they can have enormous
overheads. For example, on a recent Xilinx Virtex 6 device with 36Kbit Block RAMs
(BRAMs), a 512-entry CAM with a 40-bit key requires 60 BRAMs to perform the match,
despite the fact that 512 sixty-four-bit entries can be stored in a single BRAM. That is,
the overhead for implementing the match portion for the fully associative memory on this
FPGA is 60× the stored memory capacity. The overheads increase with the match width.
Yiannacouras and Rose [2003] show that fully associative memories implemented on
the Stratix architecture have comparably high overheads.

We show how to implement maps with substantially less overhead in comparison to
a fully associative memory using BRAMs. We achieve these savings, in part, by imple-
menting memories that are only statistically guaranteed to be conflict free. As such,
we call them near-associative memories. Specifically, we use a multiple hash scheme
[Azar et al. 1994; Mitzenmacher 1999] based on a generalization of Czech et al. [1992]
that can be efficiently implemented on top of BRAMs. We further develop efficient
replacement policies exploiting the power of choice [Azar et al. 1994; Mitzenmacher
1999; Sanchez and Kozyrakis 2010; Kirsch and Mitzenmacher 2010]. This allows us to
reduce the conflict miss probability to below 0.03% for the 512-entry CAM while using
only six total BRAMs.

Our novel contributions include the following:

—Customization of the table-based Perfect Hash scheme [Czech et al. 1992] for efficient
implementation on FPGAs (Section 3.2)

—FPGA-customized memory architecture that can be tuned to trade off BRAM usage
with conflict miss rate (Section 3)

—Analytic characterization of capacity (Section 3.5) and miss rate (Section 3.3), show-
ing that the architecture can achieve very low (≈0.05%) conflict miss rates with
substantially fewer BRAMs than Xilinx Coregen-style associative memories

—Analytic derivation of optimal sparsity factor (Section 3.8)
—Identification of a family of replacement policies and characterization of their per-

formance, area, and cycle time implications (Section 4)
—Empirical quantitative comparison of the area and performance of our new memory

organization against fully associative and set-associative memories (Section 5)

This work is an expansion of Dhawan and DeHon [2013]. Extensions include
analysis of false-positive rate in a dMHC design (Section 3.4), details of the hybrid dMHC
variants (Section 3.7), configuring a dMHC instance for a target BRAM consumption
(Section 3.9), area-delay characterization of the management algorithm (Section 4.7),
and a limit-study experiment on the management algorithm to show its efficacy
(Section 5.5).

2. BACKGROUND
2.1. Associative Memories
An associative memory provides a conflict-free mapping between a match key and a
data value. The set of match keys can be sparse compared to the universe of potential
keys. An associative memory of capacity M can hold any M entries; as long as the
capacity is not exceeded, there are no conflicts among stored key–value pairs in an
associative memory. If the system does need to store a new key–value pair when the
memory is at capacity, the memory controller is free to choose any existing key–value
pair for replacement, typically based on a policy such as least recently used (LRU),
first-in first-out (FIFO), or least frequently used (LFU).
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Fig. 1. Twenty-bit match, 108-entry fully associative memory.

However, this freedom comes at a high area and energy cost, since the hardware
needs to perform programmable, parallel matches in the entire memory against the
incoming key. As a result, fully associative memories are typically only feasible for
shallow memories with small keys such as translation look-aside buffers. Nevertheless,
the use of fully associative memories can be crucial to enhance performance in many
applications like network routing [Naous et al. 2008] and dictionary lookups for pattern
matching and data compression/decompression [Bunton and Borriello 1992].

2.2. Fully Associative Memories on FPGAs
In a custom implementation (Figure 1(a)), an associative address-match cell is pro-
grammable so it can match against any key. Since FPGAs only contain ordinary SRAM
blocks (where the address-match cell is fixed), CAMs must be built out of logic and
these embedded SRAMs (e.g., BRAMs), as shown in Figure 1(b).

In order to evaluate how area inefficient building CAMs on FPGAs using SRAM
blocks can be, we created custom CAMs the way Xilinx Coregen program suggests
[Xilinx, Inc. 2011a] for a fully associative memory for a Virtex 6 FPGA (xc6vlx240t-2
device) [Xilinx, Inc. 2011b]. This device contains 416 thirty-six-Kbit Block RAMs, which
can be organized as 2,048 × 18, 1,024 × 36, or 512 × 72 memories. In order to build
an n-deep CAM with m-bit keys on a Virtex FPGA, Coregen organizes it as a matrix
with 2m rows (a row each for all the possible keys) and n columns (a column for each of
the locations for an associated value). Each matrix cell is a single bit where, for each
possible match key, a 1 in a cell means that the data is at the location specified by
that column; otherwise, it is not. Using such an organization, one can fit a 10-bit-wide,
36-entry-deep CAM match unit in a single BRAM (using a 1,024 × 36 configuration)
[Xilinx, Inc. 2011a]. In order to build deeper CAMs, one can use multiple BRAMs and
send in the same 10 bits to be matched to each BRAM. This requires # n

36$ BRAMs,
where n is the depth of the CAM. Building this further, if the data to be matched is
wider than 10 bits, then we can use multiple 10-bit match BRAM sets and build a final
AND-tree to see if there was a complete match or not. This means that the total number
of BRAMs needed to build the match unit for an n-deep CAM with an m-bit-wide match
key using this organization is

# BRAMs =
⌈ m

10

⌉
×

⌈ n
36

⌉
. (1)

Table I shows that we run out of the BRAMs available on the device (shown in
italicized text) while storing 64-bit values associated with 64-bit keys, even for a mod-
erate depth memory. Consequently, we would like to know how to build maps much
more compactly than the normal fully associative memory design, especially when the
key-width is large or a high capacity is needed.
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Table I. BRAMs Consumed for a Fully Associative Memory
with 64-Bit Match Key and 64-Bit Data Values

BRAMs Consumed For Total BRAMs
Depth Key Match Data Value Consumed

256 56 1 57
512 105 1 113
1,024 203 2 226
2,048 399 4 403
4,096 798 8 806

3. DMHC: A NEAR-ASSOCIATIVE MEMORY
The Coregen-style associative memories are inefficient for three reasons:

(1) They demand dense storage of 10-bit match subfields—which typically means
sparse storage of keys since we must allocate space for potential keys rather than
present keys.

(2) They demand sparse (one-hot) encoding of results.
(3) They demand re-encoding of the one-hot results into a dense address and indirection

to retrieve the actual data value, leading to higher latency.

Ideally, we would like to be able to do almost the opposite:

(1) Densely store only present key–value pairs.
(2) Densely store results (no indirection).
(3) Directly retrieve the data from a single memory lookup.

