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Abstract—Partial Reconfiguration (PR) is a key technique in
the design of modern FPGAs. However, current PR tools heavily
rely on the developers to manually conduct PR module definition,
floorplanning, and flow control at a low level. The existing
PR tools do not consider High-Level-Synthesis languages either,
which is of great interest to software developers. We propose
HiPR, an open-source framework, to bridge the gap between
HLS and PR. HiPR allows the developer to define partially
reconfigurable C/C++ functions instead of Verilog modules, which
benefits the FPGA incremental compilation and automates the
flow from C/C++ to bitstreams. By mapping Rosetta HLS bench-
marks, the incremental compilation can be accelerated by 3-10×
compared with Xilinx Vitis normal flow without performance
loss.

Index Terms—FPGA, Incremental Compilation, Streams,
Dataflow, Latency Insensitive, Partial Reconfiguration

I. INTRODUCTION

Over the past decades, Field-Programmable Gate Arrays
(FPGAs) have been widely used to accelerate diverse applica-
tions on machine learning [1], [2], data analysis [2], [3], image
processing [4], [5], and others. The hardware programmable
features allow the developers to customize the application
instances with more flexibility. However, the coding effort
and long compilation time hinder the wide deployment of
FPGAs. Vendors have been developing versatile tools, such as
Vitis [6], SDSoC [7], and OpenCL [8], to decrease the coding
difficulties by supporting high-level languages (C/C++). While
these solutions can improve coding productivity, the source
code will finally go through placement-and-routing, which is
the most time-consuming part. In fact, the incremental compile
strategy is poorly supported for this most time-consuming
place-and-route step. Fig. 1 profiles the compilation time
breakdown to implement Rosetta Benchmarks [9] on a Data
Center Card (Alveo U50) [10]. Synthesis usually takes more
time for the initial compile (green blocks) as some peripheral
modules are compiled once and can be re-used in later
incremental compile. However, by changing only one source
file, we only see 21–36% reduction in the incremental compile
times; it takes almost the same time for placement, routing and
bitstream generation. In contrast, software applications can be
compiled in a different way, where only the modified source
files need to be re-compiled. This can save significant time
during incremental development where it is common to change
only a few functions at a time. We raise the key question
here: Can we compile the HLS source code incrementally, like
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Fig. 1. Initial-Compile vs. Incremental-Compile with Vitis

software, such that we only need to perform placement and
routing on the portions of the design that changes?

Several novel proposals [11]–[15] for FPGA parallel com-
pilation flow have been brought forward in recent years. Guo
et al. [13] proposed to partition the HLS-code and perform
split compile by RapidWright [16], which can accelerate
the compilation by 5–7× while increasing the frequency by
1.3×. However, a global stitching step is still needed which
restricts the maximum compilation speedup. Xiao et al. [11]
proposed a framework that uses Partial Reconfiguration (PR)
technique to compile separate C-functions in parallel, so
that the incremental-compilation time can be decreased, as
only the modified functions need to be recompiled. However,
the incremental compiles are based on a pre-compiled fixed
overlay, and the applications cannot be mapped until C/C++
functions have been manually decomposed to match the fixed
PR block sizes. We propose to customize PR block sizes
by defining the partial reconfigurable function in high-level
language (C/C++) and automating the complete design flow to
generate and exploit PR regions with no manual intervention.

In this paper, we propose a framework called HiPR (High-
level Partial Reconfiguration), that is fully compatible with
the newest Xilinx Vitis tool flow. Taking as the input the
applications based on the Kahn Processing Networks (KPN)
model [17], where operators are connected through stream
links, HiPR allows the users to define the partial reconfigurable
function (operators in KPN) at C-level by using a pragma to
identify a function as under development and signal that it
should be given its own PR region for fast recompilation.
When compiling the application for the first time, HiPR
compiles each operator function in parallel from C to a
post-RTL-synthesis netlist. Using resource requirements from
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RTL synthesis, HiPR automatically generates a design-specific
overlay with a static region and custom target PR-regions
defined in Fig. 2(a). Next, when the user only modifies the
target function(s), HiPR only re-compiles the modified func-
tion(s). If the user needs to change the interconnection between
different operators or add more PR-target functions, HiPR will
automatically redefine the floorplan for the static and PR-
regions. Based on the context above, we may summarize our
contributions as follows:
• We bridge the gap between HLS and Partial Reconfig-

uration technique by adding a C-level PR pragma that
signifies when a function should be allocated its own
PR region. Our open-source framework HiPR1 automates
the flow from C/C++ to bitstreams, enabling the software
developers to use PR techniques without low-level exper-
tise.

