Appearing in IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), May 11-13, 2014

GROK-INT: Generating Real On-chip Knowledge
for Interconnect Delays Using Timing Extraction

Benjamin Gojman

André DeHon

Computer & Information Science. University of Pennsylvania Electrical & Systems Engineering. University of Pennsylvania

3330 Walnut Street Philadelphia, PA 19104
bgojman @seas.upenn.edu

Abstract— With continued scaling, all transistors are no longer
created equal. The delay of a length 4 horizontal routing segment
at coordinates (23,17) will differ from one at (12,14) in the same
FPGA and from the same segment in another FPGA. The vendor
tools give conservative values for these delays, but knowing
exactly what these delays are can be invaluable. In this paper, we
show how to obtain this information, inexpensively, using only
components that already exist on the FPGA (configurable PLLs,
registers, logic, and interconnect). The techniques we present are
general and can be used to measure the delays of any resource on
any FPGA with these components. We provide general algorithms
for identifying the set of useful delay components, the set of
measurements necessary to compute these delay components,
and the calculations necessary to perform the computation. We
demonstrate our techniques on the interconnect for an Altera
Cyclone III (65nm). As a result, we are able to quantify over a
100 ps spread in delays for nominally identical routing segments
on a single FPGA.

I. INTRODUCTION

As Moore’s Law scaling continues, circuit variation be-
comes an ever increasing problem that must be overcome
to reap the benefit promised by the smaller feature sizes.
Conventional techniques used to deal with this problem, such
as margining and speed-grading, will become too expensive
to practically deal with the enormous variation expected [1].

Reconfigurable circuits are uniquely positioned to better
handle large circuit variation, since they allow for fine-grained
techniques that carefully configure around this variation to
avoid undesired resources, and even take advantage of vari-
ation [2], [3]. In [4] we show that by carefully mapping
to the variation present in an FPGA, we reduce the energy
utilization of the circuit by half. Moreover, our results indicate
that a component-specific mapping will be critical in future
technologies if the mapped design is to function at all. This
approach, however, requires fine-grained knowledge of the
underlying circuit variation. In our previous work [5], we intro-
duce Timing Extraction, an effective technique that measures
fine-grained circuit variation. The approach takes advantage of
the ability to configure a large diverse set of paths in an FPGA.
When measured, the delay of these paths provide all the
necessary information to calculate the delay of each segment
that forms the path. Essentially, we formulate a large system
of equations, where each equation, representing the delay of a
path, is formed by the sum of variables, representing the delay
of a small set of physical devices. Solving this system gives

© 2014 IEEE

200 S. 33rd St. Philadelphia, PA 19104
andre @acm.org

the desired fine-grain variation measurements. Furthermore,
the small set of physical devices, called a Discrete Unit
of Knowledge (DUK), is carefully selected to easily allow
for fine-grained variation analysis and path exploration in
conventional routing algorithms [6].

In [5] we limit our application to the logic blocks in the
FPGA. However, since most of the area, delay, and energy
of modern FPGAs is consumed by the general interconnect,
in this paper we present an expanded version of Timing
Extraction that extracts fine-grain delay measurements from
the whole FPGA, including the general interconnect. We
generalize the idea of a Discrete Unit of Knowledge (DUK) by
broadening the definition of DUKSs. In [5] we present two types
of DUKs, the Mother DUK (M-DUK) and Child DUK (C-
DUK), each covering a very specific set of physical resources.
Here, we define two classes, the M-DUK and C-DUK classes.
Each contains the corresponding DUKs from [5], but also
allows for more types within the class. Chiefly, a member of
the M-DUK class begins every path, while a C-DUK member
increases the length of a path. Moreover, as one of the primary
contributions of this work, we explain how to algorithmically
decompose the complete resource graph of any FPGA into a
small number of M-DUKs and C-DUKs and automatically
generate which paths should be measured to compute the
DUK delays. Knowing their delay, these DUKs can easily be
composed to compute the delay of any of the multitudinous
paths in the FPGA. What’s more our decomposition guarantees
that only a small number of DUK types of each class gets gen-
erated, providing the information necessary to easily perform
fine-grain variation characterization by directly comparing the
delay of these DUKs.

Sec. II sets up the concepts required to understand basic
circuit variation as well as reviews the version of Timing Ex-
traction presented in [5]. Sec. III explains how to decompose
the FPGA resource graph into DUKs. Sec. IV demonstrates
this decomposition for a commercial FPGA, and Sec. V
presents the actual measurements. We conclude in Sec. VII.

Novel contributions of this work include:

o Technique for systematically decomposing any FPGA

into fine-grain units of delay.

— Identification of small set of types of fine-grain units.

— Identification of paths required to compute fine-grain
unit delays.

http://www.fccm.org/
http://www.seas.upenn.edu/~bgojman
mailto:bgojman@seas.upenn.edu
http://www.seas.upenn.edu/~andre
mailto:andre@acm.org

; 133 : thh(RDF)
£ O cvth(OTF)
< 80FfF 5

th(LER)

% 60 [: thh(total)

WiL=1

45nm 32nm 22nm 16nm 12nm

Technology Node

Fig. 1: ov,, as a function of technology nodes, based on predictive
technology models. Considering the individual effects of random
dopant fluctuations (RDF), line edge roughness (LER) and oxide
thickness (OTF) from [8]

o First set of measurements to characterize the fine-grain
delay of both logic and interconnect.

o Delay measurement of near individual routing segments.

« Demonstration of significant delay contribution from ran-
dom process variation.

II. BACKGROUND
A. Process Variation

Manufacturing differences between device parameters leads
to differences in device performance and energy requirements.
This process variation, historically, has been correlated to
a design parameter, such as physical location [2]. As such,
most mitigation techniques, including modeling, binning, and
biasing [7] focused on correcting these correlated parameter
deviations. Unfortunately, with scaling comes a serious in-
crease in uncorrelated, or random process variation (Fig. 1),
that cannot easily be reduced simply through these techniques.

