GROK-LAB: Generating Real On-chip Knowledge for Intra-cluster
Delays Using Timing Extraction

BENJAMIN GOJMAN, University of Pennsylvania

SIRISHA NALMELA, Juniper Networks

NIKIL MEHTA, California Institute of Technology

NICHOLAS HOWARTH and ANDRE DEHON, University of Pennsylvania

Timing Extraction identifies the delay of fine-grained components within an FPGA. From these computed
delays, the delay of any path can be calculated. Moreover, a comparison of the fine-grained delays allows a
detailed understanding of the amount and type of process variation that exists in the FPGA. To obtain these
delays, Timing Extraction measures, using only resources already available in the FPGA, the delay of a small
subset of the total paths in the FPGA. We apply Timing Extraction to the Logic Array Block (LAB) on an
Altera Cyclone III FPGA to obtain a view of the delay down to near-individual LUT SRAM cell granularity,
characterizing components with delays on the order of tens to a few hundred picoseconds with a resolution
of +3.2ps, matching the expected error bounds. This information reveals that the 65nm process used has,
on average, random variation of o/ = 4.0% with components having an average maximum spread of 83ps.
Timing Extraction also shows that as Vpp decreases from 1.2V to 0.9V in a Cyclone IV 60nm FPGA, paths
slow down, and variation increases from o/ = 4.3% to o/ = 5.8%, a clear indication that lowering Vpp
magnifies the impact of random variation.

Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: Design Aids—Placement and routing;

B.8.1 [Performance and Reliability]: Reliability, Testing, and Fault-Tolerance; C.4 [Performance of
Systems]: Measurement Techniques

General Terms: Algorithms, Measurement, Reliability

Additional Key Words and Phrases: Component-specific mapping, variation measurment, variation charac-
terization, in-system measurement

ACM Reference Format:

Benjamin Gojman, Sirisha Nalmela, Nikil Mehta, Nicholas Howarth, and André DeHon. 2014. GROK-LAB:
Generating real on-chip knowledge for intra-cluster delays using timing extraction. ACM Trans. Reconfig.
Technol. Syst. 7, 4, Article 5 (December 2014), 23 pages.

DOLI: http://dx.doi.org/10.1145/2597889

1. INTRODUCTION

Circuit variation is quickly becoming one of the biggest problems to overcome if the
benefit from Moore’s Law scaling is to continue. It is no longer possible to maintain

This work is supported by the National Science Foundation, under grant CCF-0904577.

Authors’ addresses: B. Gojman, Computer and Information Systems, University of Pennsylvania, 3330 Wal-
nut Street, Philadelphia, PA 19104; email: bgojman@seas.upenn.edu; S. Nalmela, Juniper Networks, 10
Technology Park Drive, Westford, MA 01886; email: siri.nalmela@gmail.com; N. Mehta, Department of Com-
puter Science California Institute of Technology MC 305-16, 1200 E. California Blvd., Pasadena, CA 91125;
email: nikil. mehta@gmail.com; N. Howarth and A. DeHon, Electrical and Systems Engineering, University
of Pennsylvania, 200 S. 33rd Street, Philadelphia, PA 19104; emails: howarthnj@gmail.com, andre@acm.org.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

2014 Copyright is held by the owner/author(s). Publication rights licensed to ACM. 1936-7406/2014/12-ART5
$15.00

DOI: http://dx.doi.org/10.1145/2597889

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 5, Publication date: December 2014.

http://dx.doi.org/10.1145/2597889
http://dx.doi.org/10.1145/2597889

5:2 B. Gojman et al.

|

|

160
1

© @Ee o
Q@O0 GO O
OCE@RLLTCO OGO
OERLLOTLOO
© IO
[efe e
O O CIEIRITICCO ABO
© @ CuD@DO © @

«O [
°

1.85 1.88 191 1.94 3.07 3.09 1.85 188 191 194
Path Delay (ns) Path Delay (ns) Measured Path Delay (ns)

(a) Measured (b) CAD (c) Correlation

120

L1 |
600
L1

400
1

80
1

|

Frequency

Frequency
200
|

|

CAD Path Delay (ns)
3.070 3.074 3.078 3.082

|
Lty

o — S —

Fig. 1. Path delay of 1,000 nearly identical paths of length 7 LUTSs, comparing measured delays to delays
reported by the CAD tools for a Cyclone III 65nm FPGA.

an abstraction of identical devices without incurring huge yield losses, performance
penalties, and high energy costs. Current techniques such as margining and speed
grade binning are used to deal with this problem. However, they will become pro-
hibitively conservative, only offering a limited solution that will not scale as variation
increases.

Figure 1 concretely demonstrates the opportunities available to improve on these
techniques. We carefully measured 1,000 paths consisting of seven buffers in one logic
array block (LAB) of an Altera Cyclone III 65nm FPGA. Figure 1(a) shows a histogram
of the results of these measurements. Similarly, Figure 1(b) shows the distribution
of delays as computed by the CAD tools for these paths. Immediately we see a large
difference between the two means. Techniques such as dynamic voltage scaling (DVS)
[Chow et al. 2005] go a long way to reduce this difference. However, of interest here,
and what DVS fails to address, is the wide range of the measured distribution—96ps.
Ignoring this range forces all resources to operate, at best, accommodating the slowest
measured resource. Knowledge of this distribution, on the other hand, provides the
possibility of operating faster than the slowest resource. Figure 1(c) demonstrates that
there is no correlation between the delays measured and those reported by the CAD
tools, indicating that the delays we are measuring are not correlated to any effect
modeled by the Altera tools.

FPGAs have the unique advantage over ASICs that they can use more fine-grained
and aggressive techniques that carefully choose which resources to use after fabri-
cation in order to mitigate adverse variation effects. Mehta et al. [2012] show that
a component-specific mapping solution reduces energy needs by 50% and will be a
necessity to extend beneficial scaling as variation increases. This approach requires
measurement of the underlying resource delays for the CAD tools to generate a custom
mapping perfectly adapted to the variation in the FPGA. In this article, we present
Timing Extraction, a methodology that allows the kind of fine-grained measurement
of fabricated component delays necessary for Mehta et al. [2012] in an efficient and
inexpensive manner, utilizing only resources already available on conventional FPGAs.
Although suitable to nearly any FPGA, to practically validate Timing Extraction, we
apply it to clusters (LABs) in the Altera Cyclone IIT and Cyclone IV FPGAs and confirm
that the measurements and calculations reflect underlying process variation.

The key challenge in Timing Extraction is that it is not possible to directly measure
the characteristics of every LUT or wire in an FPGA. Nonetheless, we show that
it is possible to obtain fine-grained delays using an indirect approach to measure,
compute, and characterize the variation of small groups of components. Wong et al.
[2009] demonstrated the feasibility of measuring path delays without the need for any

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 5, Publication date: December 2014.

GROK-LAB 5:3

dedicated test circuitry by surrounding the path with two registers that are already part
of the reconfigurable fabric. Timing Extraction takes advantage of this measurement
technique but goes further by demonstrating how to use the measurements to resolve
the delays of individual resources.

The measured path is composed of multiple components, the individual delays of
which we would like to know. By configuring and measuring a small set of overlapping
paths, we can set up a linear system of equations that, when solved, gives the individual
delay of each component in the paths [Gojman et al. 2011]. A simple example will give
better intuition as to what the technique actually accomplishes. Consider that we
measure three paths. Path 1 is composed of components A and B; Path 2, Band C; and
Path 3, C and A. Suppose the delays of the paths are 5ps, 4ps, and 3ps, respectively.
That leads to the system of equations to follow:

A+ B=5ps Path 1
B+ C =4ps Path 2
C+ A=3ps Path 3

Even though we did not measure the delays directly, with little work we can solve for
the delay of A, B, and C to be 2ps, 3ps, and 1ps, respectively.

Timing Extraction does exactly this but at a level that allows us to characterize a full
FPGA. Formulating the naive problem, where every wire and transistor in the FPGA
are represented by a separate variable in the system of equations, invariably leads to
an underdetermined system without a unique solution (Section 3.2). However, Timing
Extraction judiciously groups components into discrete units of knowledge (DUKs),
which, combined with a careful selection of measured paths, guarantee a solution to
the delay of each DUK in the system (Section 3.3). With that information, we can
predict the delay of any path that could be used when mapping logic to the FPGA.

We begin with a brief review of the required background (Section 2). Section 3 de-
velops the ideas of Timing Extraction by using the logic clusters in the Cyclone III
as a case study. We expand Timing Extraction to intra-LUT measurements and begin
to show how it is generally applicable in Section 4. Section 5 analyzes the expected
measurement error. Results from our measurements are presented in Section 6. While
we present concrete details on how to measure the Cyclone III, the general technique
can be extended to any modern FPGA; in Section 7, we briefly sketch how to port the
ideas and why they are generally applicable. An outline of future work is explored in
Section 8, before the conclusion (Section 9).