• We demonstrate that automatically floorplanned, partial-
reconfiguration decomposed designs can support incre-
mental compilation to reduce compile times by evaluating
HiPR on the full set of Rosetta benchmarks on the Alveo
U50 card to reduce compilation time by 3–10×.

The remaining paper is structured as follows: the recent
FPGA compilation techniques are discussed in Sec. II. The
proposed model and HiPR toolflow are presented in Sec. III,
followed by the light-weight floorplanner in Sec. IV. Sec. V
discusses the experiment results and Sec. VI concludes the
paper.

II. BACKGROUND

A. FPGA Compilation and PR Technique

Different from the incremental compilation strategy in soft-
ware, the FPGA compilation can take hours to days, as the
EDA tools need to place and route fine-grained (bit-wise)
netlists. This cross-module optimization can generate the best
area-performance solutions, but the heuristic algorithms that
are usually adopted to solve these NP hard problems [18]–[20]
result in long compile time. Moreover, even tiny modifications
can trigger complete recompilation, which lengthens the edit-
compile-debug loop and reduces the development efficiency at
the initial tuning and verification stage.

Partial Reconfiguration (PR) techniques are widely-
supported by modern FPGAs [21], where only a portion of the
FPGA chip is reconfigured while allowing other modules to
run. Xilinx recently released the Dynamic Function eXchange
technique (DFX) [22] technique, with which the user can re-
define PR regions into sub-PR regions without recompiling the
static logic. Additionally, the abstract shell [22] by Xilinx can
isolate different PR regions better by only including the related
wires, which provides short compilation-times potentials, as
CAD tools do not need to load the whole chip database.
However, Xilinx leaves all these detailed PR definitions to the
designers, which makes DFX inaccessible for the vast majority
of HLS users.

1https://github.com/icgrp/hipr

B. Compilation Acceleration

Various approaches in literature propose to divide the FP-
GAs into separate physical blocks and conduct independent
logic mapping [23]–[33]. However, these approaches do not
support high-level compilation from C or address the compile
time reduction. Grigore et al. [34] proposed a toolflow to
automate the generation of partially reconfigurable modules
from MaxJ language to bitstreams. However, the toolflow
heavily relies on GoAhead [35] and Xilinx ISE, which are
not compatible with modern FPGA vendor tools, and the
compilation time is not considered. RapidStream [13] can
accelerate the compile time by leveraging RapidWight [16]
to perform parallel compilation from HLS code to bitstreams.
Unfortunately, global routing is still needed to stitch the
separate blocks together. Xiao et al. [11], [12], [36] propose
to use PR technique to accelerate the compile time. Separate
PR regions connected by pre-compile Network-on-a-Chip can
accelerate the compile time.

The approach we propose differs from the methods above:
HiPR can automatically generate the PR overlay according to
application requirements while [11], [12], [36] rely on fixed,
pre-compiled overlays; the compilation isolation enables paral-
lel compilation on the cloud, while the global stitching for final
bitstream generation cannot be separated in RapidStream [13];
our flow is fully compatible with modern FPGA vendor tools
unlike [34].