Taking these as our targets, we develop a hash-based memory system with an efficient
implementation around BRAMs, called the Dynamic Multi-Hash Cache Architecture,
or dMHC, that can yield near-associative performance with low area-time overheads.

3.1. Basic Approach
In an ideal case, we would like to compute a simple function of all the bits of the key,
get the address where the data value is stored, and fetch the stored value in a single
memory lookup. A direct-mapped cache works roughly like this, except it can have
high conflict rates since many keys will map to a single memory location. Similarly, a
typical hash table functions in a similar manner but stores many data values linked
together in the same location; finding the intended value from the slot can sometimes
take many memory operations or considerable hardware. If we make the hash table
very sparse, we can reduce the probability of conflicts, and hence the expected number
of key–value pairs mapped in a single hash slot, at the expense of a much larger table.

Instead, we build on an idea that comes from Bloom Filters [Bloom 1970], Multihash
Tables [Azar et al. 1994; Mitzenmacher 1999], and Perfect Hash functions [Czech et al.
1992]: use multiple orthogonal hashes. Bloom Filters determine set membership, with
a possibility of having false positives, by hashing the input key with k independent
hash functions and setting (reading) a 1-bit memory indexed by each hash function.
On a set membership test (read), the bits are AND’ed together. If any bits are not set,
that’s a demonstration that the key in question is not in the set. If all the bits are set,
either the key is in the set or we have a false positive because multiple keys happened
to have set all the hash bits associated with this key.

We define the term sparsity factor, c, as the ratio of the depth of the memory table to
the number of values stored in the table. If we use a uniformly random hash function
that maps all keys to random memory entries, then the probability of a key getting a
false hit in any memory is less than 1

c . Now if we use k such tables, then the probability

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 3, Publication date: January 2015.



Area-Efficient Near-Associative Memories on FPGAs 3:5

Fig. 2. A generic dMHC(k,c).

of a false hit in all k memories is less than c−k, which can be made small by increasing
c or k—we’ll see how to best do this later in Section 3.8.

As originally defined, the Bloom Filter only identifies set membership, but we want
to store (and retrieve) a value as well. We can extend the idea by storing the associated
data value in the memory along with the single presence bit. Now, AND’ing the presence
bits tells us if we have the value. However, we cannot AND the values and get the right
result. Instead, we will show in the following sections that we can reasonably XOR the
values to retrieve the appropriate result. In many applications, we will want to know
when a false positive has occurred. To do that, we will further need to store the key in
the memories along with the data value, like we store the address in a direct-mapped
memory to know when we actually have a true hit.

3.2. dMHC: Hardware Organization and Operation
The top-level hardware organization of our dMHC architecture is shown in Figure 2. We
use k mutually orthogonal hash functions, H1 to Hk, and a programmable lookup table
called a G table for each hash function. Each of the G tables is made c times deeper
(i.e., made sparse) than the total capacity (number of entries) in the memory, where c is
an integer (a power of 2 in our implementations). In the rest of the article, we refer to a
generic instance of our architecture as dMHC(k,c) with k hash functions and a sparsity
factor of c.

Given an input key, we compute k, n-bit hash values, h1..hk, where n = log2(c × M)
and M is the total number of entries in the memory. In our current implementation,
we use the family of orthogonal hash functions from Seznec and Bodin [1993], which
was shown to possess the properties of uniform randomness and good local dispersion.
At the same time, these hash functions allow a simple FPGA implementation (see
Online Appendix C). The G tables store the key–value pairs in a distributed form;
that is, each key–value pair is mapped into k G table entries (each as wide as the
key–value pair) that can later be combined together to form the original key–value
pair. Each hi is an index into the G table, Gi, and from each table we read the key
field, keyi (=Gi[hi].key), and the value field, vali (=Gi[hi].val), stored at that index. The
next step is to reconstruct the key–value pair. We use XOR for this purpose as shown
here:

key = key1 ⊕ key2 ⊕ · · · ⊕ keyk (2)

val = val1 ⊕ val2 ⊕ · · · ⊕ valk. (3)
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3:6 U. Dhawan and A. Dehon

Traditional hash tables and set-associative caches demand that we compare the input
key to the stored keys in each of the k slots (ways) and use the comparison result to
select the appropriate entry. By storing the values this way, we reduce the latency to
recover the key–value pair. As shown in Figure 2, k G table outputs are fed to an XOR-
reduce tree to reconstruct the key–value pair before matching the key. In Czech et al.
[1992], modulo arithmetic is used both for the hash functions and for combining the
G table outputs. We replace modulo arithmetic with XORs to make these computations
more efficient for LUT-based implementation. The change to XORs forces us to use
power-of-2 G tables and M entries. In case the reconstructed key matches the input
key, the key–value pair is present in the memory and we can return the data value at
the same time; otherwise, the key–value pair is not in the memory and we get a miss;
there is a possibility of a false positive, which we discuss in Section 3.4. In case of a
miss, we yield to the dMHC memory controller to service the miss, which we explain later
in the Section 4.

3.3. dMHC: Conflict Probability Analysis
Now that we have described the hardware architecture and operation of our dMHC
architecture, we present an analytical characterization on a parameterized dMHC(k,c)
instance to show how we can reduce the conflict probability to arbitrarily small values.

Since we use hash functions in our architecture, we are bound to have collisions.
When a new key hashes into a G table entry that is being used by an already present
key–value pair, we have a collision in that G table. The probability of an input key
colliding with the present key–value pairs in a single G table is approximately

Pcollide <
Capacity

G Table Depth
= |M|

|G|
= 1

c
. (4)

However, the dMHC makes use of multiple hash functions. Since all the hash functions
are mutually orthogonal, the probability that an input key collides in all the G tables
simultaneously is

Pk−collide < (Pcollide)k ∝ 1
ck . (5)

As long as there is a collision in less than k tables, we do not qualify that as a conflict.
However, a simultaneous collision in all the k tables, or a k-collision, is a conflict, sug-
gesting that our conflict probability is asymptotically similar to Pk−collide. This means
that by choosing high values of parameters k and c, we can make the probability
Pk−collide arbitrarily small, and hence the conflict probability. Consequently, the com-
mon case should be that new key–value pairs do not have a k-collision and can be
inserted easily (later in Section 4 we show that even a k-collision might be resolved as
to not result in a conflict).

We can further define the conflict miss ratio as

Pconf lict miss = Conflict Eviction Count
Total Misses

. (6)

Pconf lict miss is zero for a fully associative memory. Figure 3 plots Equation (5) to
show how the conflict miss probability falls as a function of the sparsity factor, c, for a
particular number of hash functions, k. Later in Section 3.8, we see how to best choose
these parameters.