To understand how variation affects transistors, we
examine the transistor delay and energy equations (Egs. 1, 2).

Vd s

Tpd = Cl : 4 (l) Eleak = Ids,sub . Vds *Teycle (2)
Both depend on the current, I;,, that, depending on whether
we are in saturation or subthreshold are defined by Egs. 3

and 4 [9], [10].

Ids,sat = W'Usatcow (Vqs - Vvth - 0~5Vd,sat) (3)
W Vgs—Vin —Vias
Ids,sub — fncox(n _ 1) 'UTQ .e nor (1 —e T) (4)

These equations include physical parameters such as tran-
sistor length, L, and width, W, as well as electrical properties,
including threshold voltage, V;;. All suffer from random
variation, but V;;,’s exponential relationship to current marks
it as the most significant, since a small V};, change precipitates
a large change in current, considerably changing the energy
and timing requirements of the transistor.

B. Altera Cyclone Architecture

Sec. V demonstrates the results of applying Timing Extrac-
tion to the Altera Cyclone III FPGA. Therefore, we briefly
describe its architecture. The Cyclone III is comprised of a
collection of logic array blocks (LABs) embedded in a hierar-
chical routing network with length 4 and 24 horizontal routing
segments and length 4 and 16 vertical routing segments. A
small number of embedded memory and multiplier columns
provide increased flexibility, while a comprehensive set of I/O
pins and PLLs form the periphery.

The LAB consists of 16 logic elements (LEs) composing
a 4-LUT and an optional register. Internal connections with
50% depopulations allow for communication among the 16
LEs. An extra set of connections bring signals into the LAB
from the length 4 routing segments, as well as from the
horizontally adjacent LABs. Outputs from an LE can be routed
to horizontally adjacent LABs as well as the immediately
surrounding length 4 routing segments [11].

C. Path-Delay Measurement

Timing Extraction depends on measuring the delay of paths
in the FPGA. An effective way is by using a launch-capture
technique. Starting at a low test frequency, a signal is sent
from the launch register, through the path in question, to the
capture register. A test is preformed to determine if the signal
arrived at the capture register within the allotted test frequency.
The test frequency is increased until we find the threshold at
which the signal fails to reach the capture register.

To mitigate operational variation such as clock jitter, we
measure repeatedly at each test frequency. If at test frequency
f the number of failures is a percent of the total measurements,
the delay of the path is characterized as lf Since the transition
from no failures to 100% failures is gradual, we select the
50% failure point as the representative delay. Measuring for
the 50% failure point 2'° times at each test frequency, gives,
with 99.98% confidence, a 1% error. This technique has been
successfully used to capture the delay of paths on FPGAs for
many applications [5], [12]-[16].

It is worth noting that we do not use this frequency for
regular operation, since at this frequency signals fail timing
50% of the time. Knowing the variance in cycle time, we can
then select a suitable operating frequency that keeps timing
errors down to an acceptable level.

Additionally, we isolate the falling delay from the rising
delay and record them separately. For consistency and space
constraints, in this paper we only present rising delays.

D. Timing Extraction on Logic Clusters

In [5] we introduce the main ideas behind Timing Extraction
by applying it to the LABs in the Cyclone III FPGAs.
Revisiting the salient points of that work allows us to build
upon it and ultimately fully characterize a complete FPGA. We
review the idea of a smallest measurable unit, giving rise to the
notion of Logical Component Nodes, that form the building
blocks for Discrete Units of Knowledge (DUKS).

To non-destructively measure the delay of a path in an
FPGA it is necessary to have the resources being measured
be part of a bitstream programmed onto the FPGA, regardless
of the measurement technique used. Although FPGAs offer
great flexibility, when measuring a particular resource, it
will be necessary to use other resources near it. E.g., when
measuring the delay of a crosspoint connecting two wires, the
two wires must be part of the bitstream programmed for this
measurement. As such, it is not possible to simply measure
the delay of the crosspoint, since it is always used with the
two wires. Nevertheless, this is not limiting since any time the

crosspoint is used, the two wires will be used as well. Thus,
practically there is no need to know the delay of the crosspoint
in isolation but rather as part of a unit also including the two
wires. This observation can be generalized and gives intuition
to the concept of a smallest measurable unit, a set of resources
that cannot be measured independently from each other.

In this work, as well as in [5], we use the launch-capture
approach (Sec. II-C). This method requires measuring com-
binatorial paths between two registers. Combining this with
the idea of a smallest measurable unit, in [5] we identify
three types of Logical Component Nodes (LC Nodes). First,
the Start Node, consisting of the smallest measurable units
that begin at a register. Second, the End Node, representing
the smallest measurable units ending at a register. Finally, the
Mid Node, encompassing the smallest measurable units that
are purely combinatorial, without any registers. With these
Nodes, a path measurable by the launch-capture technique is
formed by a Start Node followed by zero or more Mid Nodes,
ending in an End Node.

LC Nodes are the ideal candidate for a fine-grain delay
measurement of FPGAs. We can form any path in the FPGA
from a combination of LC Nodes and can formulate a linear
system of equations where each equation represents the delay
of a path formed by a number of LC Nodes. Unfortunately, as
we previously point out in [5], it is not possible to solve for
the delay of all LC Nodes even if all paths are measured.

To overcome this LC Node shortfall, in [5] we define
the Discrete Unit of Knowledge (DUK) as small linear
combinations of LC Nodes, and demonstrates how a path
represented using LC Nodes can very easily be transformed to
a DUK-based representation. Moreover, we show that unlike
LC Nodes, it is simple to compute the delay of DUKs by
measuring the delay of paths. Previously we only present two
elements of the M-DUK and C-DUK classes. The member of
the M-DUK class is formed by a Start Node plus an End Node,
while the C-DUK member is composed of a Mid Node, plus
an End Node, minus another End Node. In [5], we identified
these DUKs manually. Though sufficient for logic clusters,
these two types of DUKSs lack the flexibility to represent other
FPGA structures. In this work we address this shortcoming by
introducing an algorithm to automatically extract a few types
of M-DUKs and C-DUKSs, that together allow us to represent
any FPGA structure.