C. Floorplan for Partial Reconfiguration

The Floorplan is the key to filling the gap between RTL
synthesis (generated by HLS) and placement-and-route im-
plementation, and there is a significant body of literature
on PR floorplanning [37]–[41]. Taking into account both
the heterogeneous resource distributions and PR constraints
for modern FPGAs, many floorplanners use heuristic meth-
ods [42]–[44]. Bolchini et al. [42] adopt Simulated Annealing
(SA) algorithm to explore a reduced search space represented
by sequence pair [45]. A greedy floorplan method (Columnar
Kernel Tessellation) is proposed in [44] to reduce the resource
wastage. A Genetic Algorithm (GA) is adopted in [46] to ex-
plore wider feasible solutions. Analytic methods, such Mixed-
Integer Linear Programming (MILP) and Nonlinear Integer
Programming (NLP) have recently been brought forward to
generate global optimal solutions [46]–[49]. The MILP-based
floorplanner [46], [47] can find the global optimum, and the
users can also change the objective functions with different
weights to total wire length, aspect ratio, and resource wastage.
FLORA [48] is another MILP-based floorplan tool, which
takes into account the more realistic PR constraints and adopts
a fine-grained model for modern FPGAs.

While the analytic (MILP) method can outperform heuris-
tic method with the ability to find global optimal solution,
it suffers from long execution time and poor scaling with
problem size (detailed in Sec.V-A). Hence, HiPR adopts the
SA-based floorplanning algorithm to accelerate the compile
time, extending the SA by considering modern hierarchical
DFX constraints (detailed in Sec.IV-A).
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#pragma HLS STREAM variable=a2b
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  for(int r=0; r<MAX_NUM; r++) {
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  ap_fixed<48, 27> buf[2];

  ap_fixed <32, 13> tmp_in, tmp_out;

    … /* computation */

    tmp_out = (ap_fixed<32, 13>) (buf[0] + buf[1]);

    Output_1.write(tmp_out(31, 0));

}}

void b(hls::stream< ap_uint<32> > & Input_1,

             hls::stream< ap_uint<32> > & Output_1) {

#pragma HLS PR clb=4 bram=2.4 dsp=8
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Fig. 2. Dataflow Graph and Code Prototype
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Fig. 3. Toolflow

III. PROBLEM MODEL AND PROPOSED FRAMEWORK

A. Compute Model

The dataflow computational graph model [12], [17], [24],
[50] has proven effective in isolating kernels for separate
compilation. For Kahn Processing Networks (KPN) [17], each
kernel, called an operator, is described by a C function in
HiPR: the operator receives inputs and sends outputs through
latency-insensitive streams [51]; reads to empty streams stall
until data become available.

The dataflow graph in our model is illustrated in Fig. 2(b):
1) the design consists of a cluster of operators; 2) different
operators are connected by stream links. Fig. 2(c) presents
how to describe the dataflow graph in a C program. The
operators should obey standard HLS prohibitions such as no
allocation or recursion. The interfaces are defined as streaming
type (Fig. 2(d) Line 1-4). By calling the read() function
(Fig. 2(d) Line 8, 10), the operator waits for the valid input

data. After all the computations are completed, the operator
sends the data out by calling the write() function (Fig. 2(d)
Line 14).

B. HiPR Framework

We first briefly summarize the Xilinx Vitis flow in Fig. 3(a).
Taking in all the C/C++ files as the inputs, vitis_hls
is called to generate app.xo file. Compiling app.xo to
FPGA-loadable file app.xclbin by executing the linkage
command(v++ -link) is the most time-consuming step. As
this linkage step is not open for normal commercial users, it is
hard to perform incremental compile with the PR technique.

For HiPR, it takes the same input source as Xilinx Vitis:
each operator is described by a C++ function; the function
can be defined as partial reconfigurable (Fig. 2(a) Line 3). In
this example, we define operators a, b, c and d as Partially Re-
configurable functions (PR-functions) and operator e as a Non-
Partially Reconfigurable function (NPR-function). We classify
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Fig. 4. Initial-compile vs. Incremental-compile