3.4. False Positives in a dMHC(k,c)
As explained in Section 3.2, we compare the input key against the reconstructed key
from the G tables. This can potentially result in a false positive in the unlikely event
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Fig. 3. dMHC conflict probabilities.

that the input key is not actually stored, but the corresponding G slots still reconstruct
the correct key. There are two parts to estimating the false-positive rate: (1) if any of
the G slots indexed by the input key is unused, then there cannot be a false positive
since we know at once that the key has not been stored, and (2) if all the indexed G
slots are being used, then there is a false positive only if the reconstructed key matches
the input key, which is only as likely as 1 in 2−m Therefore, for a dMHC(k,c) storing
m-bit wide keys,

Pf alse positive =
(

1
ck

) (
1

2m

)
. (7)

For a dMHC configured with sufficiently large k and c parameters and a key wide enough
as encountered in practical scenarios, this rate can be almost negligible—for example,
storing 64-bit keys in a dMHC(4,2) leads to a false-positive rate of only 1 in 268. The
false positive can be completely eliminated by performing an additional check from a
separate memory storing the original key–value pairs (which, as we shall see later in
Section 4, is needed for management as well) in the immediately next cycle.

3.5. dMHC Area Model
As described in the previous section, achieving near associativity with dMHC could
require us to use high values of the k and c parameters. In order to quantify the FPGA
resources consumed by a generic dMHC instance and compare them with those consumed
by a fully associative memory, we develop an FPGA area model for a dMHC(k,c) design.
In a dMHC design, BRAMs are consumed by the G tables used for storing the different
pieces of the key–value pairs; we also need to store the original key–value pairs as we
will explain later in Section 4, but we skip that for the time being. For simplicity of
our area model, we assume that all the BRAMs are used in a 1, 024 × 36 configuration.
The model can be made more elaborate by using 2, 048 × 18 or 512 × 72 configurations
wherever possible to reduce BRAMs. This, however, matters only when the depth is less
than 2,048 entries; beyond that, there is no benefit due to quantization effects. Also,
we assume that there are M entries in the memory, key width is wk-bit, and data value
width is wv-bit. The number of BRAMs consumed by a generic dMHC(k,c) instance for
implementing the match portion of the memory can then be expressed as

BRAMdmhc match = k ×
⌈

wk + wv

36

⌉
×

⌈
cM

1024

⌉
. (8)

dMHC needs to perform logic computation in the form of hash function computations,
XOR-reduce on the G table outputs, and the final match on the key. Since BRAMs are
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3:8 U. Dhawan and A. Dehon

scarcer than LUTs, we can understand most of the benefits by comparing BRAM usage
for a fully associative memory’s match and the G tables in a generic dMHC(k,c) design.1
Revising Equation (1) to use the same parameters as our dMHC(k,c) area model,

BRAMf ully assoc match =
⌈wk

10

⌉
×

⌈
M
36

⌉
. (9)

Taking the ratio of these BRAM counts, we get

BRAMdmhc match

BRAMf ully assoc match
=

k ×
⌈

wk+wv

36

⌉
×

⌈ cM
1024

⌉
(⌈

wk
10

⌉
×

⌈ M
36

⌉) ≈ kc
100

× wk + wv

wk
.

In case wv ≈ wk, we can reduce the previous expression to

BRAMdmhc match

BRAMf ully assoc match
≈ kc

50
. (10)

From this we can observe that, in case k = 4, c = 2 suffices, the dMHC(4,2) match unit
uses less than one-sixth the BRAMs of the fully associative memory (for wk ≈ wv).

3.6. Increasing the dMHC Advantage
The G table architecture as described in the previous sections provides the same func-
tionality as the exhaustive search in a fully associative memory’s matrix, albeit with a
low (configurable in k and c) conflict rate. Each entry in our G tables is composed of a
wk-bit-wide key field and a wv-bit-wide value field. This is primarily because, given an
input key, we are trying to match the key as well as fetch the data value in a single
BRAM cycle as shown in Figure 2. This could directly translate into a very wide G table
whenever the key is very wide and/or the data value is very wide. On top of this, our
architecture has to store these fields k times for k hash functions. For the rest of the
article, we refer to this design as the Flat dMHC design.

In the ideal case, we would like to only keep a single copy of all the key–value pairs
(instead of k copies). We can modify the Flat dMHC design to do just that. The simple
idea is that we store all the key–value pairs only once in a single table and only store
their address information in the G tables. Then, given a key, we can fetch these k G
table entries and XOR them together to get the exact memory location of the key in the
first BRAM cycle. Then, in the second BRAM cycle, we can fetch the key–value pair
from that location and perform the match on the key to rule out a false positive, as well
as yield the associated value. The resulting dMHC architecture is shown in Figure 4. As
we can see in the figure, this new design results in a two-BRAM-cycle access; hence,
we call it the two-level dMHC. The two-cycle access with a level of indirection is similar
to the perfect hash design in Czech et al. [1992].

For a dMHC with M entries, the addresses are only log2(M) bits wide. Therefore, the
BRAM consumption for the G tables falls from O((wk + wv) × M) in case of the Flat
dMHC to O(M log2(M)) for the two-level dMHC for any (k, c). This can result in a significant
reduction in BRAM consumption for the G tables as the two-level dMHC G table widths
are independent of the width of the key–value pairs.

Modifying Equation (8) for the two-level dMHC design, we get

BRAMdmhc match 2level = k ×
⌈

log2(M)
36

⌉
×

⌈
cM

1024

⌉
. (11)

1LUT usage is discussed in Online Appendix C.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 3, Publication date: January 2015.



Area-Efficient Near-Associative Memories on FPGAs 3:9

Fig. 4. Two-level dMHC(k,c).

Taking the ratio of the BRAMs consumed for the match unit in the two-level dMHC
against the fully associative match, we get

BRAMdmhc match 2level

BRAMf ully assoc match
=

k ×
⌈

log2(M)
36

⌉
×

⌈ cM
1024

⌉

(⌈
wk
10

⌉
×

⌈ M
36

⌉) ≈ kc
100

× log2(M)
wk

.

In comparison to the Flat dMHC design, the two-level dMHC design provides additional
BRAM savings as long as log2(M) < 2wk. In a typical case, where wk is 64 bits, we save
BRAMs as long as our capacity is less than 2128 entries, which is much larger than one
would expect to see in practice. Now, for the two-level dMHC with wk = 64 bits, a dMHC(4,2)
with 1,024 entries would consume 1

80
th

of the BRAMs consumed by the fully associative
memory—roughly 14× less than the flat dMHC design.