Novel contributions of this work include the following:

—First identification and demonstration of techniques for determining the delay of
individual LUTs and the unique interconnect delay between pairs of LUTs using
only on-chip FPGA resources
—Identification of smallest delay-measurable groups of components
—Identification of the smallest set of measurements necessary to extract complete

fine-grained delay information within a cluster (LAB)
—Algorithm for calculating component delays from path measurements

—Technique for predicting delay of any path in a cluster (LAB) using component LUT
delay measurements

—First set of measurements to fully characterize the delay components within a cluster
(LAB) and within LUTSs in a commercial FPGA

—Quantification of process variation at a near-LUT-level granularity

—Quantification of increased random variation with voltage scaling

—Characterization of significant contribution from random variation in process
variation

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 5, Publication date: December 2014.

5:4 B. Gojman et al.

; 138 : cvth(RDF)
£ O—c th(OTF)
N sor va LER)
> 60 V thn(t t |)
o} 40l (total)
20+ WL =1
0k

45nm 32nm 22nm_ 16nm 12nm
Technology Node

Fig. 2. oy, as a function of technology nodes, based on predictive technology models. This considers the
individual effects of random dopant fluctuations (RDFs), line edge roughness (LER), and oxide thickness
(OTF) from Ye et al. [2010].

A preliminary version of this work appeared in Gojman et al. [2013], where the basic
ideas of Timing Extraction are introduced and applied exclusively to the clusters, mea-
suring individual logic element (LE) delays. This work expands Timing Extraction to
measure even smaller circuit structures, intra-LUT delays. At the same time, it paves
the way for the general application of Timing Extraction to an arbitrary circuit struc-
ture in an FPGA (Section 4). Furthermore, this work formally quantifies the expected
error the measurement technique introduces (Section 5) and presents significantly
more precise measurements and results (Section 6), done by increased control of the
placement and routing of our test circuit (Section 6.1), that are demonstrably within
the expected error bound (Section 6.3).

2. BACKGROUND
2.1. Process Variation

Process variation refers to differences between device parameters due to manufactur-
ing. These differences ultimately affect the delay and energy requirements of the device.
Correlated variation has historically accounted for the majority of process variation,
where the amount a device varies is correlated to some parameter, such as location on
the wafer. Consequently, most techniques aim to reduce correlated variation. Binning,
for example, mitigates die-to-die variation, while biasing [Lewis et al. 2009] reduces
correlated regional variation. In essence, correlated variation provides a model that
can be used to reduce process variation. However, as feature sizes continue to shrink,
more and smaller transistors fit on one chip, greatly increasing the contribution of ran-
dom variation to process variation. Unfortunately, unlike correlated, random variation
is not easily modeled and mitigated.

Figure 2 shows how the three main contributors to random variation—oxide thick-
ness, line edge roughness, and random dopant fluctuations—lead to a significant in-
crease in variation experienced by Vy;, the transistor’s threshold voltage, as technology
scales.

The value of Vy;, has a direct and profound effect on the performance and energy
requirements of a transistor. Equations (1) and (2) represent the current through a
transistor during the saturation and subthreshold operating points [Rabaey et al.
1999; Hanson et al. 2006]. Although physical parameters such as transistor geometry,
W, L, and dopant concentration, n, have a strong stochastic variation component, it
is the exponential dependence on Vy;, that brings about the harmful effects of random
variation on the current through a transistor:

Vi sa
Ids,sat = statCox (Vgs - Vvth - dé t) 1)
w Ves—Vy —Vgs
Lys sup = fnCox(n— 1)-vp2.e mr : <1 e) (2)

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 5, Publication date: December 2014.

GROK-LAB 5:5

In turn, the propagation delay 7,; and leakage energy of the circuit are a function of
current (Equations (3) and (4)):

Vas

Tpa = Ci - Id (3)
ds

Eleak = Ids,sub . Vds * Teycle- 4)

As such, random physical variation expresses itself in differences in the energy
efficiency and delay of a transistor.

Statistical static timing analysis (SSTA) [Srivastava et al. 2005] attempts to model
the expected random variation and with it the expected behavior of the FPGA. With
this model, the CAD tools can generate a mapping that, statistically speaking, will
reduce the effects of random variation. Unfortunately, this solution inherently fails to
accommodate every FPGA. Instead of employing this one-size-fits-all solution, Timing
Extraction measures and extracts detailed delay information from the FPGA after
fabrication. This can then be provided to the CAD flow, which generates a component-
specific mapping tailoring the design to the particular FPGA [Mehta et al. 2012].

The delay of a component in the FPGA not only is affected by process variation but
also can fluctuate due to environmental and temperature changes [Li et al. 2010] as
well as aging effects [Stott et al. 2010]. To ensure that measured delays consistently
represent process variation, Timing Extraction requires that measurements be taken in
a highly controlled manner. Section 6.1 details the controls employed for our application
on the Cyclone FPGA. The consistency of the results presented in Section 6.3 concretely
demonstrates that Timing Extraction does measure process variation.

2.2, Altera Cyclone LAB Architecture

Timing Extraction is a general methodology that provides fine-grained delay measure-
ment of small groups of components within an FPGA. Although it is applicable to any
FPGA, to ground the presentation in this article, we focus our application to the LABs
of the Altera Cyclone III and Cyclone IV FPGAs.

The LAB in these FPGAs is composed of 16 LEs, each having a 4-LUT and optional
register output, a set of 38 routing channels for external inputs, and 16 local routing
channels for LE-to-LE communication. Local routing is 50% depopulated where LUT
inputs A and B form a complete input set; that is, every LE can connect to every other
LE in the LAB by using either input A or B, and similarly inputs C and D form a
complete input set (Figure 4). The scope of this article limits delay measurements to
the 16 LEs and the 16 local routing channels in the LAB.

2.3. Path-Delay Measurements

We use a launch-capture technique to measure the delay of a path in an FPGA. In this
approach, a combinatorial circuit, known as the circuit under test (CUT), is configured
between a launch register and a capture register. Starting at an initial frequency and
increasing to a maximum frequency, signals are sent from the launch register to the
capture register. When a signal fails to reach the capture register within half of a clock
cycle, we know that the delay of the path is greater than twice the frequency at which
that signal was clocked. This technique has been successfully used to capture the delay
of paths on FPGAs for many applications [Smith and Tian 2009; Sedcole et al. 2008;
Wong et al. 2009; Majzoobi et al. 2010].

A limitation of this measurement technique, however, is that it cannot measure a
path that is faster than twice the highest frequency supported by the FPGA’s on-chip
PLLs. Twice the frequency comes from the fact that the launch and capture registers
are clocked on opposite clock edges. Therefore, any work that exclusively uses this

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 5, Publication date: December 2014.

5:6 B. Gojman et al.

(b) Block diagram for a
circuit Cyclone III 4-LUT

Fig. 3. Test setup and Cyclone-III 4-LUT decomposition.

measurement technique will be limited to reporting delays of long paths. To ground
this, consider that the maximum frequency for the Cyclone III PLLs used in this work
is 402.5MHz. This means that the fastest path we can measure is W%m = 1.24ns.
Figure 1(a) shows that, on average, a path of length 7 LUTs is measured to take 1.90ns,
meaning that, roughly, on average, the delay through 1 LUT is 271ps. Combining this
fact with our maximum frequency leads to the conclusion that the smallest path we
can measure is five LUTs long. This ignores the expected variation spread. Therefore,
to err on the side of caution, we do not measure anything with less than 6 LUTs in a
path. Nevertheless, as we will later show, this work reports on delays on the order of
1 LUT by taking delay measurements of long paths and breaking them into smaller
parts. Wong et al. [2009] and Tuan et al. [2011] take only a single measurement within
each LAB or CLB and make no attempt to characterize within-LLAB variation. The most
closely related technique used in Culbertson et al. [1997] and Yu et al. [2010] takes
the difference between two ring oscillators to extract subcluster delays. However, this
approach fails to account for the unique interconnect delay between pairs of LUTS, nor
is it able to account for register delays.

Due to the nature of cmos and FPGA circuit design that uses NMos pass transis-
tors, there could be a delay difference in a rising transition as compared to a falling
transition. In order to separate the falling and rising delays, our CUT is composed of
buffers in series. In this way, all elements in a path transition in the same direction,
allowing us to separate the rising transition through the path from falling transitions.
Figure 3(a) shows a diagram of the path-delay measurement circuit used. A signal with
a 50% duty cycle is provided to the launch register. The signal propagates through the
CUT and the capture register records its output. Errors are detected by the two error
detection circuits, one monitoring rising failures, the other, falling failures. In Gojman
et al. [2013], we demonstrate a systematic 10% difference between falling and rising
delays. Though we always capture both transitions, due to this systematic difference,
we only report rising transitions in this work.

For each LUT that forms the CUT, only one input is used. The remaining inputs are
fixed to a chosen binary vector provided by the fixed LUT input block on an adjacent
LAB. By explicitly fixing the value of these unused inputs, we control exactly which
pair of configuration SRAM cells in the LUT is used, allowing measurement of the
intra-LUT delays as explained in Section 4. Figure 3(b) shows the architecture of a
Cyclone IIT 4-LUT [Altera 2005b, 2009]. From this, we expect that the LUT delay
will vary systematically depending on which input is controlling, with inputs A and B
slower than C, which will be slower than D.

Because of operating variation such as clock jitter, it is not sufficient to observe one
failure to declare the delay of a path. Instead, the path is tested at one frequency many
times, and two counters, for rising and falling transitions, keep track of how many

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 5, Publication date: December 2014.