III. TIMING EXTRACTION ON GENERAL GRAPHS

Timing Extraction decomposes the resource graph of an
FPGA into Discrete Units of Knowledge (DUKSs). The DUKs
are small enough to provide low level variation information,
large enough to be cheaply, easily and distinctly measurable,
and practical to use in component-specific mappings.

Here we step through the process required to decompose
the FPGA into DUKs and the paths needed to compute
DUK delays. We begin by examining the transformation from
physical resources to groups of resources forming LC Nodes.
In the process we broaden the definition of LC Nodes by
expanding the original three LC Node types (Sec. II-D) into

(A—)C—)FB(B—)C—)FD(B—)D—)F)
e, 0
@\/Cf

(a) Physical Graph (b) LC Node Graph

Fig. 2: Transformation of a physical resource graph, where squares
highlight registers, to an LC Node graph, where node names represent
encompassed physical resources.

three LC Node classes, each containing a handful of types.
Building on LC Node classes, DUKs undergo a similar type
to class redefinition, allowing us to cover the FPGA resource
graph using a handful of distinct DUKs.

A. LC Node Decomposition

An LC Node consists of a group of connected physical
resources that cannot be independently measured. Given a
graph of physical resources, we form LC Nodes by identifying
paths between un-clocked resources that have fan-in greater
than one. Physical resources in the same path are grouped
into one LC Node. We repeat the process for paths between
registers and un-clocked resources with fan-in greater than
one, and similarly from un-clocked resources with fan-in
greater than one to registers. LC Nodes are then connected to
form an LC Node graph that maintains the relations between
nodes, as described by the physical graph ! (Fig. 2).

Sec. II-D reviews the idea of LC Nodes and mentions the
three types induced by the measurement technique. Unfortu-
nately, these three types are only sufficient for representing
logic clusters, not general interconnect nor connections be-
tween logic cluster. Nevertheless, their form help us identify
a more comprehensive LC Node definition. To generalize, any
LC Node that begins at a register will be part of the Start Node
class, regardless of the type and order of physical resources
encompassed by the LC Node. Similarly, LC Nodes that end
at a registers will be members of the End Node class. All
other LC Nodes belong to the Mid Node class. In this way,
our definition of a measurable path still holds, a Start Node
followed by zero or more Mid Nodes, ending in an End Node.

Although we can now represent any path in the FPGA using
LC Nodes, it is still impossible to solve for the delay of
every LC Node, regardless of how many paths we measure.
The proof is beyond the scope of this paper, however, in
[5] we explain the intuition for why this must be the case.
Therefore, we must consider an alternate decomposition to
achieve our fine-grain measurement goal. DUKSs, being small
linear combinations of LC Nodes, are well suited for this.

B. DUK Decomposition
DUKSs are small linear combinations of LC Nodes. Although
they represent more physical resources than LC Nodes, they

IPseudocode for algorithms available at http://ic.ese.upenn.edu/abstracts/
grokint_fccm2014.html

http://ic.ese.upenn.edu/abstracts/grokint_fccm2014.html
http://ic.ese.upenn.edu/abstracts/grokint_fccm2014.html

C-DUK A

+ &) C-DUK B
@ —>@

Es)
B4} g MA] >UD >ED

Fig. 3: Demonstration of how an M-DUK plus two C-DUKs leads
to a path with the correct form. LC Nodes represent both a set of
resources and their delay.

have three distinct advantages. First, we can easily compute
their delay from the delay of paths. Second, they still represent
a small number of physical resources, small enough to expose
fine-grain delay variation. Finally, they are simple to use
in conventional routing algorithm since they allow us to
incrementally build the delay of paths.

The two DUKSs we previously introduce [5] are only suffi-
cient for representing logic clusters. To reach a more general
DUK definition, however, it is worth reviewing their function.
The Mother DUK (M-DUK), formed by a Start Node plus an
End Node, serves as the beginning of any path. In fact, by
itself it meets the required form of a measurable path: A Start
Node, followed by zero or more Mid Nodes, ending in an End
Node. The second DUK, the Child DUK (C-DUK), is used to
expand the length of a path. As its name suggests, one or more
Child DUKSs follow a Mother DUK to form a complete path.
To achieve this while maintaining the correct form of a path,
the C-DUK is composed of a Mid Node plus an End Node,
minus another End Node. As Fig. 3 demonstrate, by selecting
and adding together the correct set of DUKs, we can form a
complete path and calculate its delay.

A closer examination of what happens in Fig. 3 gives the
necessary intuition to understand how DUKSs work. Consider
M-DUK A and C-DUK A, when combined, C-DUK A has
the effect of removing LC Node E,4 and replacing it with
LC Nodes M4 and Ep. Essentially a C-DUK is composed
of two parts, one part that identifies an LC Node that should
be removed from the end of a path, and a second part that
represents the LC Nodes that should be added to the end.
However, a more intuitive way to view this is that a C-
DUK extends a path by one Mid Node while making sure
the resulting path maintains the correct form of a Start Node,
plus zero or more Mid Nodes, plus an End Node. It is this
definition of a C-DUK that gives rise to its generalization. For
M-DUKSs, the intuition is simpler, an M-DUK represents the
shortest possible path that maintains correct form.

To decompose the complete FPGA fabric into DUKs we
redefine M-DUKs and C-DUKSs as classes with many types.
The M-DUK class contains a DUK for every Start Node in
our LC Graph. Specifically, for each Start Node we create an
M-DUK that traces a shortest path from that Start Node to an
End Node'. In the case of logic clusters, this M-DUK consists
of only two LC Nodes, the Start and the End Nodes. However,
as we will later see, some M-DUKSs will be 3 or 4 LC Nodes
long. Nevertheless, all M-DUKSs serve the same purpose, to
form the beginning of any path in the FPGA.