3.7. Performance-Area Hybrid dMHC Variants
The Flat dMHC (Figure 2) gives us a single BRAM cycle latency but consumes a large
number of BRAMs. The two-level dMHC (Figure 4) consumes significantly fewer BRAMs
but results in a two-BRAM-cycle latency. Even for the latency-sensitive cases, there
could be two cases:

—Where we need to know if the key–value is present in the memory as soon as possible
—Where we need the data value quickly and we can confirm the presence in the memory

later

It is possible to modify our two-level dMHC to achieve both these cases. If we simply
add the key fields back into the G tables, this allows us to reconstruct the key in the
first BRAM cycle and signal the rest of the system if it is found in the memory (with
a false-positive rate as discussed in Section 3.4) or not in the first BRAM cycle. At
the same time, we fetch the address of the data value, which can then be read in the
second BRAM cycle. This gives us the Fast-Match dMHC as shown in Figure 5(a), with
the match result in the first cycle and value in the second cycle.

Alternately, if we add the data value fields in the G tables, then we can simply
reconstruct the value in the first BRAM cycle and match the key in the second BRAM
cycle, giving us the Fast-Value dMHC as shown in Figure 5(b). This variant is suitable for
use in a processor pipeline that speculates that a cache hit occurs and later squashes
and reissues the instruction in the uncommon case of a miss. Table II captures the
BRAM cost and latencies for all four dMHC variants where latency is the time taken to
get the associated value after the key is presented.
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Fig. 5. Performance-area hybrid dMHC variants.

Table II. Comparison of Various dMHC Variants

Latency False
dMHC Design G Table BRAMs Match Value Positives?

Flat O((wk + wv + log2 M) × M) 1 cycle 1 cycle Yes
2-level O(M × log2 M) 2 cycles 2 cycles No
Fast-Match O((wk + log2 M) × M) 1 cycle 2 cycles Yes
Fast-Value O((wv + log2 M) × M) 2 cycles 1 cycle No

3.8. Minimum Area to Achieve a Target Miss Rate
Our primary goal is to achieve a near-associative memory performance without paying
a high BRAM cost for a fully associative memory. In this section, we show we can
configure a dMHC instance to achieve an arbitrarily low conflict probability with the
least number of BRAMs possible. Let us assume a dMHC of M entries with wk-bit keys
and wv-bit data values. Ideally, there may be multiple ways to achieve a particular
collision rate since there could be multiple (k, c)-pairs that achieve the same collision
probability (see Equation (5)). Thus, it should be possible to choose the BRAM-optimal
dMHC configuration to achieve a given collision probability for a given memory capacity.

Since the parameter c should be a power of 2, let c = 2g. From Equation (5), we have

Pconf lict ≈ 1
ck = 2−kg. (12)

In order to achieve an arbitrarily low collision probability, we can equate the previous
expression to a low value, say,

2−kg = 2−n or, kg = n. (13)

For example, n = 16 gives a collision probability of 1 in 65,536. With n = 16, we have
the options of implementing a dMHC with (g = 1, k = 16) to (g = 16, k = 1). To minimize
the BRAM consumption, we can make this decision based on the number of BRAMs
consumed for each of the previous configurations. For this, we only consider the number
of BRAMs consumed by the match unit (i.e., G tables). We start with Equation (8). Since
the G table width (wk + wv in the flat case in Equation (8) or log2(M) in the two-level
case) is independent of k and c, we can replace it with a constant α. As we will see, the
final result is independent of α, so the conclusion here holds for all dMHC variants.

BRAMdmhc match(k, c) = α × k ×
⌈

cM
1024

⌉
(14)
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Now, k = n
g = n

log2(c) . Letting β = α
1024 ,

BRAMdmhc match(c) ≈ β × ncM
log2(c)

. (15)

Taking the derivative of Equation (15) with respect to c, we see that it is minimized for
c = e (=2.718). Since we demand that c be a power of 2, that suggests the best choice
is to always set c to 2 or 4. Later in Section 5, we experimentally show that c = 2 is
sufficient to achieve a near-associative performance.

3.9. Configuring dMHC to Achieve a Target BRAM Consumption
The previous section showed how we could configure a dMHC to achieve a target conflict
rate (guaranteed statistically) while minimizing the number of BRAMs. In this section,
we show how we can also configure a dMHC to achieve a target BRAM consumption while
minimizing the conflict rate. Let us assume that we have a design target of B BRAMs.
Again, since the G table width will depend on the dMHC variant used and is independent
of the parameters k and c, we will assume it to be α. Therefore, total BRAMs for the
match portion is

B = k × α ×
⌈

cM
1024

⌉
≈ k × β × c, (16)

assuming β ≈ α×M
1024 . At the same time, we want to minimize conflict-rate ( 1

ck ). Let

conf lict rate(k, c) = 1
ck . (17)

Replacing k = B
β×c ,

conf lict rate(k, c) = 1

c
B

β×c

. (18)

The previous expression is again minimized for c = e, giving us k = # B
β×e $. Using

these expressions, we can instantiate a dMHC(k,c) that meets a given BRAM target
and achieves the lowest statistically guaranteed miss rate. This is consistent with the
result in the previous section that it is ideal to set c = 2 or c = 4.

4. DMHC MEMORY MANAGEMENT
So far we have discussed the hardware organization of the dMHC architecture and how
we can tune its configuration to achieve an arbitrarily low conflict rate. To manage an
M-entry dMHC dynamically, holding at most M key–value pairs at a time, we will need
to delete and insert values in the memory from time to time. In this section, we present
our novel memory management algorithm and show how we can further reduce the
number of conflicts. The remainder of this section describes the details of the state and
operations needed to implement our management algorithm.

4.1. Table Composition
We store the complete key–value pairs in their original form in a memory called the M
table, and we refer to each entry in there as an M slot. We refer to each entry in a G table
as a G slot. The actual composition of a G slot will vary with the dMHC variant. Figure 6
shows the composition of an M slot and a G slot for the Flat dMHC. For each G slot, we
store the number of M slots using that particular G slot in a field called the degree. The
G slot fields MRU, addr, and degree are common to all the dMHC variants. A 2-Level
dMHC only needs the MRU, addr, and degree fields. For the Fast-Match dMHC, the G slot
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Fig. 6. G and M slots for a dMHC with capacity M, wk-bit keys, and wv-bit values.

also includes the keyi field, and a Fast-Value dMHC G slot includes the valuei field. The
remainder of this section explains the rationale and use for each of the subcomponents
of these table entries.

