
Location, Location, Location—The Role of Spatial Locality
in Asymptotic Energy Minimization

André DeHon
Department of Electrical and Systems Engineering

University of Pennsylvania
200 S. 33rd St., Philadelphia, PA 19104

andre@acm.org

ABSTRACT
Locality exploitation is essential to asymptotic energy min-
imization for gate array netlist evaluation. Naive imple-
mentations that ignore locality, including flat crossbars and
simple processors based on monolithic memories, can require
O(N2) energy for an N node graph. Specifically, it is im-
portant to exploit locality (1) to reduce the size of the de-
scription of the graph, (2) to reduce data movement, and (3)
to reduce instruction movement. FPGAs exploit all three.
FPGAs with a Rent Exponent p < 0.5 running designs with
p < 0.5 achieve asymptotically optimal Θ(N) energy. FPGA
designs with p > 0.5 and implementations with metal layers
that grow as O(Np−0.5) require only O(Np+0.5) energy; this
bound can be achieved with O(1) metal layers with a novel
multicontext design that has heterogeneous context depth.
In contrast, a p > 0.5 FPGA design on an implementation
technology with O(1) metal layers requires O(N2p) energy.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Type and Design Styles—
VLSI ; C.2.1 [Computer Communication Newtorks]:
Network Architecture and Design; C.1.3 [Processor Ar-
chitectures]: Other Architecture Styles—Adapative Archi-
textures

General Terms
Theory, Design

Keywords
VLSI Theory, Energy, Energy Complexity, Low Power, FPGA,
Rent’s Rule, Locality, Multicontext

1. INTRODUCTION
Energy is now the dominant concern for many applications

and systems. This shows up directly as hours of operation
for battery powered devices and indirectly as power density

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’13, February 11–13, 2013, Monterey, California, USA.
Copyright 2013 ACM 978-1-4503-1887-7/13/02 ...$15.00.

limits for air-cooled laptops and servers. Consequently, con-
siderable research over the last decade has focused on energy
reduction at all levels in FPGA design (CAD, microarchi-
tecture, circuit, technology). Microarchitecture studies (e.g.
[23, 21]) ask detailed questions about parameters in a ba-
sic FPGA design such as how long interconnect segments
should be, how switchboxes should be populated, how many
input a LUT should have, or how many LUTs should be in a
cluster. Here we address a broader architecture question: is
the basic architectural organization of configured gates and
wires energy efficient? or would it be more energy efficient
to sequentially evaluate gates as instructions on a proces-
sor? is there an inherent energy advantage or disadvantage
to multicontext FPGAs?

Since this is a broad question, we stick with an asymptotic
energy analysis, ignoring constants. The asymptotic picture
is necessarily crude, but it has the advantage of being in-
dependent of technologies and a host of implementation as-
sumptions that can obfuscate or, if chosen poorly, invalidate
a comparison. The comparison we make is in the spirit of
VLSI complexity theory, but focuses on architecturally de-
termined energy complexity rather than application-driven
Area-Time complexity (See Secs. 2.3 and 10 for details).

We start by defining a gate-array evaluation model that
defines the computation required to evaluate all the gates
in a netlist and a VLSI model for the area and energy in
the physical substrate (Sec. 3). We consider strawman im-
plementations on spatial crossbars and sequential processors
with monolithic memories (Sec. 4) as a baseline.

From this starting point, we derive the need to exploit
locality in the problem and use Rent’s Rule [19] to charac-
terize the locality in a design. We successively see that there
is an asymptotic energy advantage to exploiting locality in:
• descriptions—referring to gates with fewer bits when

they are “closer” to a consumer rather than using a
fixed number of bits to refer to all gates–Sec. 5
• data movement—laying out data elements to minimize

the distance we need to bring the inputs to a gate
together for evaluation; this leads us to give each gate
a location and move data to it rather than storing all
gate values in a common memory–Sec. 6
• instruction movement—placing instructions adjacent

to the resources they control, particularly intercon-
nect, rather than centrally or with the gates–Sec. 7

Combining these localities gives us the typical FPGA orga-
nization. Despite the fact that FPGA organization may be
physically larger than a processor with a dense memory or

http://www.seas.upenn.edu/~andre
mailto:andre@acm.org

an ASIC, it is asymptotically optimal (Θ(N) energy to eval-
uate N gates) when locality is high (Rent’s Rule p < 0.5).