the development compilation into 2 types: initial-compile and
incremental-compile. For the initial-compile, shown in the
blue dashed block in Fig. 3(b), the HiParser parses the
top.cpp file, extracts the interconnection between different
operators. The HiParser also needs to parse the header files
of all the operators, shown in Fig. 2(a), to detect whether a
function/operator should be partially reconfigurable. All the
above parsed information is included in spec.xml file. At
the same time, HiPR calls vitis_hls and vivado to
perform compilation for the separate operators in parallel.
As the overlay generation is needed for initial-compile, the
post-synthesis information is delivered to HiPlanner. A
simulated annealing floorplanning (Sec. IV) is conducted to
generate the PR.xdc, which will be fed into vivado to
generate a partial reconfigurable overlay. When the initial-
compile is completed, an overlay.xclbin is generated,
which corresponds to post-routed device layout in Fig. 4(a).
For traditional PR flow without abstract shell [22], a giant
overlay (Fig. 4(b)), which contains the definition for all PR
regions, is generated. It will be entirely loaded in whenever
any PR region needs re-implementation, which can last 10-20
minutes for Alveo data-center FPGAs. With the abstract shell
technique, independent DCP files are generated for PR func-
tions to perform in-context implementation. In this example,
4 abstract shell DCP files are generated for the 4 PR functions
(a, b, c, d). Fig. 4(c) shows the abstract shell for PR-function
a. Only the partition pins and wires (yellow blocks) related to
that PR region are reserved. The post-synthesis netlists for the
PR-functions can be placed and routed within the PR regions
defined by their abstract shells in parallel. As we use the same
Vitis development platform (hw_bb_locked.dcp) released
by Xilinx [52], the final xclbin files can be executed by
Xilinx Runtime by loading the overlay.xclbin first
and then xclbin files for 4 PR-functions.

The header file is used to signify whether the function/op-
erator is partial reconfigurable. The user can also specify the
resource ratio parameters. For example, in Fig. 2(a) Line 3, we
can see operator b is a partial reconfigurable function, and the

ratio means the final reconfigurable region contains 4 times
the CLBs, 2.4 times the BRAM and 8 times the DSPs than
the initial resource requirement. This is important to reserve
enough space in the floorplanned PR block to accommodate
design growth, as the developer can change functionality, add
code to fix bugs, and increase parallelism. An application-
specific overlay will be finally generated.

For incremental compilation, the developer can modify the
PR-functions and perform quick compile as shown in the
orange dashed block in Fig. 3(b). For instance, when function a
is modified, only this function is recompiled by vitis_hls
and vivado. The post-synthesis design netlist (a.dcp) is
placed and routed within the PR region individually without
touching other parts of the chips shown in Fig. 4(d). Based
on these dependencies, we use Google Cloud Platform with
the parallel task manager Slurm [53] installed to schedule
the compilation tasks. HiPR can generate proper scripts with
correct dependencies, and submit the compilation jobs to
Slurm. HiPR also supports local machine compilation by using
a makefile [54]. The parallelism depends on the local cores
and memory size. If the existing PR regions cannot fit the
increasing operator size, the users can change the pragma
in the header file and HiPR will re-generate the overlay
by re-launching initial-compile. Changing the streaming links
between the operators also lead to re-launching initial-compile
as it affects the interconnect wires in static regions.

In summary, HiPR launches the initial-compile to gen-
erate an overlay with several partial reconfigurable regions
according to the pragmas in the C++ header files. Thereafter,
the users can tune the PR-functions by launching quick
incremental-compile within individual PR regions.

IV. HIPLANNER

Our floorplanner, HiPlanner, is the key step to bridge
HLS and physical PR implementations. Various approaches
have been proposed for floorplanning. We adopt the traditional
Simulated Annealing (SA) as our main floorplanner engine,
since it is faster than analytical methods [46], [48]. We also
implemented the MILP-based floorplanner according to [48]
for detailed comparisons in Sec. V-A.

A. Problem Formulation

Modern data-center FPGA devices can be described by
Cartesian integer coordinates as shown in Fig. 5. In addition to
the heterogeneous resource (i.e., CLB, DSPs, BRAMs, ...) with
a non-uniform distribution, the vendors also pre-implement
some firmware circuits and define a Level-1 DFX region for
the users. The basic element of the floorplan is one column
wide and one clock region hight (hereafter referred to as a
tile). Vertically-stacked PR regions within one clock region
are not supported.