4.2. Servicing Misses in dMHC

In the dMHC architecture, as in an associative memory or any cache, a miss occurs
when the input data is not found in the memory. In the dMHC architecture, we could
have a compulsory miss, capacity miss, or conflict miss. On the other hand, associative
memories have no conflict misses. Upon a miss, in order to insert the new key–value
pair into the memory, the first step is to find space in the memory for insertion. For
a capacity M dMHC, we cannot hold more than M key–value pairs at a given time. If
there are less than M key–value pairs stored in the memory, then we have empty slots
for inserting the new key–value pair. However, if we are already at capacity, we need
to evict a key–value pair in order to accommodate the incoming key–value pair (even
a fully associative memory needs to evict entries in case of a capacity miss), requiring
some cleanup of the state (Section 4.3).

There exist many eviction policies such as LRU and LFU. For our experiments in
this work, we used the FIFO policy that evicts the least recently inserted entry. The
FIFO policy may not be as effective as LRU or LFU in general, but it requires much
less state to be maintained; LRU requires that we keep the age of each entry, whereas
FIFO can be implemented simply as a single global counter.

4.3. Cleanup on Eviction
As explained in Section 3, each key–value pair is stored by assigning suitable values
to the k G slots used by the key. Moreover, the collision probability in Equation (5)
assumed that, for a maximum of M key–value pairs in the memory, no more than M
G slots (out of a total of c × M) are being used in each G table. Assuming uniformly
distributed hash functions, the used G slots are uniformly distributed. When we are
evicting a key–value pair, if we do not clean up the G slots being used by the evicted
key–value pair, then we could potentially end up in a situation where there are more
than M G slots in use in one or more G tables, which would increase the collision
probability computed in Equation (5). Therefore, it is necessary to free up the G slots
that are not being used for storing the key–value pairs present in the memory in order
to continue reaping the benefits of the low conflict probability as given by Equation (5).
Cleaning up a G slot simply requires resetting its contents to all zeros. At the same
time, it is possible, albeit with a low probability, that a G slot used by the evicted key–
value pair was being used by another key–value pair still present in the memory. In
that case, we do not want to reset the contents of that G slot, because it would render
that other key–value pair unreachable, effectively evicting it from the memory.

In order to solve this problem, we store the degree of each G slot along with the key–
value information. This is the same basic solution used to allow deletion in counting
Bloom filters [Fan et al. 2000]. Therefore, we need only reset those G slots that have
a degree 1, as they were being used exclusively by the evicted key–value pair. We also
decrement the degree of all other G slots, as now they are being used by one less key–
value pair. For an M-deep dMHC, the maximum degree of a G slot could be M, adding
log2(M) bits to the G slot. However, with a high sparsity factor and uniformly random
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hash functions, the maximum expected value of the degree is low. For example, at any
given time, with continuous cleanup, the probability of all G slots being used by two
or more key–value pairs is less than (2c2)−k, which is 0.02% for a dMHC(4,2) (see Online
Appendix A). In order to corroborate this analytical result, we simulated a dMHC(4,2)
for a set of SPEC CPU2006 benchmark programs and recorded the degree of G slots
for each eviction. For k = 4, c = 2, M = 1,024, the average degree is 1.01, and the
probability the degree is 2 or greater is less than 0.007%. Consequently, we can get
away with using a small number of bits in the G slot for keeping track of its degree (we
use 2 bits in our current implementation). Although uncommon, the degree of a G slot
can overflow the maximum of three in our designs. The only consequence of this is that
we may end up freeing the slot prematurely, forcing us to take a miss to refill the slot.

4.4. Inserting Data into dMHC

Once we have free space in our memory, we can begin to insert the new key–value pair.
The new key hashes into k G slots. With a high probability of 1 − (1 − e− 1

c )k (0.976 for
a dMHC(4,2); see Online Appendix A), the G slots used by the new key will not all be
in use by the key–value pairs already present in the memory. In other words, with a
high probability, we can find at least one degree-0 G slot that is not being used to store
any key–value pair. Then, we can assign that G slot suitable values (all the fields) such
that all k of the G slots can now reproduce the original key–value pair for the Flat dMHC
design or the location in the memory for the two-level dMHC design. This requires the
same XOR calculations as shown in Equation (3). At the same time, we increment the
degree of all the G slots used by the new key–value pair. However, in the uncommon
event where all the G slots are in use, we have to perform more work in order to resolve
the conflict.

4.5. Resolving Conflicts in dMHC

With a probability roughly equal to (1 − e− 1
c )k (0.024 for a dMHC(4,2) design; see Online

Appendix A), all the G slots used by the incoming key will be in use by one or more
key–value pairs already present in the memory. In that case, we will have to reassign
the fields in at least one G slot in order to accommodate the new key–value pair. Since
all of these G slots are being used by other key–value pairs, reassigning their values
will render the associated key–value pairs unreachable, effectively evicting them from
the memory due to this newly created conflict. We call them being victimized as we did
not really evict them from the memory. Nevertheless, in order to be able to insert a
new key–value pair, we must reassign values in at least one G slot, and prudence tells
us that we should only reassign values in a single G slot.

Mathematically, whenever such a conflict occurs, we can find a G slot that is being
used by only a single key–value pair with a probability greater than 1− (2c2)−k (0.9986
for dMHC(4,2); see Online Appendix B). Once we are able to locate a G slot that has a
degree of 1, we can reassign its fields such that the new fields, along with the fields in
the other k − 1 G slots, correspond to the newly inserted key–value pair.

By reassigning the G slot fields, we victimize one or more existing key–value pairs,
one in the most common case. However, since each key–value pair is stored using k G
slots, it might be possible to reinsert the victimized key–value pair by modifying the
fields in another of its remaining (k − 1) G slots. Continuing the idea of Equation (5),
with a probability of 1 − c1−k, we can reinsert this entry by modifying a G slot that
is being used only by this key–value pair. Here the collision probability is c1−k rather
than c−k because we know it will conflict with the newly inserted entry that caused this
key–value pair to be victimized in the first place. However, with a very low probability
(less than (2c2)−k), we create another conflict (when the G slot chosen to reinsert the
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victimized key–value pair has a degree greater than 1). In that case, we continue
removing and reinserting entries with similar probability of success. As a result, we
can almost always eventually accommodate all the entries in the memory, resulting
in a generalized N-hop Repair strategy, where at each hop we reinsert the key–value
pair victimized in the previous hop. This is equivalent to moving a hash entry to
accommodate an insertion (c.f. Kirsch and Mitzenmacher [2010]).