Lack of locality is a common challenge for spatial designs
and is a key driver in the AT 2 VLSI complexity bounds.
For these less local designs (p > 0.5), when limited to a
constant number of metal layers, traditional FPGA designs
requireO(N2p) energy. We introduce architectures that con-
structively achieve energy as low as O(Np+0.5), including a
sequential design and a novel multicontext design. The mul-
ticontext design differs from prior proposal for multicontext
FPGAs (e.g., [6, 27]) in that it uses a different context depth
at different levels in its hierarchical interconnect—a depth
driven both by the Rent’s Rule demand for interconnect
and the availability of wire tracks when limited to a con-
stant number of metal layers (Sec. 7.3). Furthermore, if our
technology allows us to add wire layers fast enough, we show
that FPGA-like designs can achieve the O(Np+0.5) energy
bound as well (Sec. 8).

2. BACKGROUND

2.1 Energy Matters
We have now hit the point where power density limits

(e.g. 100W/cm2 for force-air cooling, 1–10W/cm2 for am-
bient cooling), not transistor integration density, is the key
limitation for computations [12]. That is, we cannot afford
to turn on all the transistors that we can integrate onto an
integrated circuit [15], a phenomenon now termed “Dark Sil-
icon” [29, 10]. This power density limit has driven the end
of microprocessor clock scaling [12], and it may drive the
end of useful VLSI feature size scaling [11]. As energy re-
duction from scaling diminishes, architectural solutions that
reduce energy grow in importance. Even when power does
not limit what designers can do, energy consumption is a
primary concern for battery life and operating costs.

2.2 Energy Efficiency Hints
A wealth of papers at this conference and the Interna-

tional Symposium on Field-Programmable Custom Comput-
ing Machines regularly show FPGA designs that require sub-
stantially less energy than processor designs. In one of the
early, direct comparisons Budiu maps computational bench-
marks to spatial designs and shows order of magnitude lower
energy than sequential processor designs [4]. Stitt showed
that kernels could be moved from a processor to an attached
FPGA co-processor to reduce energy [25]. More recently,
Venkatesh shows that custom spatial implementation of ba-
sic blocks saves considerable energy compared to sequential
implementation on general-purpose processors [29]. Dally
shows that the dominant energy in low power embedded
processor is in instruction and data memories and this can
be reduced by using an array of processors with shallower
memories [5]. Trimberger’s original paper on multicontext
FPGAs [27] noted the high power requirement of instruction
memory reads as a potential drawback.

All of this work suggests that spatial designs save energy
compared to sequential designs since they avoid the need
to read data and instructions from memories. However, we
also know that computations on FPGAs can be less com-
pact than processors and, consequently, must pay energy to
send bits over longer physical distances than processor. The
examples above suggest that the savings in memory energy
is more substantial than the cost in interconnect energy. It

I0

I1

I2

G0

G1 G2
O1

G2

registered

E={(I0,G0),(I1,G0),(I1,G1),(I2,G1),
 (G0,G2),(G1,G2),(G2,G0,reg),(G2,O1)}

Figure 2: Example Gate Array Netlist

is therefore desirable to understand if there are fundamen-
tal effects that drive the previous observations. While there
are many effects at play that are beyond the scope of this
paper (See Sec. 11), our results begin to show that there
are asymptotic effects that favor spatial implementations as
well as showing conditions under which hybrid designs may
be better than either spatial or sequential designs.

2.3 VLSI Theory
There is a well-developed theory of VLSI complexity (e.g.,

[26, 24, 20]). Notably, by modeling the finite width of wires
and focusing on graph cut sizes in algorithms, it has been
possible to obtain non-trivial bounds on the area of a VLSI
design with a particular level of parallelism [2]. For de-
signs with high communication requirements, and hence cut
widths, such as sorting and FFT, this led to AT 2 bounds.
This says that to run these problems twice as fast, it will re-
quire 4 times the area. This area expansion comes not from
the need to place more processing elements, but from the
need to layout more wiring. Our results in this paper take
careful account of wiring and layout to identify constructive
organizations and achievable energy bounds.