GROK-LAB 5:7

J

Fig. 4. Block diagram of a Cyclone FPGA LE (4-LUT and register), including local interconnect.

failures occurred at that frequency, for that transition. If at frequency f, the number
of failures reaches a percent of the total number of transitions, the delay of that circuit

is reported as 1. The transition from no failures to 100% failures is gradual. If we

assume that the variation that caused this gradual failure rate is mostly stochastic
and has a symmetric probability distribution, then the 50% failure rate provides the
most accurate estimate of delay given a small number of samples. We do not use this
frequency for regular operation, since at this frequency signals fail timing 50% of the
time. Knowing the variance in cycle time, we can then select a suitable operating
frequency that keeps timing errors down to an acceptable level.

3. TIMING EXTRACTION

The general idea behind Timing Extraction is easy to understand. It is not possible to
measure the delay of every component in an FPGA directly since individual transistors
or wires cannot be isolated from their surrounding components. Nevertheless, by mea-
suring the delay of different paths through an FPGA, it is possible to decompose the
delays of these paths into their constituents. Essentially, each path consists of a linear
sum of the delay of its parts; therefore, we can cast this problem as a linear system of
equations where each equation represents a path and equals the measured delay of the
path. With enough equations, we can solve for all the unknowns and directly acquire
the delays of every component used in these paths. In order for the system of equa-
tions to have a unique solution, it is imperative to carefully select what the variables
in the equations represent. In this section, we use the Altera Cyclone LAB architecture
to ground the development of the general Timing Extraction methodology. We begin
by considering what is individually calculable, followed by an analysis of what paths
must be measured. This leads to the realization that our initial assessment of what
is individually calculable is flawed, which ultimately leads us to the notion of DUKsS,
allowing for a complete solution.

3.1. Logical Components

It is not possible to measure the delay of a single wire or transistor in the FPGA,
even indirectly. To explain, consider the simple representation of the Cyclone LUT in
Figure 4. Suppose we want to know the delay of only the highlighted crosspoint in
isolation. This is not possible since any path that uses that crosspoint must use the
labeled Local Interconnect, Output, and MUX. However, since any path that uses this
crosspoint will naturally use the other components, there is no practical reason to
measure its delay independent of these components. This gives the notion of a Logical
Component or LC Node and the first attempt at defining what the variables in our
system of equations represent.

As explained in Section 2.3, measured paths start at a register, go through zero
or more buffers, and end at a register. A path in a LAB will begin at a register, go
through some number of LUTs, and end at a second register. Figure 5 shows how we

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 5, Publication date: December 2014.

5:8 B. Gojman et al.

1-LUT] l
LE ¢ E LE

> 1-LUT]

4

LEj LE LE
Start Node Mid Node End Node

Fig. 5. Highlighted, an example of the components that form each of the three types of LC Nodes in a
Cyclone LAB.

Start
Node

(b) C-DUK C-DUK C-DUK

(S1+Ey) + (My+EyE))+(My+Es-Ey)+(My+EE;)

Fig. 6. Equivalence between LC Node basis and DUK basis. To build intuition, the shapes give a geo-
metric interpretation to the delay of each LC Node or DUK. The equations below each figure show this
mathematically.

decompose this path into three types of LC Nodes. The path begins at an LC Node
whose first component is a register, known as a Start Node; goes through zero or more
LC Nodes with no registers, Mid Nodes; and ends at an End Node, an LC Node whose
last component is a register.

Figure 6(a) represents a path using groups of Start, Mid, and End Nodes. Thus, we
let LC Nodes correspond to variables in our system of equations and represent each
measured path delay by a linear sum of the delays of these LC Nodes.

To solve for the delay of all LC Nodes, we must measure at least a number of paths
equal to the number of LC Nodes in a LAB. A Start Node and Mid Node start at one
LE and end at a second LE. Considering that there are 16 LEs in a LAB and two input
sets, AB and CD (Section 2.2), this gives a total of 16 x 15 x 2 = 480 Start and 480
Mid Nodes per LAB. Since End Nodes only use one LE, there are only 16 End Nodes
per LAB. In total, there are 480 + 480 + 16 = 976 LC Nodes in a LAB, which is the
minimum number of paths we must measure to solve for their delay.

3.2. Matrix Representation

Once we measure a correct set of 976 paths and solve for the delay of all LC Nodes, it
will be possible to reconstruct the delay of any of the approximately 10'® paths within a
LAB. Therefore, the problem is deciding which 976 paths to measure. To better discuss
this solution, we formulate our system of equations as a matrix. A path is represented
by a row, while a column describes an LC Node. An entry L;; in the matrix is 1 if LC
Node j forms part of path i, and 0 otherwise. Since there are 976 LC Nodes and we
need at least 976 paths, our matrix will be at least as large as 976 x 976. Once the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 5, Publication date: December 2014.

GROK-LAB 5:9

delays of the paths are measured, we use this matrix and the path delays to solve for
all LC Nodes.

Linear algebra tells us that if the rank of the original matrix is equal to the number
of LC Nodes, then we can solve for the delay of each LC Node. Otherwise, if it is less
than the number of LC Nodes, the system is underdetermined and, in general, contains
an infinite number of solutions. Unfortunately, even if we measure the delay of all 108
paths, the rank of the matrix is 960, 16 less than the total number of LC Nodes in
a LAB. Section 7 provides some intuition as to why this is the case for any FPGA in
which we let LC Nodes represent the variables in the system of equations.

Even though the matrix is rank deficient, it must have a nonempty vector space
that accounts for its basis. In turn, this means that there must be a set of linearly
independent paths, which, when taken together and measured, allow us to compute
the delay of any other measurable path in the circuit. Since the LAB has a matrix with
rank 960, we only need to measure a linearly independent set of 960 paths to compute
the delay of any path in the LAB. Essentially, instead of using a basis where every path
in the matrix is represented by a linear combination of LC Nodes, we use a basis where
every path is represented by a linear combination of the 960 paths measured.

Although this approach provides the delay of any path, it does not achieve the desired
results for two reasons. First, it is difficult to incorporate these results into conventional
routing algorithms when a component-specific route is sought, since routing algorithms
[McMurchie and Ebeling 1995] tend to expand routes incrementally and we only have
complete path-delay information. Second, the basis does not provide a fine-grained
understanding of the variation. The next section addresses these shortcomings by
defining a particularly convenient basis that spans the matrix yet provides the fine-
grained, incremental variation information desired.

3.3. DUK Basis

Timing Extraction’s objective is to provide fine-grained delay information that can then
be used to characterize the variation in the FPGA as well as perform a component-
specific mapping to the FPGA. We know it is not possible to solve for the delay of every
LC Node; however, our solution should allow us to formulate path delays as a linear
sum of a small number of components. By definition, an L.C Node is the smallest delay
we care to measure; however, since we cannot solve for LC Nodes, we consider the
next best thing, a basis where the variables represent a small linear combination of
LC Nodes. We refer to this small linear combination of LC Nodes as a DUK. First,
we introduce the vectors that compose the DUK basis; then we show the equivalence
between an LC-based and a DUK-based model; and finally, we demonstrate that unlike
LC Nodes, we can compute the delay of DUKs.

Instead of having three types of variables that are combined to represent a path, this
basis contains two types of DUKSs. The delay of a Start Node plus an End Node forms
the first DUK (Equation (5)). On its own, this DUK forms a complete measurable path,
starting at a register and ending at a second register. Moreover, all paths stem from
this DUK; therefore, we refer to it as a Mother DUK, or M-DUK. The second DUK is
known as a Child DUK, or C-DUK. As its name suggests, it follows the Mother DUK
and incrementally grows a path. A C-DUK consists of the delay of a Mid Node plus the
difference of two End Nodes (Equation (6)):

M-DUK = S; + E; ®)
C-DUK = M; + E; — E,. (6)

Assuming we have their delays, together, these two types of DUKSs allow us to com-
pose any measurable path in exactly the same way that LC Nodes did. In general, a

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 5, Publication date: December 2014.

5:10 B. Gojman et al.
|FF] [4—LUTJ 4-LU

LEi) LE:
L. LU FFJ &b { j
LE; LE]

LE j
iSj+jE:iA{Dj PN iMjt+iE - E = Z‘CDj
(a) M-DUK (b) C-DUK

Fig. 7. Highlighted, an example of the LC Nodes that form the two types of DUKs in a Cyclone LAB.

measurable path will be represented by an M-DUK and zero or more C-DUKs. For a
path to be measurable, it must start and end at a register. M-DUKSs naturally represent
such paths. The function of a C-DUK is to replace the End Node and extend the path by
adding a Mid Node and a new End Node. Consider the path shown in Figure 6(a) con-
sisting of a Start Node, three Mid Nodes, and an End Node. We can easily represent this
path in the DUK basis using one M-DUK and three C-DUKs, as shown in Figure 6(b).
Figure 6(b) represents each DUK as a jigsaw piece to give a geometric meaning to the
notion that two DUKs must complement each other in order to correctly represent a
path. Here, instead of each DUK having a different delay, each DUK has a unique
shape. The concave left side of a C-DUK represents the carved-out delay of the sub-
tracted End Node, while the convex right side of a DUK shows the addition of an End
Node.