The HiPlanner takes in the resource requirements from
RTL synthesis and a device description file and produces a
set of PR constraints that are fed to vivado along with the
logic netlists to generate an overlay. We model the FPGA
device as a 2-dimension matrix, which contains columns of
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resources (CLBs, Block RAMs, DSPs, and IOBs). We define
the variables for our model as below:

W := width of the device in units of tiles;
H := height of the device in units of tiles;
T := set of tile types considered (CLB, BRAM, DSP);
F := set of forbidden areas;

PR := set of PR functions;
L := set of all the links between 2 PR functions;
x := rightmost column coordinate for a tile;
y := lowest row coordinate for a tile;
w := width of a PR region in units of tiles;
h := height of a PR region in units of tiles;
a := an area represented by a 4-element vector <

x, y, w, h >, where x, and y are the lower-left
coordinates for the region and w and h are the width
and height of the region (e.g., < 5, 4, 4, 2 > for a
Level-2 DFX region in Fig. 5);

f := an area that could not be used by PR regions (f ∈
F ), such as < 10, 2, 3, 1 > and < 10, 5, 3, 1 > in
Fig. 5);

rt := number of type t resources (t ∈ T );
lpri,prj := number of interconnect wires between PR regions

pri and prj (pr ∈ PR, l ∈ L);
ldma := number of wires connected to DMA (Direct Mem-

ory Access).

Based on the columnar-style of modern FPGAs, a W -
element vector<CLB, CLB, BRAM, BRAM, ... CLB, CLB>
is used to represent the resource distribution over one row. The
goal of the HiPlanner is to find a set of non-overlapping
areas aj :< xj , yj , wj , hj > | j ∈ {0, .., |PR| − 1} to map all
the PR functions pri ∈ PR| i ∈ {0, .., |PR| − 1}.

With the specified variables as above, we compute the
centroid coordinates of an area ai:

xcai = xai + wai/2 (1)

ycai
= yai

+ hai
/2 (2)

We use Manhattan Distance to represent the wire length
between 2 areas:

Mdistai,aj
= |xcai

− xcaj
|+ |ycai

− ycaj
| (3)

B. Objective Function

The main factors we consider in optimization objective
functions are total wires length, wastage areas, and PR func-
tion overlaps as below.

min : α ∗WLnorm + β ∗RWnorm + γ (4)

where α and β are weights for total wire length and resource
wastage respectively; the sum of α and β is 0.5; γ is the
overlapping areas in units of tiles.

The absolute total wire length, WLabs, is computed as:

WLabs =
∑

pri,prj∈PR|i<j

Mdistai(pri),aj(prj) · lpri,prj

+
∑

pri∈PR

Mdistdma,ai(pri) · ldma

(5)

where pri and prj are 2 different PR functions; ai(pri)
means area ai is assigned to PR function pri. The first term
represents the total number of wires for all the links between
PR regions, and the second term represents the number of
wires between PR regions and the static DMA regions.

The normalized total wire length is calculated as:

WLnorm =
WLabs

|L| ·max{lpri,prj |lpri,prj ∈ L} · (W +H)
(6)

where |L| represents the total link number;
max{lpri,prj |lpri,prj ∈ L} represents the maximum width
of all the links; W +H represents the maximum Manhattan
distance between two PR regions or between one PR region
and the DMA location. The normalized total wire length is
less than 1.

The normalized resource wastage RWnorm is computed as:

RWnorm =
1

|PR|
∑

i∈{0,..|RP |−1}

∑
t∈T

rai,t − rpri,t
rchip,t

(7)

where rai,t represents resource type t in an area ai that
is assigned to PR function pri; rpri,t represents the number
of resource type t for PR-function pri. The numerator means
the extra resource the PR region provides beyond what the
PR functions really need. We divide it by the total resources
of the chip rchip,t and |PR| to guarantee that the normalized
resource wastage is also less than 1.

As the sum of α and β is 0.5. The floorplan is only legal
when the cost function is less than 1, as any overlapping areas
will increase the γ to more than 1.