(=)
(0 »E=0)
(=)

[F —) —
(C=E-or—>EEH)
(a) M-DUKs (b) C-DUKs
Fig. 4: Decomposition of LC Graph in Fig. 2b into DUKs.

Understanding how C-DUKSs are generalized and generated
is more complex. As before, C-DUKSs still have two parts, the
LC Nodes to remove, and the LC Nodes to add. In order for
this substitution to work correctly, the first LC Node in the “to
remove” part must have the same set of parents as the first LC
Node in the “to add” part. In other words, the first nodes in
each part must be siblings. Fortunately, the construction of the
LC Graph guarantees that any two LC Nodes that are siblings
will have the same set of parents, as can be seen in Fig. 2.
Therefore, to make sure every resource is accounted for, we
must have a C-DUK for each set of sibling LC Nodes.

A C-DUK serves to remove one or more of the LC Nodes at
the end of a path, and adds a new set of LC Nodes to that path.
Therefore, we must make sure that both parts of the C-DUK
begin with siblings and each continues through zero or more
Mid Nodes to an End Node. This way we always maintain the
form of a path when applying a C-DUK. To achieve this, we
search for a shortest path to an End Node from each LC Node
that has siblings. Given that, for a pair of sibling LC Nodes,
we can effortlessly create a C-DUK by assigning it and its
shortest path to one part of the C-DUK, and the other sibling
and its shortest path to the other part'.

To clarify this, we show the results of this decomposition
for the LC Graph in Fig. 2b. First, we generate M-DUKSs by
finding a shortest paths from each Start Node to an End Node,
resulting in the 4 M-DUKSs in Fig. 4a. Then we identify two
sets of siblings, {(iEae) (D)} and {(ED).)}
From each pair of siblings, we generate a C-DUK by extending
a shortest path from each sibling to an End Node. Fig. 4b
shows the resulting 2 C-DUKSs. Having these 6 DUKSs, we can
now combine them to generate any of the 11 paths between
registers in the physical resource graph of Fig. 2a.

Thus we can decompose any resource graph into DUKs,
and can formulate any path in the FPGA starting with the ap-
propriate M-DUK and adding as many C-DUKSs as necessary.

C. DUK Computation

Once we have decomposed a resource graph into DUKs, we
need to measure the delay of the correct set of paths so that
we can compute the delay of the DUKs. As we will show, it
is relatively straight forward to discover what this set of paths
should be given the DUKSs of a resource graph.

At first sight, the paths required to compute the delay of
an M-DUK are trivial to determine since a path that begins
with a Start Node, goes through zero or more Mid Nodes, and
ends at an End Node is both the definition of a launch-capture
measurable path, and what an M-DUK represents. Therefore,
we just need to measure one path, the one described by the
M-DUK, to directly get the M-DUK’s delay.

D> B—>ED
C)—») —»0n) QL)—»(Ms)—»(E)

Fig. 5: LC graph structure required to measure the delay of the
M-DUK encompassing the path between nodes S4 and Ep

In practice, it is not as simple. By design M-DUKSs represent
the smallest possible paths that go from a Start Node to an
End Node. As we will later see, the length of these paths
vary from only two to four LC Nodes. To accurately measure
the delay of such small paths, we would need extremely high
frequencies for the launch-capture measurement tests. Such
high frequencies are not always achievable on commercially
available FPGAs, and if they are, they may cause self-heating
effects, affecting the delay measure. For example, on the
Cyclone III, the maximum frequency is 402.5 MHz, thus the
fastest half cycle path we can measure is 1.24 ns. On average,
the delay through LUT input D is 236 ps (Fig. 13). As such,
the smallest path formed by LUTs using input D that we can
measure is 6 LUTs long. Therefore, in case a direct measure is
not possible, or would generate too much heat, we present an
indirect approach where we measure the delay of three longer
paths (e.g., at least 6 LC Nodes long) and use their delay to
compute the delay of an M-DUK.

To best understand the relationship between the three paths,
we look at an example. Suppose the M-DUK we need to
compute consists of the path from LC Node to @B in
Fig. 5. Since that path is too short to directly measure, we
compute the delay indirectly. As long as we have an LC graph
structure similar to that in Fig. 5 we can measure the delay of
the following three longer paths.

A @—V.—V.-VM.

B >-@D>ED > L) > (L)—>(E)

C G —>(0L) > D> > () —»(5)—>(E)
Adding the delay of paths A and B, and subtracting from that
the delay of C gives the desired M-DUK delay. Fortunately, a
structure of this form naturally exists in the LC Graph because
of the way LC Nodes are defined. Thus, we can determine
the paths needed to get the delay of a given M-DUK, either
directly from one path measurement, or indirectly from three,
if high enough frequencies are not available.

Tracing the paths needed to compute C-DUK delays is eas-
ier. By definition, C-DUKSs consist of the difference between
two short paths stemming from two sibling LC Nodes, ending
at two End Nodes. Their structure implies that to compute
their delay we must take the difference of two measured
paths. However, the short paths begin with either a Mid Node
or an End Node, as shown in Fig. 4b; therefore, we cannot
measure them directly. To remedy this, we add LC Nodes to
the beginning of the paths so that they begin at Start Nodes. We
take advantage of the fact that the first LC Node in each short
path are siblings and therefore must have a common parent
node. In this way we can extend a path from that common
parent node to some Start Node. Thus, when we measure the
delay of these two complete paths, and take their difference,
we subtract these added Nodes and get only the C-DUK delay.