In order to be able to evict and reinsert the key–value pairs, we need to store all the
original key–value pairs as well; this allows us to recompute the hash values and the
new values to be assigned to the G slot fields. The two-level dMHC is already storing these
key–value pairs, but this forces us to add an M table for the Flat dMHC. Furthermore,
to repair the victimized key–value pair, we need the address of the M slot it is stored
in. Therefore, we add another log2(M) bits to a G slot, giving us the address of that
key–value pair that used this G slot most recently. This way, we only repair the key–
value pair that was accessed most recently using this G slot. We do not expect this G
slot to be used by more than one key–value pair in the most common case, and even
in the uncommon case, reinserting only the most recently accessed value is in favor of
temporal locality.

When we do victimize more than one key–value pair (less than 0.14% of the time for
dMHC(4,2)), two things go bad: (1) since we only reinsert one of the victimized key–value
pairs, we lose memory capacity by letting the other victimized key–value pairs stay in
the memory even though they cannot be accessed anymore, and (2) the G slots storing
information for these key–value pairs are not cleaned up as explained in Section 4.3,
affecting the conflict miss probability. However, since the FIFO policy chooses the M
slot to be evicted in a periodic manner, we will eventually be able to evict these stale
key–value pairs and also clean up their G slots.

4.6. Lowest Degree Victim with N-Hop Repair
Generalizing the previous strategy, this brings us to the Lowest Degree Victimization
policy for inserting new key–value pairs in case of a conflict: to resolve a conflict, we
reassign the G slot with the lowest degree that would victimize the least number of
M slots. Once an entry is victimized, we can then try to repair it as explained in the
previous section; we call it the N-hop repair strategy since we follow chains up to length
N to resolve conflicts. Algorithm 1 shows the complete algorithm for Lowest Degree
Victim with N-hop Repair (or LDVN in short) for dMHC memory management.

4.7. Characterizing N-Hop Repair Algorithm
In this section, we characterize the LDVN management algorithm in terms of the state
that it needs to maintain as well as its latency. For simplicity, let us first analyze the
state needed for the LDV0 (Lowest Degree Victim with 0 hops) policy and then build on
that. Let us assume the case where the memory is at capacity. In that case, first, we
need to evict an entry as per the FIFO policy. As mentioned in Section 4.3, we perform
cleanup of the state used by the evicted key–value pair. This requires the following
steps:

(1) Compute the k hashes of the evicted key (Algorithm 1, line 4), which can be done
using the logic for the existing hash functions.

(2) Read the k G slots that are storing that key–value pair.
(3) Check the degree for each G slot; if the degree is 1, we reset that slot with 0s;

otherwise, we decrement the degree by one (Algorithm 1, lines 40–46).
(4) Update the G slots as per the previous step by writing to the corresponding G

tables.
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ALGORITHM 1: Pseudocode for Lowest Degree Victim with N-hop Repair Policy
for dMHC (4,2)
1 Function LDVN(K, V, N)
2 // K is the input key, V is the value, N is the num. of hops
3 new m ← m slot counter //global FIFO counter
4 hi ← Hi(M[new m].key) for 1 ≤ i ≤ k
5 cleanup(Gi[hi]) for 1 ≤ i ≤ k
6 hi ← Hi(K) for 1 ≤ i ≤ k
7 if there is an unused Gi[hi] then
8 use Gi[hi] to store {K, V } at M[new m]
9 else

10 choose i s.t. deg(Gi[hi]) =
11 min deg(G1[h1]...Gk[hk])
12 reassign Gi[hi].{key, val, addr} to store {K, V } at M[new m]
13 victim m ← Gi[hi].mru
14 LDV(victim m, i, N);
15 end
16 Gi[hi].degree + + for 1 ≤ i ≤ k
17 Gi[hi].mru ← new m for 1 ≤ i ≤ k
18 m slot counter + + // FIFO replacement of M slots
19 return dMHC miss
20 something
21 Function LDV(m slot, j, N)
22 if N = 0 then
23 return 0 //no more hops
24 else
25 hi ← Hi(M[m slot].key) for 1 ≤ i ≤ k
26 choose i *= j s.t. deg(Gi[hi]) =
27 min deg(G1[h1]...Gk[hk])
28 reassign Gi[hi].{key, val, addr} to store
29 M[m slot].key at M[m slot] //update only the chosen G slot
30 if Gi[hi].degree = 1 then
31 return 0 //no more hops
32 else
33 victim m ← Gi[hi].mru
34 Gi[hi].mru ← m slot
35 return LDV(victim m, i, N − 1)
36 end
37 end
38 EndFunction
39 something
40 Function cleanup(g slot)
41 if g slot.degree=1 then
42 reset g slot to 0
43 else
44 if g slot.degree *= 0 then
45 g slot.degree ← g slot.degree - 1
46 end
47 end
48 EndFunction
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Fig. 7. Spatial implementation of the LDVN policy.

This requires k registers, each as wide as a G slot, k 2-bit compare-to-one circuits
and k 2-bit decrement-by-one circuits. Figure 7 shows how this can be implemented
spatially. As can be seen in the figure (steps marked with corresponding numbers), we
can perform these operations in four cycles.

The next step is to insert the new key–value pair; the worst case is when we have to
victimize a G slot. In that case:

(5) First, we have to determine the G slot with the lowest degree (line 10). This can be
implemented spatially as a k 2-bit input minimum circuit with 3(k − 1) 6-LUTs.

(6) Once the victim G slot is determined, we need to reassign the value to that G
slot in order to insert the new key–value pair (line 12). This requires at most
(wk + wv) × # k

6$ 6-LUTs (for the Flat dMHC design). At the same time, we have
to increment the degrees of all the G slots used to store the information for the
new key–value pair, requiring k 2-bit increment-by-one circuits and a write of the
current FIFO counter as the MRU for these G slots (Algorithm 1, lines 16–17).

(7) Finally, we write the updated G slots back to the corresponding tables.

These operations consume another three cycles, assuming the LDV is found in a single
cycle, bringing the latency of the LDV0 policy to seven cycles.

Now, for the LDV1 policy, we need to perform all the operations for LDV0, with the
addition of repairing the MRU for the victim G slot (in case there is one, lines 13–
14). The repair procedure is same as the LDV0 itself, wherein now we are trying to
insert the key–value pair that we just falsely evicted. Therefore, LDV1 adds another
seven cycles. Similarly, each additional hop adds seven cycles to the latency and no
additional hardware, making the latency of the LDVN policy 7(N + 1) cycles. Assuming
that the next level memory in the memory hierarchy is external to the FPGA chip
(say, an external DRAM), it might take hundreds of cycles to get the new key–value
pair. This means that we could take up to 15 hops without adding to the latency of
the miss-service algorithm. Another thing to note is that we must avoid victimizing
the same G slot twice in a chain of repairs; otherwise, it could lead to nonterminating
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Fig. 8. Miss rates for a 64KB dMHC.

cycles. Furthermore, we also need to add logic to keep track of the number of hops we
have taken and to abort the LDVN procedure once the number of hops taken reaches N,
or we reach a point where no further repairs can be performed. For a dMHC(4,2) with
a 64-bit key width and a 64-bit value, we are able to implement the LDV1 with 189
6-LUTs, achieving a frequency of operation around 400MHz.