C. Greedy PR Shape Generation and Simulated Annealing

Since the FPGA fabric is non-homogeneous, when we move
a region from one x location to another, the existing width, w,
and h height may not provide the needed resources. Conse-
quently, we use a greedy method to reshape the region to cover
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TABLE I
FLOORPLAN RUNTIME (IN SECONDS)

Name PR # LUT BRAM18 DSP Runtime
3d-rendering 6 5718 64 15 0.050 s

Digit Rec 20 40758 320 0 0.006 s
Spam Filter 15 11382 12 256 0.004 s

Optical Flow 16 18489 84 330 0.086 s
Face Detect 20 66654 169 100 0.050 s
Binary NN 22 36950 1,042 5 0.022 s

the required resources. For each PR region a :< x, y, w, h >,
when the x and y are determined, we will greedily include
more columns in the right direction by increasing the w to
meet the resource requirements, assuming h = 1 initially.
When x + w reaches W or the w/h is more than 80, we
increase h by 1 and start over from the previous greedy step
again. If y + h reaches H , we set x and y all to 0 and start
the previous greedy step again. This can provide access to the
whole chip resources.

For the initial point, we randomly generate the x and y
coordinates for all the PR regions and perform the greedy
reshaping method to generate the PR regions. For the fol-
lowing simulated annealing step, we randomly select one PR
region and randomly generate the new x and y coordinates
and refine the PR regions by using the greedy reshaping
method above. In fact, the PR regions can be represented as
aj :< xj , yj , fw(xj , yj , pri), fh(xj , yj , pri) >, as wj and hj
are determined by the xj , yj and pri.

V. EXPERIMENTAL EVALUATIONS

We evaluate the compile time acceleration of our framework
by implementing the realistic Rosetta HLS Benchmarks [9]
on the Alveo U50 Data Center card [10] with a Virtex
UltraScale+ XCU50 FPGA and 8 GB HBM. Subtracting the
pre-implemented firmware from Xilinx, a large PR region is
available for the users (751,793 LUTs, 2,300 18Kb BRAMs
and 5,936 DSPs). HiPR uses Xilinx Vitis 2021.1 including as-
sociated Vivado and Vitis HLS and XRT as the backend. The
Google Cloud computing instance cluster includes a controller
node (30-cores, 3.1 GHz Intel Xeon Intel(R) Cascade Lake
processors and 128GB RAM) and 32 computing nodes (8-
cores, 2.8 GHz Intel Xeon Intel(R) Cascade Lake processors
and 32GB RAM for each).
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Fig. 7. Incremental-compile Times Breakdown (Digit Recognition)
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A. Floorplanner

First, we show that HiPlanner performs comparably to
state-of-the-art floorplanners. The proposed SA-based floor-
planner is implemented in C++ prototype and is compared
against our implementation of the MILP floorplanner [48] that
already showed better results than [46] and [43]. However,
since [48] is only based on Virtex-7 series and did not consider
the hierarchical DFX features, we enhanced it to support these
features mentioned in Sec. IV-A.

The floorplan times for real benchmarks are summarized in
Tab. I. Here we only list our Simulated Annealing execution
time as all the MILP method cannot converge to the optimal
solutions within 24 hours. We compare the cost function over
the execution time between our SA method and MILP in
Fig. 6. Our SA method can always generate a legal floorplan
within 1 second, but it takes more than 100 seconds for
the MILP to generate feasible solutions. However, the cost
function of MILP is better than SA even when it does not
reach an optimal solution.

B. Compilation Time and Performance

Incremental-Compile: The main contribution of HiPR is
to accelerate the incremental compilation as only the modified
functions need to be recompiled. Fig. 9 shows the compilation
distribution for different operators over the full benchmark
sets. The operators can be incrementally recompiled in 7-20
minutes. For all the benchmarks, the median values are near 11
minutes. This means that in most cases, users can benefit from
short incremental-compilation to tune their target functions
more efficiently. We can see the incremental-compilation can
be improved by a factor of 3–10. Fig. 7 shows the compilation
time breakdown for digit recognition benchmark. We can see
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TABLE II
ROSETTA BENCHMARKS INCREMENTAL-COMPILE TIMES (SECONDS)