In general, given a path represented by LC Nodes, we can easily re-express it using
the DUK basis by replacing the Start Node with an M-DUK containing the same
Start Node, and every Mid Node by a C-DUK composed in part by the Mid Node, and
subtracting the same End Node that is added to the DUK before it. The last C-DUK
must also contain the End Node of the path in question.

3.4. DUKs in Cyclone LAB

Figure 7 shows how DUKSs map to LE i and j in a Cyclone LAB. Similar to the Start
Node, the M-DUK spans two LEs. Since there are 16 LEs in a LAB and two input
sets (Section 2.2), there are 16 x 15 x 2 = 480 M-DUKSs. An equal number of C-DUKs
exist, since a C-DUK also spans two LEs. Using the 960 DUKs in a LAB, it is possible
to represent any path in the LAB originally represented by a set of LC Nodes. Under
Figure 7 appear two L.C Node equations leading to the corresponding DUKSs. A subscript
prefix on both the LC Nodes and the DUKSs indicate the source LE, and a subscript suffix
signals the sink LE. We can establish a one-to-one correspondence between Start Nodes
and M-DUKSs (Figure 7(a)) by observing that the prefix and suffix on the Start Node
match the prefix and suffix of the M-DUK. Essentially, it indicates that if the Start
Node begins in LE i and ends in LE j, the M-DUK will as well. A similar bijection
exists between Mid Nodes and C-DUKs (Figure 7(b)). The equations in Figure 7 also
indicate which End Nodes must be added or subtracted to correctly form the DUK.

These equations and this notation allow us to trivially transform a path based on
LC Nodes into one using DUKs. We replace the Start Node with the M-DUK that has
the same source and sink LE. Similarly, we replace every Mid Node with the matching
C-DUK. The delay contributed by the End Node will already form part of the last DUK.
An example will help solidify this transformation.

Consider the path with four LC Nodes:

iSj+ M+ M, + E.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 5, Publication date: December 2014.

GROK-LAB 5:11

Applying the transformation algorithm described previously leads to the path
i{MD; + ;CDy + ,CD,.
Expanding each DUK to its LC Node representation leads to
iSj+ jE + jMp+ rE— ;E + 1M+ E— E,
N——

iMDj jCDk kCDZ

which, after simplifying the terms, equals the original LC Node-based path.

It is not a coincidence that the number of DUKSs, 960, matches the rank of the matrix
formed by paths x LC Nodes. The previous algorithm shows how a linear combination
of DUKSs can be used to represent an arbitrary measurable path. This is the definition
of a basis for the matrix. Therefore, these DUKSs form a basis for the path—LC Node
matrix. As such, by obtaining the delay of the 960 DUKSs, we can compute the delay of
any of the 10'® paths in the LAB.

This basis is superior to the one suggested at the end of Section 3.2, where 960 linearly
independent paths are selected to form the basis, for several reasons. First, DUKs can
be composed incrementally, allowing routing algorithms to easily incorporate this delay
information into their path search. Second, DUKSs provide a uniformity that the other
basis lacks. There is no guarantee that all paths in the other basis will be of the same
length or use similar LUT inputs. Therefore, it is not easy to compare delays between
and within LABs. DUKs, on the other hand, have two consistent forms, M-DUKs and
C-DUKSs. We can directly compare one C-DUK using LUT input A to another C-DUK
using LUT input A and know that if one is faster, it is due to process variation and not
because of differences in what they represent. Finally, DUKSs provide very fine-grained
delay information, almost on the order of one LE, while the other basis only has delays
of paths.

3.5. Obtaining DUK Delays

It should come as no surprise that it is impossible to measure C-DUKs directly, since
one term subtracts the delay of an End Node. It is relatively simple, however, to figure
out which paths combine to give a C-DUK’s delay. Consider C-DUK ;M; + ;E — ;E
from Figure 7(b). To get this delay, we simply measure a path starting with a set of
Nodes represented by path prefix 7 and ending in Nodes ;M; + ;E and subtract from
it a path starting with the Nodes in 7 and ending in Node ;E. This leads to the path
equation

(m+ iM;+ ;E) — (w+ ;E)= ;M;+ ;E— ,E. (7

In a sense, this mathematically demonstrates the purpose of a C-DUK, removing the
last End Node in a path and replacing it with a new Mid Node and End Node.

Since every M-DUK represents the delay of a Start Node plus an End Node and
a path must begin at a Start Node and end at an End Node, our path measurement
technique (Section 2.3) should allow us to directly measure the delay of every M-DUK.
Unfortunately, as established in Section 2.3, the shortest path we can confidently
measure is of length 6, while an M-DUK forms a much smaller path of length 1 LUT
and two registers (Figure 7(a)). Therefore, we take an indirect approach to measuring
the delay of an M-DUK by measuring three paths and taking a linear combination of
these paths.

To compute the delay of M-DUK ;S; + ;E, we measure one path that begins by a set
of nodes represented by 7; and ends with ;M; + ;E. Then we measure a second path
that begins with ;S; + ;M and ends with a set of nodes represented by n». Finally, we
measure a path that is similar to the second path at the beginning and similar to the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 5, Publication date: December 2014.

5:12 B. Gojman et al.

first path at the end: 71 + ;M; + ; M} + m2. Adding the first two paths and subtracting
the third leads to the delay of the M-DUK as shown in the following path equation:

(m+ M;+ ;E)+(;S;+ jMp+me) — (m1 + (Mj+ My +m2) = ;S; + ;E. (8)

There exist a few requirements on which nodes may form part of 71 and 5. Since the
third path uses both 77 and 73, we must make sure that each of the 16 LUTs in the
LAB is used only once between the Nodes in 71, 79 and the two Mid Nodes ;M; + ; M;.
Also, 71 and 73 should not use the LUT i or j. These requirements are easy to satisfy
and allow for long paths that we can measure using the limited frequency resources in
the Cyclone III and Cyclone IV FPGAs.

All told, we measure two paths for every C-DUK and three for each M-DUK; at worst,
this means we must measure 2 x 480 + 3 x 480 = 2,400 paths per LAB. Although this
is slightly larger than the minimum of 960 given by performing Gaussian Elimination
on the path x LC Node matrix, it is still a small number compared to the total possible
paths, and it meets the Timing Extraction goals: fine-grained measurements suitable
for direct variation characterization and component-specific routing.

4. INTRA-LUT TIMING EXTRACTION

The previous section introduced the key concepts of Timing Extraction by explaining
how to acquire detailed delay measurements for LEs within a LAB. In this section, we
apply these ideas to the internal structure of the LUTs within the LEs, including SRAM
cells and MUX paths (Figure 3(b)), and use it as an opportunity to demonstrate how
Timing Extraction is easily applicable to other circuit structures. To do this, we examine
how breaking the LUT into individual memory cells changes the structure of our Logical
Components (Section 3.1). This forces us to reconsider which DUKSs are necessary to
cover any required path within a LAB and introduces a new DUK to complement the
existing two and acquire fine-grained intra-LUT delays.

To measure intra-LUT delays, it is useful to represent the LE as a graph of physical
components. Figure 8(a) shows this graph representation for the Cyclone LE from
Figure 4. To capture the fact that a measured path must start and end at a register,
the register is modeled by two nodes in the graph, one for the output, F'Fg, and one
for the input, FFp. Two physical components, i and j, in this graph will be part of
the same Logical Component (Section 3.1) if and only if j is downstream from i and
i is the only upstream physical component that connects to j. Essentially, a Logical
Component starts at a physical component with fanin greater than 1 and ends before
the next downstream physical component with fanin greater than 1.

The three Logical Components introduced in Figure 5 immediately result from apply-
ing this definition when we compute LC Nodes that explicitly use or avoid the register
nodes, as highlighted in Figure 8(a).

When considering intra-LUT delays, it is necessary to modify the graph from
Figure 8(a) so that the individual SRAM cells within the LUT are accounted for, but
first we must understand how to represent these SRAM cells in the graph. As shown in
Figure 3(a), LUTSs in a measured path, which form part of the circuit under test (CUT),
are logically configured as simple buffers. For a K-LUT, this means that only one out
of K inputs is used, and only two SRAM cells in the LUT will be read. For a given used
input, which two SRAM cells are read depends on how the unused K — 1 inputs are
configured. For example, in the Cyclone III 4-LUT, when the LUT is programmed as
a buffer on input A and the other three inputs are fixed low, we use the SRAM cells
addressed by input bit-vectors 0000 and 1000. If, instead, the unused inputs are fixed
high, the SRAM cells will be those read by bit-vectors 0111 and 1111. Altogether, there
are eight pairs of SRAM cells that can be used to implement a buffer on input A. We
can label the eight pairs as Aggy through A;i;. A similar labeling for inputs B, C, and

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 5, Publication date: December 2014.

GROK-LAB 5:13

From Local Interconnect From Local Interconnect
A { / ;o ThTeis / { : i) 5 u Input
Crosslp))oints - (1) Crosspoints
LUT SRAM
LLUT "@ Cell Pair
4-LUT
FF In
FF In
FF Out
FF Out
Mux Mux
Output Output
Crosspoints Crosspoints
Local Local
Interconnect Interconnect
Mid Node LUT
Input 5 Input
Crosspoints Crosspoints

{To LUT SRAM Cell Pairs
e LUT Representation (b) Intra-LLUT Representation

Fig. 8. Graph representation of Figure 4. Highlighted, an example of the components that form each of the
types of LC Nodes in a Cyclone LAB.