5. PERFORMANCE COMPARISON
In this section, we present FPGA implementation details for the dMHC designs as well
as simulation results for a set of memory-intensive benchmarks.

5.1. Hardware Implementation
We implemented the proposed dMHC architecture in Bluespec SystemVerilog (BSV)
[Bluespec, Inc. 2012] hardware description language. Our tool2 can generate a param-
eterized dMHC instance to target a particular conflict rate or a BRAM budget. Using the
BSV compiler, the tool generates Verilog HDL code that can then be synthesized using
Xilinx ISE tools. We also implemented the LDV0 and LDV1 policies for memory manage-
ment directly in BSV as low-level control FSMs. In order to reduce the miss-service
latency in the memory controller, we have implemented both policies as spatially as
possible (Figure 7).

5.2. Case Study I: L1 Data Cache Miss Rates
Fully associative memories would make for high-performance L1 data (or instruction)
caches for a processor, albeit with heavy area overheads. The large overhead is why
we do not see them as on-chip caches in a commodity processor. Our analytical model
shows that the dMHC architecture can achieve a near-associative memory performance
at much lower BRAM consumption (Section 3). To validate our theoretical performance
and area predictions, we modeled the dMHC as an L1 data cache and performed address
trace-driven simulations on a small set of eight benchmark programs from the SPEC
CPU2006 Benchmark Suite [Henning 2006] using traces from a 64-bit x86-simulator
[Battle et al. 2012] and simulating each benchmark for 100M cycles. Memory reference
counts for the address traces used in the present work are highlighted in Table III
(column 1).

In order to perform a direct comparison, we also simulated a fully associative memory
and several set-associative caches for the same benchmarks. Figure 8 shows how the

2http://ic.ese.upenn.edu/distributions/dmhc_fpga2013.
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Table III. Fully Associative–to–dMHC BRAM Ratio for a 64KB L1 D-Cache for Eight SPEC
CPU2006 Benchmarks

dMHC Conflict Ratio Flat 2-level Fast-Match Fast-Value
Benchmark config Theoretical Observed BRAM BRAM BRAM BRAM
(Mem instrs) (k,c) (%) (%) Ratio Ratio Ratio Ratio

art (19.9M) (4,2) 6.25 2.6 3.6 10.8 6.5 4.6
gcc (31.4M) (4,2) 6.25 3.2 3.6 10.8 6.5 4.6
go (35.5M) (4,2) 6.25 3.8 3.6 10.8 6.5 4.6
hmmer (41.9M) (3,2) 12.5 1.4 4.6 13.0 8.1 5.9
libq (30.2M) (2,2) 25.0 0.04 6.5 16.2 10.8 8.1
mcf (32.2M) (4,2) 6.25 2.8 3.6 10.8 6.5 4.6
sjeng (26.9M) (4,2) 6.25 4.9 3.6 10.8 6.5 4.6
sphinx3 (33.1M) (3,2) 12.5 4.6 4.6 13.0 8.1 5.9

overall miss rate varies for our architecture with respect to the parameters k and c for
the benchmarks gcc and go for a 64KB L1 data cache with a cache line size of 64 bytes.
The miss rate is the same for all dMHC variants. The figure also shows the miss rate
achieved with a fully associative memory of the same capacity as the dMHC, a direct-
mapped cache with four times the capacity, and a four-way set-associative cache of the
same capacity. As suggested by our analytical model, increasing the values of k and/or
c reduces the number of conflicts (thereby reducing the overall miss rate), approaching
the miss rate achieved by a fully associative memory of the same capacity at high
values. Moreover, some dMHC configurations perform better than a bigger direct-mapped
cache and a set-associative cache of the same capacity. One can also observe that the
LDV1 policy clearly outperforms the LDV0 policy for the same dMHC configurations. In
Section 5.3, we compare the BRAM consumption for these caches.

5.3. Case Study II: L1 Data Cache BRAMs
Table III shows the BRAM usage ratio for eight SPEC CPU2006 benchmarks for a
64KB L1 data cache. For each benchmark, we identify a dMHC instance that uses the
least number of BRAMs while achieving a near-associative miss rate defined arbitrarily
as when less than 5% of misses are due to conflicts. In each row, we indicate the conflict
ratio as suggested by Equation (6) and the actual conflict ratio observed by simulating
the benchmarks. Equation (6) gives us the raw conflict probability defined by the dMHC
configuration parameters. However, with our LDV1 policy, we are able to reduce the
number of conflicts below the raw value by performing repairs on accidently evicted
values. For each chosen configuration, we also report the fully associative–to–dMHC
BRAM usage ratio for all the four variants. From the data in Table III, we observe that
a dMHC(4,2) configuration with LDV1 policy is able to achieve target conflict ratios for
all the benchmarks with fewer BRAMs compared to a fully associative memory.

Results from Table III show that our architecture is able to achieve a near-associative
performance for a dMHC(4,2) configuration. We further ran simulations with various
cache organizations (direct mapped, set associative, fully associative, and dMHC) varying
the capacity from 1KB to the point where we saturate all the BRAMs available on a
Virtex 6 (xc6vlx240t-2 device) FPGA, and for each cache size, we record the miss rate
achieved and the number of BRAMs consumed.

Figure 9 shows how the miss rate falls when we increased the capacity of these
caches in terms of BRAMs for the benchmark gcc. For any type of cache, increasing
the number of BRAMs increases capacity, and therefore reduces capacity misses. From
Figure 9, we can establish that the 2-level dMHC design is able to yield the lowest miss
rate per unit BRAM consumption across a large range of cache sizes.
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Fig. 9. BRAMs versus miss rates for gcc. Fig. 10. Fully associative memory–to–dMHC(4,2)
BRAM usage ratio.

5.4. dMHC as a Choice of Cache for Extreme Cases
Using the dMHC designs as a small L1 data cache, we showed that we can achieve
a high memory performance with significantly fewer BRAMs. Furthermore, the dMHC
architecture can achieve even higher BRAM savings as the match width is increased.
For example, Dhawan et al. [2012] mention a need to map 231-bit keys to 201-bit values.
Figure 10 shows the BRAM savings for the Flat as well as the 2-level dMHC designs
over the Coregen-style fully associative memory, all of depth 1,024 entries (this is only
for the key-match portion). For the Flat variant, the saving ratio saturates at about
11×, whereas the 2-level variant is able to save up to 100× over the fully associative
memory.