Vitis Flow with 30 Threads HiPR with 8 Threads for each Operator
hls syn p&r bitgen total hls syn p&r bitgen total Speedup

3d-rendering 105 220 2353 600 3278 19 95 585 209 908 3.6
Digit Recognition 144 322 2681 780 3927 28 93 425 149 695 5.6

Spam Filter 69 240 1866 690 2885 17 87 441 147 692 4.1
Optical Flow 88 255 1905 688 2936 16 120 385 136 657 4.4

Face Detection 539 344 3349 722 4954 17 97 655 183 952 5.2
Binary NN 488 556 2399 711 4154 223 418 433 158 1232 3.4

TABLE III
ROSETTA BENCHMARKS 1ST-COMPILE TIMES (SECONDS)

Vitis Flow with 30 Threads HiPR with 8 Threads for each Operator
hls syn p&r bitgen total syn p&r max(bitgen, shell gen) max op † total Overhead §

3d-rendering 104 1190 2364 606 4264 674 4756 814 908 7152 67 %
Digit Recognition 144 1627 2673 729 5173 674 3955 801 695 6125 18 %

Spam Filter 69 1308 1867 698 3942 766 2243 840 692 4541 15 %
Optical Flow 84 1293 2094 668 4139 645 4761 817 657 6880 66 %

Face Detection 542 1738 3280 728 6288 679 6292 928 952 8851 40 %
Binary NN 485 2946 2430 723 6584 697 6751 952 1232 9632 46 %

† Maximum compile time for all the operators
§ The overhead is calculated by divide the total time different between HiPR and Vitis over the Vitis time.

TABLE IV
PERFORMANCE COMPARISON: VITIS VS. HIPR

Vitis Flow HiPR
Freq

(MHz)
Runtime

(ms)
Freq

(MHz)
Runtime

(ms)
3d-rendering 200 2.2 200 1.6

Digit
Recognition 250 9.2 250 6.3

Spam Filter 300 18.6 300 20.0
Optical Flow 200 13.6 200 7.5

Face Detection 200 21.0 200 22.0
Binary NN 150 5250 150 4700
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Fig. 9. Operators Mapping Time Distribution

the place-and-route time is accelerated most. Tab. II shows the
detailed compilation time. For HiPR, we choose the maximum
compile time from all functions for each benchmark as the
compilation time. Even with the worst case, HiPR can still
outperform Vitis by 3.4–5.6×.

First-Compile: When a benchmark is compiled for the first
time, it takes more time for Vitis to compile peripheral mod-

ules, such as AXI bus, debugging logic, DMA/HBM driver and
others. For HiPR, it needs to implement an overlay with PR
modules defined. In Fig. 8, we can see HiPR takes more time
to generate the overlay for digit recognition benchmark, as
the operators have to be placed and routed along with overlay
generation. In Tab. III column 9, we choose the maximum
value between overlay bitstream generation and abstract shell
generation, as they can be conducted simultaneously. It takes
at most 67% overhead in compile time to set the overlay up.
However, this process is usually performed once, and users
can benefit from incremental-compilations afterward.

Performance Comparison: Tab. IV summarizes the per-
formance between Vitis and HiPR. As we rewrite the original
code in the latency-insensitive style (Sec. III-A), the through-
put is slightly different from Vitis implementation perfor-
mance. However, HiPR achieves the same frequency and better
performance than the original Vitis Flow. The combination of
smaller, localized blocks with pipelined interconnect, enabled
by the latency-insensitive discipline, makes it easier to achieve
higher clock frequencies [12], [13], which compensates for
the frequency loss from the PR technique. HiPR can compile
with the same frequency from normal Vitis Flow for each
benchmark.

VI. CONCLUSIONS

In this paper, we propose HiPR, a framework that allows
the users to define partial reconfigurable C-functions instead
of Verilog-modules. This can greatly benefit the incremental
FPGA development, as only the modified functions are re-
compiled (place&route) without waiting the longer time for
full recompilation. The experiments from Rosetta Benchmark
implementation show that HiPR can decrease the incremental-
compilation time by a factor of 3–10× without performance
loss or need to target fixed PR region sizes.
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