D leads to 32 pairs of SRAM cells, and each one of these 32 pairs is represented as a
node in Figure 8(b), replacing the LUT node in Figure 8(a). Logical components in this
new graph are formed in the same way as before; however, the result, as highlighted in
Figure 8(b), is four types of logical components, Start Node, Mid Node LUT, Mid Node
LE, and End Node, instead of the original three.

4.1. Intra-LUT DUKs

A path is now formed by a Start Node followed by zero or more pairs of Mid Node
LUT-Mid Node LEs, and terminating with a Mid Node LUT and an End Node. Though
the number and composition of the paths is different, it is still the case that we cannot
solve for the delay of each LC node since this is a fundamental property of the launch-
capture measurement technique. Therefore, we again consider forming DUKs to get
the desired information.

The original M-DUK is essentially representing the smallest path that can be formed
between two registers. The original C-DUK is a mechanism that extends a path by
replacing one LC Node with two, while maintaining the requirement that the path
starts and ends at a register. Defining the two DUKSs this way allows us to define
similar DUKSs in this new representation.

The smallest path between two registers is one that begins at a Start Node, goes
through one Mid Node LUT, and finishes at an End Node (Equation (9)). To extend a
path, we replace the End Node with a Mid Node LE followed by a Mid Node LUT and
a new End node (Equation (10)). As before, these two DUKSs are all that is required to
form any measurable path; however, representing intra-LUT delays greatly increases
the total number of DUKs:

M-DUK =;S; + ;M:" + E (9)

XXX

C-DUK =,M/* + ;MEU" + ;E — E. (10)

XXX

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 5, Publication date: December 2014.

5:14 B. Gojman et al.

To count the number of DUKSs, we look at what LLC Nodes form the DUK and the
corresponding connectivity between these Nodes. Considering the LAB in a Cyclone III,
a Start Node begins at a register in LE i and ends before a LUT input in LE j.
Since there are 16 LEs per LAB and the connections from one LE to another are
50% depopulated, there is a total of 16 x 15 x 2 = 480 Start Nodes. A Start Node
connects to eight distinct Mid Node LUTSs, one for each pair of SRAM cells used to
implement a buffer on a given LUT input. Finally, the Mid Node LUTs connect directly
to exactly one LUT register, represented by an End Node. Therefore, altogether, there
are 480 x 8 x 1 = 3,840 M-DUKSs. A similar accounting also leads to 3,840 C-DUKs.

Although still less then the 10'® measurable paths in a LAB, 7,680 DUKs is eight
times greater than the 960 DUKSs accounted for in Section 3.4. This factor of eight
comes directly from the fact that now we represent pairs of SRAM cells in the 4-LUT of
the Cyclone III. To reduce the total number of DUKSs, we introduce a new type, a DUK
that swaps one Node for another. Specifically, the Sibling DUK, or S-DUK, will swap
one Mid Node LUT with another, as represented by Equation (11):

S-DUK = ;MEUT — , MEUT. (1)

XXX yyy

A given Mid Node LUT in some path can be replaced by seven other Mid Node LUTs
without changing anything else in the path. Physically, this swap replaces one pair of
SRAM cells used to implement a buffer on a particular input of a LUT with another
pair using that same input in that same LUT. Since there are four inputs and 16 LEs,
there is a total of 4 x 16 x 7 = 448 S-DUKs. Having these S-DUKSs allows us to reduce
the number of M-DUKSs and C-DUKSs by a factor of eight since we can measure M-DUKSs
and C-DUKs fixing unused LUT inputs to one value, and then use S-DUKs if a different
value is desired. As such, we end up with a total of 480 + 480 + 448 = 1,408 DUKSs per
LAB, a much better result than 7,680 before introducing S-DUKs.

4.2. Obtaining DUK Delays

All that remains is to describe which, and how many, paths should be measured to
compute the delay of all 1,472 DUKs. For M-DUKs and C-DUKSs, we use the same
mechanism as in Section 3.5 but adjust it to account for the new LLC Node representa-
tion. To compute the C-DUK’s delay described by Equation (10), we again measure two
paths that differ only in their endings but have same prefix 7 (Equation (12)):

(m + i MPF + ;Mi" + JE) — (n+ E)= MF + Mi)" + ;E— E. (12)

The M-DUK is computed by measuring three paths where the sum of the first two
minus the third gives the desired M-DUK delay as shown in Equation (13):

(1 + :MEE 4 s MET + SE) + (:8; + i MELT + jMEE + 7o) (13)
— (1 MEP 4 MEDT + i MEE 4 o) = S; + JMEET + E.

Since S-DUKSs are the difference of two Mid Node LUTSs, they are computed using two
paths that differ in exactly one Mid Node LUT (Equation (14)). However, since there is
very little restrictions on what the paths should be, we can reuse any one of the paths
from either the C-DUK or M-DUK measurements as the first path in Equation (14):
(1 4+ MEET + 7)) — (m1+ MELT + 7o) = MEQT — :MEET. (14)

Therefore, as before, we have that C-DUKSs require two paths, M-DUKSs three, and,
due to path reuse, S-DUKs only need one more. This means 2 x 48043 x 48041 x 448 =

2,848 paths must be measured to compute the delay of all DUKSs in one LAB. In other
words, by measuring 19% more paths than in Section 3.5, we augment our delay

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 5, Publication date: December 2014.

GROK-LAB 5:15

knowledge with full detailed measurement information about the delay within the
individual LUTs. Section 6.2 shows detailed results of these measurements.

5. MEASUREMENT PRECISION

The precision of the delay computed for each DUK is limited by the granularity to
which we can adjust the clock used in the launch-capture measurement technique. In
this section, we quantify the expected DUK error introduced due to this limited clock
granularity. Section 6.3 demonstrates how our empirical results match the analysis
presented here. As explained in Section 2.3, measuring the delay of a path requires
adjusting the test clock to find the frequency at which the signal first fails to reach
the capture register. Assuming the finest granularity by which the frequency can be
adjusted is A.cr sSeconds, then any measurement made will at worst be A, seconds
slower than the actual delay of the path (Equation (15)):

Tmeasured = Tpath + Epath | Epath < Aclock- (15)

To determine the error in DUK delays due to limited clock granularity, we refer to
Section 3.5 and Section 4.2, which explain how to compute the delay of a DUK. A
C-DUK’s delay is the difference of the delay of two paths. Equation (16) expresses the
delay and measurement error of a C-DUK in terms of the delay and measurement error
of two paths, A and B:

Tcpuk + ecpuk = (ta+€4) — (g + €p). (16)

The error of a C-DUK is thus ¢4 — ¢p. Since both ¢4 and ¢p are less than Az, the
error will be greatest when path A’s error is nearly A..x and path B’s error is nearly
zero, or vice versa, as formalized in Equation (17). Since an S-DUK is also the difference
of two paths, Equation (17) also characterizes its measurement error:

—Aclock < ECDUK < Aclock- a7

A similar analysis applies for the M-DUK. The delay of an M-DUK is derived by the
sum of two paths minus a third, as Equation (18) demonstrates:

tupUuk + empuk = (ta+€4) + (vt + eB) — (¢ + €0). (18)

Therefore, the error of an M-DUK is ¢4 + ¢ — ¢¢. Since all three terms are less then
Aclock, We can bound the error by the worst case, when either ¢4 and ep are nearly A e
and e¢ is nearly zero, or the other way around, as captured by Equation (19):

—Aclock < EMDUK < 2 Aclock- (19)

To validate that computed DUK delays accurately represent exact DUK delays to
within the expected error, it would be necessary to know the exact DUK delays. How-
ever, we are unable to get this information. Therefore, to certify the accuracy of com-
puted DUK delays, we must calculate a DUK delay two or more ways and confirm that
the results are within expected error.

This is easily done, because there are few requirements set on the paths used to
compute DUK delays, since there are nearly no restrictions on the subpath prefixes
and suffixes represented by 7 in Section 3.5 and Section 4.2. Consequently, it is possible
to formulate multiple sets of paths by changing these 7 subpaths yet still compute the
same DUK. It is worth noting, however, that since every computed DUK must obey
the error bounds of Equations (17) or (19), it is possible that one computation will be
on one end of the bound and the other on the other end of the bound. As a result,
it is necessary to consider not the error between a computed DUK and the actual
DUK delay, as was done earlier, but the maximum error between two computed DUKs.
We look to Equation (17) and determine that for a C-DUK or an S-DUK, this error is

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 5, Publication date: December 2014.

5:16 B. Gojman et al.

+2- Agoer. For an M-DUK, Equation (19) leads us to conclude it is +3 - A ocr. Section 6.3
uses these bounds to certify the accuracy of our measurements.

6. EXPERIMENTAL RESULTS

We applied Timing Extraction both to 18 Arrow BeMicro boards that have a Cyclone III
FPGA EP3C16F256C8N [Arrow 2009] and to one Terasic DEO-Nano with a Cyclone IV
FPGA EP4CE22F17C6N [Altera 2003], modified to allow control over the FPGA’s inter-
nal V,. In this section, we present the main results from our measurement experiments
on both boards.