5.5. Limit-Study Experiment for the LDVN Policy
In this section, we perform a limit study on the LDVN policy using the address-trace
simulations described earlier. We use a dMHC(4,2) and dMHC(4,4) as a 64KB L1 data
cache for the same set of SPEC CPU2006 benchmarks and simulate these dMHC in-
stances with an LDV∞ policy (i.e., an unbounded number of hops). For each benchmark,
we record the maximum number of hops taken to resolve all the conflicts or if the
algorithm reaches a point where no more conflicts can be resolved without disrupting
already resolved conflicts. Figure 11 shows the maximum number of hops taken by
each benchmark—all the benchmarks except hmmer, mcf, and sjeng saturate at the
same number of hops for both c = 2 and c = 4. For these three cases, c = 2 takes
one extra hop in the worst case. The figure also shows the average number of hops
taken for each of the benchmarks. The average number of hops taken across all the
benchmarks is less than 1, suggesting that an LDV1 policy should be enough to achieve
a near-associative performance. With c = 2, we were able to resolve all the k−collisions
for all of the benchmarks except for hmmer. Moving from LDV1 to LDV2 policy provides
an improvement of only 0.05% on average.

5.6. dMHC Timing
Another disadvantage of the Coregen-style fully associative memory is the low fre-
quency of operation. Reviewing Figure 1(b) shows that a fully associative memory with
capacity M has an M-bit, 1-hot to log2(M)-bit dense encoder in the critical path, re-
sulting in a high latency, even when M is moderately high (say, 1,024). By storing the
address information in the compact form (log2(M) for a capacity of M), dMHC avoids
such a slow path. In order to compare the timing performance of the dMHC architecture
with the fully associative memory, we created 1,024-entry dMHC and fully associative
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Fig. 11. Maximum and average number of hops for
a dMHC(4,c).

Fig. 12. dMHC versus fully associative delays for a
1,024-entry memory holding 64-bit values.

memory designs with 64b values and varying key widths from 16-bit to 120-bit. These
designs were then placed and routed using Xilinx ISE 13.2 for a Virtex 6 (xc6vlx240t-2)
device. Figure 12 shows the best-case latency achieved for these designs against the key
widths. These are the delays between providing the match key and receiving the corre-
sponding data value in an unpipelined design. Here we show access latency, whereas
Dhawan and DeHon [2013] only showed the pipeline cycle time. Along with different
BRAM footprints, the Flat and the two-level dMHC designs have slightly different critical
paths. Apart from that, the fully associative memory and two-level dMHC each require
two BRAM cycles to fetch the data value in the most common case; pipelined, these
both can launch one memory lookup per BRAM cycle. Using the two-level Fast-Value
dMHC variant where we store the data values in the G tables, we can achieve a much
lower (single BRAM cycle) latency in the most common hit case.

6. RELATED WORK
Seznec [1993] introduced a cache based on the multiple hash idea. He showed that using
a cache with multiple physical ways, where each way is indexed by a different hash
function, called a skewed-associative cache, resulted in a lower miss rate than a regular
direct-mapped or a set-associative cache. He further showed that a two-way skewed-
associative cache has a miss rate close to a regular four-way set-associative cache with
the hardware complexity of a two-way set-associative cache. Once we have a design
that has choice, we can further reduce the conflicts by moving entries in the cache
when conflicts arise [Kirsch and Mitzenmacher 2010]. Sanchez’s Z-Cache extended
the skewed-associative caches by introducing smart replacement policies that try to
reduce the miss rates by exploiting moves to expand the pool of eviction candidates
and then choosing a suitable cache block to be evicted [Sanchez and Kozyrakis 2010].
In the Z-Cache, there is always a conflict on insertion, and the question is which
present entry should be removed. In most cases, the dMHC has no conflict on insertion.
Furthermore, since we keep track of sharing degrees, we can greedily search along a
single conflicting entry for replacements, whereas the Z-Cache must expand a tree of
exponentially increasing candidates. Since the Z-Cache is set associative, it demands
a comparison and mux selection in the critical path after memory lookup, whereas
our Flat as well as the Fast-Value dMHCs produce the candidate result after a single
memory lookup.

Bloomier filters [Chazelle et al. 2004] extend Bloom filters by giving the exact pat-
tern that matched along with the set membership. These have been effectively used
in applications such as accelerating virus detection using FPGA hardware [Ho and
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Lemieux 2008]; however, setting up a Bloomier filter requires some level of preprocess-
ing, making it much more suitable for use where static support is involved. Our design
has some similarity to Song’s multiple hash function counting Bloom filter [Song et al.
2005]. However, note that Song only uses the hash function to determine the size of
hash buckets that are stored off chip—particularly to avoid off-chip lookups in most
cases and minimize lookups in others. Furthermore, our management logic is simpler
and suitable to direct hardware implementation.

7. CONCLUSIONS
We have introduced the dMHC memory architecture that achieves near-associative mem-
ory performance. Furthermore, we have shown how it can be parameterized in terms
of capacity, k, c, and design variants. We also showed that the proposed architecture
can be easily tuned in order to engineer the BRAM usage, conflict rate, and/or access
latency to the memory. We showed that the dMHC instances use their BRAMs more effec-
tively than traditional alternatives (fully associative, set associative, direct mapped),
achieving lower miss rates than the alternatives over a larger range of BRAM budgets
(Section 5.3). Furthermore, we’ve shown that the dMHC implementations have lower ac-
cess latency (Figure 12). The dMHC should be in any FPGA application or reconfigurable
computing designer’s arsenal of building blocks.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
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Udit Dhawan, Albert Kwon, Edin Kadric, Cătălin Hriţcu, Benjamin C. Pierce, Jonathan M. Smith, Gregory
Malecha, Greg Morrisett, Thomas F. Knight, Jr., Andrew Sutherland, Tom Hawkins, Amanda Zyxnfryx,
David Wittenberg, Peter Trei, Sumit Ray, Greg Sullivan, and André DeHon. 2012. Hardware support
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André Seznec and François Bodin. 1993. Skewed-associative caches. In Parallel Architectures and Languages
Europe. 304–316. DOI:http://dx.doi.org/10.1007/3-540-56891-3_24

Haoyu Song, Sarang Dharmapurikar, Jonathan Turner, and John Lockwood. 2005. Fast hash table
lookup using extended bloom filter: An aid to network processing. In Proceedings of the Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communications. 181–192.
DOI:http://dx.doi.org/10.1145/1080091.1080114

John Wawrzynek, David Patterson, Mark Oskin, Shih-Lien Lu, Christoforos Kozyrakis, James C. Hoe, Derek
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