Fig. 6 shows an example of this. Taking the difference

@+ D>+ > L

Fig. 6: Example of the LC graph structure required to measure the
delay of the C-DUK enclosed in the outline

between the paths delays from to @B, and from to
@3, lcads to the delay of the C-DUK outlined in the figure.

D. DUK Accounting

We have shown that it takes three path measurements to
compute the delay of an M-DUK, and two paths for C-DUKs.
In this section, we calculate how many DUKs of each kind to
expect from a given resources graph.

The number of M-DUKSs equals the number of Start Nodes.
The number of Start Nodes depends on the number of registers,
and the structure of the resource graph.

C-DUKs arise from pairs of sibling LC Nodes. If n LC
Nodes are siblings, forming a sibling set of size n, we will
generate n— 1 C-DUKSs from this sibling set. Thus, the number
of C-DUKSs equals the number of nodes in sibling sets minus
the number of sibling sets. The number and size of sibling
sets depends on the structure of the resource graph.

IV. TIMING EXTRACTION ON THE CYCLONE III

Having explained the general method for decomposing
resource graphs into DUKSs, we now apply this decomposition
to the Altera Cyclone III 65 nm FPGA. Our model for this
FPGA assume Logic Cluster Arrays (LABs) containing 16
Logic Elements (LEs) formed by a 4-LUT and an optional
register (FF). These LEs can communicate through a set of
depopulated connections internal to the LAB called LAB
Local Tracks (LLT). Moreover, a set of LAB Input Tracks
(LIT) allow signals to enter the LAB. A separate set of LAB
Output Buffers (LOB) allow signals to exit the LAB.

The interconnect between LABs consists of segment length
4, unidirectional, horizontal and vertical routing channels
(W4). There is also limited direct communication between
horizontally adjacent LABs, bypassing the routing network.

Although this model is a subset of the complete Cyclone III,
missing the hierarchical segment length 16 and 24 routing
channels, along with carry and register chains, it is worth
noting that Timing Extraction is agnostic to what the resource
graph represents. At its core, Timing Extraction consists of
simple graph transformations, minimally differentiating be-
tween nodes in the graph. As such, it is possible to treat certain
elements as black boxes, or to fully describe a particular
component, depending on the level of detail desired, and
Timing Extraction will return an appropriate set of DUKSs to
cover that resource graph.

Displaying either the physical resource graph or the LC
graph for this FPGA would require a figure too large and
complex to be useful. Instead, we look at the graphs for
the resources types. Le., instead of showing all 4-LUTs, we
show one node demonstrating what resources connect to and
from 4-LUTs. We can do this because of the high degree of
regularity within the FPGA design. In essence, we demonstrate
something akin to an FPGA tile.

Connection Type
[]Intra LAB

Fig. 7: Cyclone III physical resource graph. Sharp rectangles repre-
sent registers.

FF > 0B LiT) ([FF > L0B w4 EF— LLT — LUT)

W4 — W4

W4 — LIT

LUT — W4

LIT — LUT‘ LUT — LOB — LIT

LUT — LLT — LUT

Fig. 8: Cyclone III LC graph generated from Fig. 7. Node names
indicate the physical resource path encompassed by LC Node, with
enough detail to avoid ambiguity. Top row shows Start Nodes. Bottom
row, End Nodes. All others, Mid Nodes. Highlighted background
regions follow Fig. 7’s key and mark Mid Nodes involved in that
connection type.

(a) (FF = LLT - LUT—»(LUT = FF))
(b) (E=Zos=Tin > CrEYI)—> CUEED)
O (@SSR Wi LITRgLIT — LUTEg (NS i3)

Fig. 9: Cyclone III M-DUKs. (a) Intra LAB. (b) LAB to LAB. (¢)
General Interconnect

Fig. 7 shows the physical resource graph. For clarity, we
highlight the different levels of connections: Within a LAB,
between LABs, and through general interconnect. Once our
decomposition is complete, we will have all the necessary
DUKSs to compute the delay of any path going from
to [FFi.] The corresponding LC Graph is shown in Fig. 8.
Although more complex, it maintains the separation between
different levels of connections. Each Start Node on the top row
corresponds to starting a path from a register and continuing
either within the LAB, to an adjacent LAB, or to the general
interconnect. Furthermore, the Mid Nodes demonstrate the
interaction within and between these connection levels.

From Fig. 8 we can generate DUKSs applying the decom-
position from Sec. III-B. Since we have three types of Start
Nodes, we generate three M-DUKs by finding a shortest path
from each to an End Node (Fig. 9). Each M-DUK corresponds
to one connection type previously distinguished, representing
the shortest path that goes from a register (a) to a register in
the same LAB, (b) to a register in an adjacent LAB, (c) through
one routing resource to a register in some other LAB.

To compute C-DUKSs, we look for sibling sets. The LC

Graph contains two, (eI CIEITEEINN.
LUT — LET — LUT N7) | VTR 7/ 4 — /4

=AM} From these we compute 4 C-DUKs by
selecting pairs of LC Nodes from a sibling set, and finding

Fig. 10: Cyclone III Intra LAB C-DUK

@UT > FH)
Fig. 11: Cyclone III LAB to LAB C-DUK

(a)l o wamgwa o LITg T o LUTE] I
T > FR)

(W wagdVi o LITRglIT > LUT

Fig. 12: Cyclone III General Interconnect C-DUKs

(b

a shortest path from each node in the pair to an End Node.
Fig. 10 through Fig. 12b show all 4 C-DUKs. For simplicity
we have been showing graphs derived from physical resource
types, not explicits physical resources. This means that if
two LC Nodes in a C-DUK have the same label, they do
not represent the same set of physical resource, but rather
different sets of the same type of physical resources.