6.1. Methodology

The delay of a path in an FPGA is subject to many sources of variation beyond pro-
cess variation. These include effects such as CAD tool decisions, local supply voltage
IR-drop, crosstalk, and temperature fluctuations. To annul the effects of these varia-
tion sources, we perform our measurements in a very structured and systematic way.
We divide the FPGA into a control region, where logic required to control the mea-
surement tests is placed on 66 LABs, and a measurement region containing the LABs
that will be measured. This keeps the control logic away from the paths under test so
that noise effects in the control circuitry will have minimal impact on the measured
circuitry. Leveraging the constraints provided by QUIP [Altera 2005a], the placement
and routing of all but the LABs being measured are fixed and consistent for all our
measurements. This assures us that signal path lengths and compositions are identical
across tests and do not directly contribute to the differences in measured delays. QUIP
is also used to dictate the placement and routing of the path being measured within a
LAB. Moreover, to reduce the overall activity in the FPGA, we do not measure LABs
in parallel, but rather measure LABs one at a time. This guarantees that local heat-
ing and switching-activity-dependent IR drop do not impact the delay measurements.
Furthermore, all measurements are taken in a temperature-controlled room, and we
perform our measurement several times to reach a stable internal temperature before
recording the final path delay. All these precautions lead to path delays measured in
a consistent and precise manner with repeatable results, suggesting that the mea-
surements reveal the underlying process variation and allowing us to compare results
between LABs and FPGAs without worry that other variation effects cloud our results.

We use the path measurement technique (Section 2.3) on 18 Cyclone III FPGAs
to measure the 2,848 paths per LAB necessary to compute all DUK delays. Each
measurement set takes on average 20 minutes per LAB. Due to limitations in the
Cyclone III PLLs, for our measurements, we increment the frequency at linear intervals
of Agocr = 1.6ps and, at each frequency, perform 2'° path measurements, taking as the
delay of the path the frequency that yields a 50% failure rate for that path. With these
parameters, we are 99.985% confident that our margin of error is 1% of 50%. Unless
otherwise specified, throughout this section, we present results related to LAB (27,22)
of a Cyclone III. Where appropriate, we indicate more general results.

6.2. Extracted Characterization

Figure 9 shows the resulting distribution of the paths measured to compute C-DUKs
and M-DUKSs in a LAB. We highlight four separate distributions to isolate two sources
of known systematic difference, the path length and the LUT inputs used. From these
paths, we compute DUK delays; Figure 10 shows these distributions. In this case,
the different colors indicate the LUT input used by the DUK. Figure 11 shows the
individual delays for each C-DUK over LUT inputs A and B for two different LABs.
Note that there is no single delay associated with a LUT; each source—sink pair has a
unique delay, both between different DUKSs in one LAB and between the same DUK in

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 5, Publication date: December 2014.

GROK-LAB 5:17

|

o -] @ Paths, Inputs C&D, Len 6, ;2 1.9, ¢ 0.11 s | O Paths, Inputs C&D, Len 7, 11 2.1, 5 0.07

& @ Paths, Inputs A&B, Len 6, ;1 2.0, 5 0.11 ~ | @ Paths, Inputs A&B, Len 7, ;1 2.2, 0 0.07
% o - B Paths, Inputs C&D, Len 11, 1 3.3, ¢ 0.08 E’ 7| B Paths, Inputs C&D, Len 8, 1 2.4, 5 0.07
§ S ® Paths, Inputs A&B, Len 11, 1 3.4,0 008 § & - M Paths, Inputs A&B, Len 8, 11 2.6, 7 0.07
FE K
~ N ~
= — — = 3 —

27 R .

od [s o =

15 1.7 19 21 23 25 2.7 29 3.1 33 35 3.7 19 20 21 22 23 24 25 26 27 28
Path Delay (ns) Path Delay (ns)
(a) 1,440 paths for M-DUKs (b) 960 paths for C-DUKs

Fig.9. Path delay distribution for the 2,400 paths required to solve all C-DUKSs and M-DUKSs, differentiating
known systematic variation, Cyclone III LAB (27,22).

g— @ InputD, ;430,017 w_ | @ InputD, 240, o 13

| ® InputC, 539,012 Y @ InputC, 347,011

si| B InputB, ;587,018 S-{ B InputB, 1397, 0 14

2 -| B InputA, ;589,014 2 . B Input A, 1394, 0 10
g g 3
= =
= = oo

—
o]
o
370 400 430 460 490 520 550 580 610 640 210 240 270 300 330 360 390 420 450
M-DUK Delay (ps) C-DUK Delay (ps)
(a) 480 M-DUKs (b) 480 C-DUKs

Fig. 10. C-DUK and M-DUK delay distribution, differentiating known systematic variation, Cyclone III
LAB (27,22).

End LE
1234567389

1 -422 414415407418 423 435431416 428427 422433412414

2 398400 412898 409 412 417 420 404 414 411 406 412 395397
3 385398 [l 389376 387 400390 401 381384

End LE
10 11 12 13 14 15 16 1 23 45 6 7 8 910111213 141516
1 423 423 434 412 423 420 420 429 429 415 423 428 427 419 433

2 389407 424 396 409 399 400 412 410 399 401 406 403 398 409
879 391 [l 401 379 387 384384 397 392 379389 395 389384 398

3
4 4
5 5
. 6 . 6
7 7
2 s 2 s
E 9 E 9
& 10 & 10
11 11
12 12
13 13
14 14
15 897405893 395 15 398
16 411414406 403 390 404 409 414 409 392 409 407393 411 S84 16 401419406 419400 410 402 395 400 404 395 395 397 398 389 [l
(a) LAB (27,22) (b) LAB (37,14)

Fig. 11. C-DUK delays in picoseconds over LUT inputs A and B. Rows index start LE of C-DUK; columns
index end LE. LUT input A is shown by highlighted red row header, B otherwise. Two LABs in Cyclone III.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 5, Publication date: December 2014.

)]
o
o]

B. Gojman et al.

’ZE%, CH- 7 a%* Q% Q?’ Q6 ~3 74 A%*
&8 RN &Y GG 28] oo s BT @Q@Q o
¥ V Ve g| = 2

<o VI RAR |- VS| o IR |~ -Vy 6Q
A S RA S| o / ~g Ny NQ— Vo | Ve
~ & _| - ‘A" P> | = Q e o B S| «©] V) D < N 1'- V
) s o 7y as P B < me S q)Q

27 2. 7 R Al N R g R R
ﬁ%: . ﬁof i ﬂf‘- ﬁq%: 3.‘ 4 [l.'f’l. 7 Q)Q
e ¥ 4 HS o SrARe 53] Sl B8] 7 . 4
B8 20 & Ll 7 s] e A

— =1 7 — / =1/ /

Ag sg 1/ - Rg/

0 [32) 0 [32)

530 560 590 620 650 360

ITTTITTTITTTITT]
390 420 450 530 560 590 620 650

Delay, LAB 27,22 (ps)

(a) M-DUKs, LAB vs
LAB, same FPGA

Delay, LAB 27,22 (ps)

(b) C-DUKs, LAB vs
LAB, same FPGA

Delay, FPGA 1 (ps)

[T T T T T T TTT
360 390 420 450

Delay, FPGA 1 (ps)

(¢) M-DUKs, FPGA vs (d) C-DUKs, FPGA vs

FPGA, same LAB

FPGA, same LAB

Fig. 12. Correlation between DUKSs in two LABs in one FPGA (a & b) and between two FPGAs for the same
LAB (27,22) (¢ & d). Diagonal lines indicate difference between results in terms of A.r = 1.6ps. Thicker

lines indicate 10 - Acjocr- Red dashed lines indicate error boundaries as computed in Section 5. Cyclone III.

o _
> _| ® Controlling LUT Input: A
_| ® Controlling LUT Input: B

Fixed LUT Inputs: B,C,D
Fixed LUT Inputs: A,C,D

~ o
:3; = _| # Controlling LUT Input: C Fixed LUT Inputs: A,B,D) I |
2o Controlling LUT Input: D Fixed LUT Inputs: A,B,C I l I '
— 0
[
A A
5 [
5% I ! [' !
95
0 =
*::l:°:£C:I:':A:{::::;K::::i:".::: f::::‘z:::: C:::%::
s 0,1,1 0,0,1 1,1,1 1,0,1 0,1,0 0,0,0 1,1,0 1,0,
Fixed LUT Inputs Value

Fig. 13. S-DUK delays. Each scatter plot shows the delay of S-DUKSs with the same controlling and fixed
LUT inputs. The region between red dashed lines is shown as a reference of the range of the expected error
as computed in Section 5. Cyclone III LAB (27,22).

different LABs, demonstrating the importance of accounting for LUT-to-LUT routing.
Within a LAB, on average, over all 18 FPGAs, we see a standard deviation of o/ = 3%
for M-DUKSs and o/u = 5% for C-DUKs.

Figure 12 compares the DUK delay distribution of two LABs in one FPGA and of one
LAB in two FPGAs, respectively. The results indicate that the variation is composed
of a spatially correlated component, a within-die correlated component, and a random
component. If the variation was only correlated, the data points on these graphs would
lie on the AOps diagonal line. Similarly, if it was all random variation, the data points
would resemble Figure 1(c).

For all results presented, when a LUT input is not used to implement the buffer, it is
fixed to the vector 0011 for inputs A through D, respectively. S-DUKs allow us to take
these results and adjust them for other vectors. Figure 13 shows the S-DUK delays as
a scatter plot for each vector, differentiating which input is controlling by the color of
the distribution. For example, for the column labeled 0, 1, 1, when A is the controlling
input, B, C, and D are fixed at 0, 1, and 1, respectively. When C is the controlling input,
A, B, and D are fixed at 0, 1, and 1, respectively.

The main thing to notice is that when inputs A or B are controlling, the value of the
other inputs greatly matters, whereas the value of the unused inputs does not matter
when C or D are controlling. This is consistent with the expected architecture of the
LUT as shown in Figure 3(b). When A or B is controlling, the critical path incurs the
full delay of going through the internal LUTSs followed by the muxes. Inputs C and D
do not have to pay such a high delay.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 5, Publication date: December 2014.

GROK-LAB 5:19

420 450
AN q
o7
%,
N
\\q‘/@
5
%
@
420 450

390
390

7
W

7

g

530 56d 56d b2d ko

.,
2

360" T3do" Tado" Tado

I I |
N

Delay, Path Set 2 (ps)

530 560 590 620 650

Delay, Path Set 2 (ps)

360

Delay, Run 2 (ps)
530 560 590 620 650
Lt
N
Delay, Run 2 (ps)

I I |

60

7 7

550 560 590 62d G50 3o’ Tsdo! Tado! Tado

Delay, Run 1 (ps) Delay, Run 1 (ps) Delay, Path Set 1 (ps) Delay, Path Set 1 (ps)
(a) M-DUKs, Run vs (b) C-DUKSs, Run vs (c) M-DUK Path Set vs (d) C-DUK Path Set vs
Run Run Path Set Path Set

Fig. 14. Correlation between DUKs when measuring the same paths twice (a & b) and measuring different
path sets yielding the same DUKs (¢ & d). Diagonal lines indicate difference between results in terms of
Actock = 1.6ps. Thicker lines indicate 10 - Agjocr. Red dashed lines indicate error boundaries as computed in
Section 5. Cyclone IIT LAB (27,22).

C-DUK
Delay (ps)
233 236

Fig. 15. Delay of C-DUK from LE 6 to LE 11 using input D, computed using 150 different pairs of paths.
The distance between horizontal gray lines is A¢ocr = 1.6ps. The region between red dashed lines shows
expected error bounds as computed in Section 5. All 150 C-DUKSs are within these bounds. Cyclone III LAB
(27,22).

6.3. Measurement Validation

The measurement of the delay of a path can be subject to many sources of noise;
therefore, we would like to build confidence that we are not measuring that noise but
rather the actual delay of paths and DUKs in a consistent manner. As explained in
Section 6.1, we control as many aspects as possible when performing our measure-
ments. To measure if these controls achieve consistency, we perform the measurements
twice by measuring paths, computing all DUK delays, and repeating. Figures 14(a) and
14(b) show the resulting DUK delays when we measure paths twice. Section 5 calcu-
lates the expected error due to the granularity of our clock. The red dashed lines in
the figure graphically represent the range of this expected error. Therefore, having all
measurements fall within this region means the two runs essentially measured the
exact same value.

A second form of validation comes from the fact that we can measure distinct sets
of paths that allow us to compute the delay of the same set of DUKs. Recall from
Section 3.5 that we need two paths to compute the delay of C-DUKs and three for
M-DUKs. These paths have a fixed set of LC Nodes that determine which DUK will
be computed from their delays, and a subpath prefix of LC Nodes, which we called =,
that do not form part of the final DUK. We can select a different set of LC Nodes to use
for the subpath 7 without affecting which DUKs we compute. Figures 14(c) and 14(d)
show the resulting DUKs when we compute them using two different sets of paths.
Again, the red dashed lines highlight the expected error. Clearly, it matters little what
the paths are, as long as they compute the correct DUK.

To gain even more confidence of our measurements, we repeat the experiment, but
instead of using two different sets of paths, we use 150 different sets that all yield the
same DUK. Figure 15 shows the resulting delay for one C-DUK. All 150 results lie
within the expected error. Together, these figures show that we can trust our technique
to correctly and consistently compute the delay of DUKs.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 5, Publication date: December 2014.

5:20 B. Gojman et al.

B 0.9V, 70,0005 3 B 0.9V, 778,060

58 B 10V,153,00033 p S B 1.0V, 592,039

g W 11V,043,0002 £ o B 1.1V, 486,028

8 m 12Vu3600020) B 12V, 418,022
& R
0 —
o ul .

35 39 43 47 51 55 59 63 67 71 340 420 500 580 660 740 820
Path Delay (ns) C-DUK Delay (ps)
(a) Path delay distribution for Length 8 Paths (b) C-DUK delay distribution for LUT inputs
over LUT inputs A and B required to solve A and B
C-DUKs

Fig. 16. Delays when varying V4. Differentiating varying Vg4, Cyclone IV LAB (28,22).

6.4. Effects of Varying Vpp

Lowering Vpp is a common and important way to save power and energy. In this
section, we examine the effect that reducing Vpp has on variation. In particular, we
ask whether scaling Vpp has a purely systematic effect on the variation distributions
or whether there is a random component as well. To do this, we modify a DEO-Nano
board containing a Cyclone IV FPGA so that we can control the internal Vpp [Terasic
2011]. Nominally, the board provides a 1.2V Vpp. For our tests, we scale at 100mV
increments. At Vpp = 0.8V, a large percent of our measurements fail, and at 0.7V, the
board fails to power up.

We know that a lower Vpp increases the propagation delay of a circuit, as well as
the standard deviation of the path delay distribution [Eisele et al. 1997]. We clearly
see this effect in Figure 16(a), the delay distribution for the paths of length 8 used to
compute C-DUKs. As we lower Vpp, the distribution shifts right and becomes wider.
This effect is even more pronounced when we look at the C-DUK delay distributions in
Figure 16(b).

7. GENERALIZING TIMING EXTRACTION

Although Section 3 introduces Timing Extraction by applying it to a Cyclone IIT LAB,
the approach generalizes to any FPGA that has registers and configurable PLLs. We
can distill the essence of Timing Extraction into five concepts:

(1) We can measure the delay of a group of components in the FPGA using only re-
sources already in the FPGA.

(2) LC Nodes represent the smallest group of components for which we need to compute
a delay, since, if we use any component in an LC Node, we must use all other
components in the LC Node.

(3) When using the measurement technique from Section 2.3, it is not possible to solve
for the delay of every LC Node when a measured path begins at a Start Node, goes
through zero or more Mid Nodes, and terminates at an End Node.

(4) When representing all measurable paths as a matrix, there exists a basis that will
allow us to compute the delay of any path in the FPGA using only the delay of
vectors in that basis.

(5) We can formulate a basis where every vector is a DUK composed of a small linear
combination of LC Nodes.

The first, second, and fourth points are immediate; however, it is not obvious why the
third and fifth hold true. Although a full explanation, formalization, and proof are
beyond the scope of this article, we can build some intuition to address the third point.
Consider a simplified circuit that, when represented in LC Nodes, has all paths being

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 5, Publication date: December 2014.

GROK-LAB 5:21

composed by just a Start Node and an End Node. Moreover, there exists a physical
path in the circuit formed by combining any Start Node with any End Node. We can
represent this situation as a fully connected bipartite graph with Start Nodes forming
one set and End Nodes the second. For simplicity, assume that the delay of every path
is measured to be 500ps. It is easy to show that at least two solutions to the delay of
the nodes exist. One solution assigns a delay of 200ps to all Start Nodes and a delay of
300ps to all End Nodes. The second solution does the opposite, assigning 300ps to Start
Nodes and 200ps to End Nodes. A similar circuit with fewer paths suffers from the
same problem. Therefore, this circuit, and any subset, leads to an underdetermined
system. The argument becomes somewhat more complicated when considering the
more general problem, which also includes Mid Nodes; however, the intuition remains
the same.

A forthcoming work will address in detail the fifth point. Yet, Section 4 builds much of
the intuition necessary to see why this is true. We have three types of DUKs. All three
maintain the requirement that a path starts and ends at a register. M-DUKSs represent
the smallest path between two registers. C-DUKs grow the length of a path. Finally,
replacing one node for another is achieved by S-DUKSs. This defines the three main
types of representations and transformations that should be sufficient to formulate
any path in our circuit. Though more than one type of M-DUK, C-DUK, and S-DUK
will be defined to cover all structures in the circuit, overall, a small palette of DUKs
will suffice to fully describe all structures in an FPGA.