All the C-DUKSs allow us to extend a path by one kind of
resource or another, at some particular point in the path, and
then “patch-up” the path so that it still begins at a Start Node,
goes through zero or more Mid Node and terminates at an End
Node; i.e., so that the path starts and ends at a register. The
C-DUK in Fig. 10 extends the path by using resources in the
same LAB as the end register. The C-DUK in Fig. 11 extends
by using resources in a LAB adjacent to the LAB holding the
end register. Finally both C-DUKSs in Fig. 12 extend the path
by adding general interconnect routing resources. Where they
differ is in the location along the path where they do this.

All three C-DUKSs in Figs. 10, 11, and 12a add resources
after the last LUT in the path. In contrast, the C-DUK in
Fig. 12b adds resources after the last 1474 routing resources. It
is this last C-DUK that allows us to create long routes on the
general interconnect, and it is the DUK that best represents
the delay of the general interconnect routing resources.

Together, the 3 M-DUKs and 4 C-DUKs can represent
any path in the FPGA. By measuring the delay of the paths
required to compute the delay of these DUKSs, we can compute
the delay of any path in the FPGA.

V. CycLONE III DUKS

We coded the DUK decomposition algorithm and gave it the
complete physical resource graph for the Cyclone III FPGA,
leading to a set of DUKs, and paths for computing the DUKs’
delays. Employing the same highly controlled techniques we
used in [5], [16], we then measured the delay of paths on 17
Cyclone III FPGAs, and computed the delay of all DUKs.
Isolating our control logic from the paths measured allowed
us to completely measure a contiguous 8x20 LAB region
between LAB coordinate (26,4) and (34,24), including the
general interconnect wires connecting all these LABs.

In total, this region is covered by 101,650 M-DUKs and
324,919 C-DUKSs and requires close to a million path mea-

B LUTInA, ;422,60 123 B LUTInC, p 346, 0 11.8
B LUTInB,p413,0121 0O LUTInD, p 236, 0 11.5

JﬂLL M
ITTT TTTTTTTT
215

TTTTTT
245 275 305 335 365 395 425 455 485
C-DUK Delay (ps)

Frequency
6000

3000

ST OrTTId
155 185

Fig. 13: Intra LAB C-DUK delay distribution, differentiating known
systematic differences, 160 Cyclone III LABs.

VVC 1 374, 0 67.1
VVD 1 383, o 60.2
VHC 11 259, o 43.6
VHD p 275, o 44.8

Frequency
0 100 200 300
|
OomEm

600

T T T 11 T 1 T 1
100 150 200 250 300 350 400 450 500 550 650

C-DUK Delay (ps)

Fig. 14: CAD delay, general interconnect C-DUK.

surements. On average, this means we measure 6,000 paths
to compute 2,600 DUKs per LAB. Since the DUKSs are
of bounded length, the per-LAB DUK and path count will
converge to a constant only slightly larger than this as we scale
to larger regions and larger chips. Even though we measure
a million paths, we can pack many together and only need
230,231 bitstreams to measure all. After packing, the total
number of bitstreams needed will also converge to a constant
independent of the total number of LABs on the die.

76,800 of the C-DUKSs are of the type we introduced in
[5] with form shown in Fig. 10. Fig. 13 shows these C-DUK
delays and is consistent with our previous results (Fig. 9 of
[5]). However, here we plot measurements from 160 LABs
instead of just one.

For the remainder of our results we focus on the C-DUK in
Fig. 12b. This C-DUK best represents the delay of a general
interconnect resource and is among the major contributions
of this work. This resource can be a horizontal or vertical
segment, preceded by either a horizontal or vertical segment.
Moreover, both parts of the C-DUK end in a register by
going through one of four LUT inputs. To prevent systematic
variation due to these choices, we limit our results to four
pairings: either vertical or horizontal segment preceded only
by vertical segments (VH or VV), and either LUT input C on
both parts of the C-DUK, or LUT input D (C or D). Also,
we only compare delays within one pairing. Each pairing has
the following number of C-DUKs. VVC: 2,117, VVD: 1,918,
VHC: 3,213, VHD: 3,524. For all graphs, we differentiate
between pairings using colors and unless specified, we plot
delays for one consistent FPGA out of the 17 measured.

Fig. 14 demonstrates the delay of these C-DUKs as com-
puted by Quartus 11.0 [17]. Although all C-DUKSs in one
pairing use the same type of resources, the CAD tools show
a wide spread. We delve deeper into this and examine only
the 573 VVC resources that connect two resources exactly 4
vertical LABs away, further removing a potential systematic

26 @ 28 O 30 O 32
27 @ 29 O 31

Frequency
50 80
oo

20

JJ
ﬂﬁﬂ Hiln LT
[[I [I [I [I [1

T
275 300 325 350 375 400 425 450 475 500 525 550 575 600
C-DUK Delay (ps)

Fig. 15: CAD delay of VVC C-DUK resources connecting two
resources exactly 4 vertical LABs away. Differentiating column
coordinate of resource.

=1

S— — -
© = VVC 4 VHC % _ = VVC s
22 ® VVD ¢ VHD EF P
~— o -
o - o
F& =5
Ao z]
= 87 < B
g A
g -
EEN =
g © -
9] g°
= o 7
= 7

- =]

ST T T T T T T T T T T 11711

10 30 50 70 90
CAD Delay (% of max)

(b) % to Max

0 100 200 300 400 500 600
CAD Delay (ps)

(a) Raw Delay

Fig. 16: Correlation between CAD and Measured general intercon-
nect C-DUK. A 100 ps bar highlights 100 ps measured difference
among resources the CAD tools claim have the same delay.

difference. Fig. 15 plots these resources, differentiating the
column coordinate of the vertical routing resource. Immedi-
ately we see that column 29 is systematically slower than all
the rest. However, even for one coordinate column, we see
a very large delay spread. This indicates that the CAD tools
are aware of even more systematic differences between these
resources. In fact, we explored 17 other differentiating dimen-
sions, such as wire index or row coordinate, and discovered
that no one dimension is sufficient to explain this spread, but
rather a careful combination of all is necessary.