8. FUTURE WORK

The previous section suggests that Timing Extraction is more generally applicable.
This article applies Timing Extraction exclusively to the LABs and LUTSs. To get the
full, intended benefits of this technique, it is essential to also apply Timing Extraction
to intercluster routing. Moreover, the results section hints at the existence of differ-
ent types of variation—systematic, spatially correlated, and random—and shows that
Timing Extraction is able to provide the raw information necessary to understand
variation in the FPGA. To fully harness the power of Timing Extraction, however, a
mathematical analysis of the information it provides should be performed to quantify
how much and what kind of variation exists within the FPGA.

Finally, we perform our measurements in a highly controlled setting (Section 6.1).
This leads to clean and consistent results, but it is not clear which controls are necessary
for good results. Careful experimentation will reveal how the results change when we
change or relax the strong restrictions on our measurement technique, allowing us to
simplify and accelerate path measurements.

9. CONCLUSIONS

We presented Timing Extraction, a method used to extract the fine-grained delay infor-
mation necessary to understand variation within the FPGA and to generate component-
specific mappings. We acquire this information using only resources already present in
the FPGA. Essentially, we apply a launch and capture technique to measure a subset
of all paths in the FPGA and extract small DUKs from these measurements. We can
then compose DUKSs to compute the delay of any path in the FPGA and use them to
understand the amount and type of variation present.

We applied this technique to the LABs in both the Altera Cyclone III and Cyclone IV
FPGAs. We also measure the intra-LUT delays and demonstrate that our measure-
ments are within the expected margin of error. The results indicate that, on average,
we see o/u = 4% variation in the 65nm process used for the Cyclone III. Moreover,
there is clear indication that random variation forms a significant part of the total
variation. We expect that as we measure smaller technology nodes, the total variation

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 5, Publication date: December 2014.

5:22 B. Gojman et al.

and the contribution from random variation will increase. By using Timing Extraction,
we will be able to characterize and reduce the adverse effects from this increase.

ACKNOWLEDGMENTS

This research was funded in part by National Science Foundation grant CCF-0904577. Any opinions, findings,
conclusions, or recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation. The authors gratefully acknowledge donations of
software and hardware from Altera Corporation that facilitated this work, as well as valuable guidance from
Mike Hutton and useful pointers from Justin Wong and Joshua Levine.

REFERENCES

Altera. 2003. DEO-Nano Development and Education Board. http://www.altera.com/education/univ/materials/
boards/de0-nano/unv-de0-nano-board.html.

Altera. 2005a. QUIP. http://www.altera.com/education/univ/research/quip/unv-quip.html. (2005).

Altera. 2005b. LCELL WYSIWYG Description for Cyclone II, Altera Corporation.

Altera. 2009. LCELL WYSIWYG Description for Cyclone III, Altera Corporation.

Arrow. 2009. BeMicro Embedded System Lab Instructions. http://www.arrownac.com/offers/altera-
corporation/bemicro/BeMicro_Instructions_Embedded_System_Lab.pdf.

Chun Tak Chow, Lai Suen Mandy Tsui, Philip Heng Wai Leong, Wayne Luk, and Steven J. E. Wilton.
2005. Dynamic voltage scaling for commercial FPGAs. In Proceedings of the International Conference on
Field-Programmable Technology (December 2005), 173-180.

W. Bruce Culbertson, Rick Amerson, Richard Carter, Phil Kuekes, and Greg Snider. 1997. Defect tolerance
on the TERAMAC custom computer. In Proceedings of the IEEE Symposium on FPGAs for Custom
Computing Machines. 116—123. DOI : http://dx.doi.org/10.1109/FPGA.1997.624611

Martin Eisele, Jorg Berthold, Doris Schmitt-Landsiedel, and Reinhard Mahnkopf. 1997. The impact of intra-
die device parameter variations on path delays and on the design for yield of low voltage digital circuits.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 5, 4 (Dec. 1997), 360-368.

Benjamin Gojman, Nikil Mehta, Raphael Rubin, and André DeHon. 2011. Component-specific mapping for
low-power operation in the presence of variation and aging. In Low-Power Variation-Tolerant Design in
Nanometer Silicon. Springer, Chapter 12, 381-432.

Benjamin Gojman, Sirisha Nalmela, Nikil Mehta, Nicholas Howarth, and André DeHon. 2013. GROK-LAB:
Generating real on-chip knowledge for intra-cluster delays using timing extraction. In Proceedings of
the International Symposium on Field-Programmable Gate Arrays. 81-90.

Scott Hanson, Bo Zhai, Kerry Bernstein, David Blaauw, Andres Bryant, Leland Chang, Koushik K. Das,
Wilfried Haensch, Edward J. Nowak, and Dinnis M. Sylvester. 2006. Ultralow-voltage, minimum-energy
CMOS. IBM Journal of Research and Development 50, 45 (July/Sept. 2006), 469-490.

David Lewis, Elias Ahmed, David Cashman, Tim Vanderhoek, Chris Lane, Andy Lee, and Philip Pan. 2009.
Architectural enhancements in Stratix-III and Stratix-IV. In Proceedings of the International Symposium
on Field-Programmable Gate Arrays. ACM, 33—42.

Xiaochun Li, Jialing Tong, and Junfa Mao. 2010. Temperature-dependent device behavior in advanced CMOS
technologies. In ISSSE, Vol. 2. 1-4. DOI : http://dx.doi.org/10.1109/ISSSE.2010.5606938

Mehrdad Majzoobi, Eva Dyer, Ahmed Elnably, and Farinaz Koushanfar. 2010. Rapid FPGA delay charac-
terization using clock synthesis and sparse sampling. In Proceedings of International Test Conference.
DOI:http://dx.doi.org/10.1109/TEST.2010.5699248

Larry McMurchie and Carl Ebeling. 1995. PathFinder: A negotiation-based performance-driven router for
FPGAs. In Proceedings of the International Symposium on Field-Programmable Gate Arrays. 111-1117.

Nikil Mehta, Raphael Rubin, and André DeHon. 2012. Limit study of energy & delay benefits of component-
specific routing. In Proceedings of the International Symposium on Field-Programmable Gate Arrays.
97-106.

Jan M. Rabaey, Anantha P. Chandrakasan, and Borivoje Nikolic. 1999. Digital Integrated Circuits (2nd ed.).
Prentice Hall.

Pete Sedcole, Justin S. Wong, and Peter Y. K. Cheung. 2008. Modelling and compensating for clock skew
variability in FPGAs. In Proceedings of the International Conference on Field-Programmable Technology.
217-224. DOI : http://dx.doi.org/10.1109/FPT.2008.4762386

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 5, Publication date: December 2014.

http://dx.doi.org/10.1109/FPGA.1997.624611
http://dx.doi.org/10.1109/ISSSE.2010.5606938
http://dx.doi.org/10.1109/TEST.2010.5699248
http://dx.doi.org/10.1109/FPT.2008.4762386

GROK-LAB 5:23

Jack R. Smith and Xia Tian. 2009. High-resolution delay testing of interconnect paths in Field-Programmable
Gate Arrays. IEEE Transactions on Instrumentation and Measurement 58, 1 (2009), 187-195.
DOI:http://dx.doi.org/10.1109/TIM.2008.927212

Ashish Srivastava, Dennis Sylvester, and David Blaauw. 2005. Statistical Analysis and Optimization for
VLSI: Timing and Power. Springer.

Edward A. Stott, Justin S. J. Wong, Pete Pete Sedcole, and Peter Y. K. Cheung. 2010. Degradation in FPGAs:
Measurement and modelling. In Proceedings of the International Symposium on Field-Programmable
Gate Arrays. 229-238.

Terasic. 2011. ALTERA Cyclone IV Development & Education Board (DE0-Nano) http://wiki.ntb.ch/
infoportal/_media/fpga/boards/de0_nano/de0-nano-schematic.pdf (2011).

Tim Tuan, Austin Lesea, Chris Kingsley, and Steven Trimberger. 2011. Analysis of within-die process varia-
tion in 65nm FPGAs. In Proceedings of the International Symposium on Quality Electronic Design. 1-5.
DOI :http://dx.doi.org/10.1109/ISQED.2011.5770808

Justin S. Wong, Pete Sedcole, and Peter Y. K. Cheung. 2009. Self-measurement of combinatorial circuit
delays in FPGAs. Transactions on Reconfigurable Technology and Systems 2, 2 (June 2009), 1-22.
http://doi.acm.org/10.1145/1534916.1534920

Yun Ye, Samatha Gummalla, Chi-Chao Wang, Chaitali Chakrabarti, and Yu Cao. 2010. Random variability
modeling and its impact on scaled CMOS circuits. Journal of Computational Electronics 9, 3—4 (Dec.
2010), 108-113. DOI : http://dx.doi.org/10.1007/s10825-010-0336-5

Haile Yu, Qiang Xu, and Philip H. W. Leong. 2010. Fine-grained characterization of process variation in
FPGAs. In Proceedings of the International Conference on Field-Programmable Technology. 138-145.
DOI:http://dx.doi.org/10.1109/FPT.2010.5681770

Received May 2013; revised October 2013; accepted January 2014

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 5, Publication date: December 2014.

http://dx.doi.org/10.1109/TIM.2008.927212
http://dx.doi.org/10.1109/ISQED.2011.5770808
http://doi.acm.org/10.1145/1534916.1534920
http://dx.doi.org/10.1007/s10825-010-0336-5
http://dx.doi.org/10.1109/FPT.2010.5681770