We turn now to measured DUK delays and compare these
to the CAD tool delays in the correlation plot of Fig. 16a.
Perfect correlation would show all points lining up at a tight
diagonal line and would indicate that the CAD tools are aware
of all process variation. Instead, we see some correlation as
a trending diagonal but clearly observe a thick spread. This
means that two C-DUKSs with the same CAD delay can have
widely different measured delays—a clear indication of the
existence of random variation. The A100 ps bar marks an
example of this. Normalizing the measured and CAD distribu-
tions to their corresponding maximum delay yields Fig. 16b
and better demonstrates this effect. We further uncover random
variation by plotting the correlation between actual C-DUK
delays of different FPGAs (Fig. 17).

Our results clearly demonstrate significant contribution from
random variation, both within the same FPGA, and across
FPGAs. Moreover, though the CAD tools are aware of vast
systematic variation, the magnitude of random variation is
large enough to cause delay inversions where the CAD delay
of resource a is greater than b, but the measured delay of a is

j=3 [=3
S S—
75] 7s]
o7 o7
= | = |
= =
¥ ¥
Q [=3 Q [=3
NS ™ S
< <
U [=3 U [=3
= A S
I = I =
L —
=T T T T] =T T T T]
0 200 300 400 0 200 300 400

100
FPGA 1 Delay (ps)
(b) FPGA 1 vs 3

100
FPGA 1 Delay (ps)
(a) FPGA 1 vs 2

Fig. 17: Correlation between different Measured FPGAs, general
interconnect C-DUK.

less than b (Fig. 16). Even more, we see these delay inversions
between the measured DUKs of two FPGAs (Fig. 17), further
demonstrating that these inversions are caused by random
variation. DUKs cheaply and easily allow us to see these
inversions, and component-specific mapping [4] gives us the
ability to adjust to the DUKSs; no other variation mitigation
technique has such power. It is telling that even on a 65 nm
process, random variation is large enough to easily observe.
With scaling, it will be larger and more apparent, necessitating
a component-specific mapping to extract the full potential of
the FPGA, and at the extreme, to prevent variation-induced
failures. DUKs are the key enablers for this component-
specific mapping, and their delays are cheaply and easily
computed with only resources already present on FPGAs.
VI. FUTURE WORK

Automating Timing Extraction on an arbitrary resource
graph successfully provides fine-grain delay information from
any FPGA. However, to extract the power of this information
we need to perform a comprehensive analysis that differenti-
ates among spatially correlated, systematically correlated, and
random variation. Moreover, applying Timing Extraction to
devices fabricated on smaller technology nodes will allow us
to observe greater random variation. Finally, though our path
packing allows us to measure multiple paths per bitstream, we
do so under highly controlled conditions. Understanding which
of these measures are necessary and which can be relaxed, will
improve the performance of our measurement algorithms.

VII. CONCLUSIONS

Timing Extraction takes the resource graph of any FPGA
and decomposes it into individual DUKs. Furthermore, it
indicates the two or three paths that must be measured to
compute the delay of a DUK. The decomposition is both
simple and general, and will provide as much detail as is
represented in the resource graph. The DUKSs represent a
small number of physical resources, and their consistent shape
allows us to directly compare them to characterize the process
variation of the FPGA. Moreover, they readily compose to
provide the incremental delay of a path, making them ideally
suited for use during a component-specific mapping.

We applied Timing Extraction to a region of 160 LABs in
17 Cyclone III FPGA. Measuring, on average 6,000 paths per

LAB yields enough information to compute DUKs, and with
them, the delay of any path in that region. We observe random
variation in the delay of our DUKSs ranging on the order of
100 ps, and see delay inversions within an FPGA, between
CAD tool and measured delays, as well as between FPGAs.

ACKNOWLEDGMENTS

This research was funded in part by National Science
Foundation grant CCF-0904577 and DARPA/CMO contract
HRO0011-13-C-0005. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not reflect the official policy or position
of the National Science Foundation, Department of Defense,
or the U.S. Government. The authors gratefully acknowledge
donations of software and hardware from Altera Corporation.

REFERENCES

[1] “International technology roadmap for semiconductors,” <http://www.
itrs.net/Links/2012ITRS/Home2012.htm> , 2012.

[2] T. Tuan, A. Lesea, C. Kingsley, and S. Trimberger, “Analysis of within-
die process variation in 65nm FPGAs,” in ISQED, March 2011, pp.
1-5.

[3] Z. Guan, J. S. J. Wong, S. Chaudhuri, G. Constantinides, and P. Y. K.
Cheung, “Exploiting stochastic delay variability on FPGAs with adaptive
partial rerouting,” in /CFPT, 2013, pp. 254-261.

[4] N. Mehta, R. Rubin, and A. DeHon, “Limit Study of Energy & Delay
Benefits of Component-Specific Routing,” in FPGA, 2012, pp. 97-106.

[5] B. Gojman, S. Nalmela, N. Mehta, N. Howarth, and A. DeHon, “GROK-
LAB: Generating Real On-chip Knowledge for Intra-cluster Delays
using Timing Extraction,” in FPGA, 2013, pp. 81-90.

[6] L. McMurchie and C. Ebeling, “PathFinder: A Negotiation-Based
Performance-Driven Router for FPGAs,” in FPGA, 1995, pp. 111-117.

[7] D. Lewis, E. Ahmed, D. Cashman, T. Vanderhoek, C. Lane, A. Lee,
and P. Pan, “Architectural enhancements in Stratix-III and Stratix-IV,”
in FPGA, 2009, pp. 33-42.

[8] Y. Ye, S. Gummalla, C.-C. Wang, C. Chakrabarti, and Y. Cao, “Random
variability modeling and its impact on scaled CMOS circuits,” J.
Comput. Electron., vol. 9, no. 3-4, pp. 108-113, Dec. 2010. [Online].
Available: http://dx.doi.org/10.1007/s10825-010-0336-5

[9] J. M. Rabaey, A. P. Chandrakasan, and B. Nikolic, Digital Integrated

Circuits, 2nd ed. Prentice Hall, 1999.

S. Hanson, B. Zhai, K. Bernstein, D. Blaauw, A. Bryant, L. Chang, K. K.

Das, W. Haensch, E. J. Nowak, and D. M. Sylvester, “Ultralow-voltage,

minimum-energy CMOS,” IBM J. Res. and Deyv., vol. 50, no. 4-5, pp.

469-490, July/September 2006.

Altera, “Cyclone III Device Handbook Volume I, p. 348, 2011.

[Online]. Available: http://www.altera.com/literature/hb/cyc3/cyclone3_

handbook.pdf

J. R. Smith and X. Tian, “High-Resolution Delay Testing of Interconnect

Paths in Field-Programmable Gate Arrays,” [EEE Trans. Instrum.

Meas., vol. 58, no. 1, pp. 187-195, 2009. [Online]. Available: http:

/lieeexplore.ieee.org/Ipdocs/epic03/wrapper.htm?arnumber=4559395

P. Sedcole, J. S. Wong, and P. Y. K. Cheung, “Modelling and

compensating for clock skew variability in FPGAs,” ICFPT, pp.

217-224, 2008. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=4762386

J. S. Wong, P. Sedcole, and P. Y. K. Cheung, “Self-measurement

of combinatorial circuit delays in FPGAs,” ACM Tr. Reconfig. Tech.

and Sys., vol. 2, no. 2, pp. 1-22, June 2009. [Online]. Available:
http://doi.acm.org/10.1145/1534916.1534920

M. Majzoobi, E. Dyer, A. Elnably, and F. Koushanfar, “Rapid FPGA

delay characterization using clock synthesis and sparse sampling,” in

Proc. Intl. Test Conf., 2010.

B. Gojman, S. Nalmela, N. Mehta, N. Howarth, and A. DeHon, “GROK-

LAB: Generating real on-chip knowledge for intra-cluster delays using

timing extraction,” ACM Tr. Reconfig. Tech. and Sys., Accepted—to

appear.

Altera, “Quartus II Handbook,” p. 1681. [Online]. Available: http:

/Iwww.altera.com/literature/hb/qts/quartusii_handbook.pdf

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

http://www.itrs.net/Links/2012ITRS/Home2012.htm
http://www.itrs.net/Links/2012ITRS/Home2012.htm
http://ic.ese.upenn.edu/abstracts/cspec_limit_fpga2012.html
http://ic.ese.upenn.edu/abstracts/cspec_limit_fpga2012.html
http://ic.ese.upenn.edu/abstracts/groklab_fpga2013.html
http://ic.ese.upenn.edu/abstracts/groklab_fpga2013.html
http://ic.ese.upenn.edu/abstracts/groklab_fpga2013.html
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://dx.doi.org/10.1007/s10825-010-0336-5
http://www.altera.com/literature/hb/cyc3/cyclone3_handbook.pdf
http://www.altera.com/literature/hb/cyc3/cyclone3_handbook.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4559395
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4559395
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4762386
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4762386
http://doi.acm.org/10.1145/1534916.1534920
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf

APPENDIX A
TIMING EXTRACTION ALGORITHMS

Algorithm 1: LC Node Decomposition

Input: Resource Graph G,
Output: LC Node Graph G,
Geomp RemoveRegisters(G,)
foreach node n € G o do
L if Fanin (n) > 1 then
| l.Add(n)

[.AddA11(GetRegisters(G,))
lcNodes + FindAllPathsBetweenNodes(l)
foreach Puair of LC nodes (x,y) from lcNodes do
L if x.lastResource == y. first Resource then
| x.AddChild(y)

Gie..AddAl1(lcNodes)

[Function Extract M-DUKSs

Input: Resource Graph Gy

Output: A set of M-DUKs M D

foreach node s € GetStartNodes(G.) do
| MD.Add(GetCanonicalPath(s))

For each Start Node, this function creates an M-DUK by
extracting the Start Node’s canonical path.

Algorithm 2: DUK Decomposition

Input: Resource Graph G,
Output: A set of DUKs D
MarkCanonicalChild (Gj.)
D + ExtractM-DUKs(G.)
D + ExtractC-DUKs(Gj.)

[Function Mark Canonical Child |
Input: Resource Graph G,
Queue ¢ + GetEndNodes(Gy.)
while ! Empty (¢) do
noden < ¢q.Dequeue()
foreach node p € Parents(n) do
p.SetCanonicalChild(n)
if | visited (p) then
| ¢.Enqueue(p)

| Markvisited (n)

For each node in the LC Graph, this function identifies
the child with the shortest distance to an End Node and
marks it as the canonical child.

Function Extract C-DUKSs

Input: Resource Graph G,
Output: A set of C-DUKs C'D
siblingSets <— GetSiblingSets(Gi.)
foreach set ss € siblingSets do
pathl < GetCanonicalPath(ss[l])
for i + 2 10 Size(ss) do
path2 < GetCanonicalPath(ss[i])
L CD.Add(pathl, path2)

For each sibling set, this function extracts the canonical
path from the first LC Node in the set. Then, for every
other LC Node in that sibling set, it creates a C-DUK
using that LC Node’s canonical path and the canonical
path of the first LC Node, previously extracted.

Function Get Canonical Path

Input: LC Node n

Output: Canonical Path p

nextNode < n

while ! IsEndNode(nextNode) do
p.Add(nextNode)

L nextNode < nextNode.GetCanonicalChild()

p.Add(nextNode)

For a given LC Node n, this function returns the shortest
path from n to an End Node as traced by following the
canonical children.

Web link for this document: <http://ic.ese.upenn.edu/abstracts/grokint_fccm2014.html>

http://ic.ese.upenn.edu/abstracts/grokint_fccm2014.html