The energy complexity of VLSI has received less attention
than area and time, and most of the VLSI complexity results
ignore the area and delay impacts of memory. We believe
this is the first work to establish energy complexity results
for memories. Section 10 characterizes work on VLSI energy
complexity and relates it to the result we develop here.

3. MODELS

3.1 Gate Array Evaluation Model
To model a typical FPGA circuit, we use a gate array

netlist model. Informally, this is a graph where every node
has bounded fanin k and evaluates once per evaluation cycles
(e.g. Fig. 2). k can be taken as the number of inputs to the
LUTs in the FPGA. We take k to be a small constant and
make no attempt to differentiate among different choices
for k. We characterize a graph by the number of nodes
N =| V |. Since k is bounded, the number of edges in the
graph | E |≤ kN = O(N).

Note that one model simplification here is that every edge
is assumed to switch once per evaluation. This is essentially
making a worst-case assumption about switching. Said an-
other way, we assume homogeneous activity on all edges in
the graph. That is, the asymptotic results are unchanged if
we say every edge switches 10% of the time. Consequently,
we will not specifically reason about variable activity on the
netlist graph. Prior work has addressed heterogeneous net
activity (See Sec. 10), and treatment of heterogeneous net
activity for this model is an important direction to extend
our results (Sec. 11).

Since we assume k is a constant, every node is of size O(1)
and will require O(1) energy per cycle simply to perform the

N PEs

N
 in

p
u

ts

O
(N

) h
e

ig
h

t

O(N) width

c
ro

s
s
p

o
in

t

gate eval

log (M)
2

M

M

M

M

Memory Cell Internal Switch

(a) Crossbar Implementation (b) Monolithic Memory (c) Fully Banked Memory
Architecture

Figure 1: Crossbar and Memory Organizations

gate evaluation. Since we assume every gate evaluates and
potentially switches its output on every cycle, we must, at
least, pay energy for the N gates for each evaluation of the
netlist. This means Ω(N) is a lower bound on the energy
that will be required to evaluate the netlist.

3.2 VLSI Area and Energy Model
We focus on the energy of operations. However, since the

energy for a physical wire will depend on the length of the
wire, it is also important that we carefully account for area
and lengths in the implementation. All gates used in the
implementations have O(1) inputs, and hence O(1) area and
width. Each wire has O(1) width, and we initially assume
O(1) wire layers, so that it takes O(w) width to layout w
wires leaving a region of the chip. Energy per fanin, gate
switch, or unit length of wire is O(1). Consequently, energy
of a physical net is proportional to its total wire length.

3.3 Asynchronous Evaluation
In a combinational circuit implementation, glitches might

make the activity on a node greater than 1.0 [18]. That is,
the inputs to a gate might change at different times caus-
ing the output to switch multiple times per circuit evalua-
tion. As a partial justification of the homogeneous switch-
ing model, we note that an asynchronous implementation
of the gate that performs a handshake with the inputs can
guarantee O(1) switching without changing the asymptotic
size of the implementation or number of switching events. If
CAD and tuning (e.g. [18]) can adequately control glitching,
the asynchronous assumption is not necessary to achieve the
bounds derived for the fully spatial designs (including tra-
ditional FPGAs) (Sec. 7.2 and 8). However, as we will see
starting in Sec. 4.2.3, the asynchronous handshaking is nec-
essary to achieving the tightest bounds derived in this paper
for the sequential and multicontext designs.

4. SIMPLE STARTING POINTS
We start by analyzing the simplest, most direct archi-

tectures for implementing the gate array evaluation model
(Sec. 3.1). We see that these are much more expensive than
the Ω(N) lower bound.

4.1 Full Crossbar
For a full crossbar implementation of the gate array eval-

uation model, we arrange the gates in a line of size N at
the outputs of the crossbar (See Fig. 1(a)). Since each gate
has at most k inputs, there are at most kN outputs from
the crossbar feeding into the gates. Except for the circuit

outputs, each gate output is fed back into the crossbar. As
a result, the crossbar has N inputs by kN outputs, for a
total area that is O(N2). Significantly, every output drives
a wire of length O(N) and every input is of length O(N). A
memory cell at each crossbar crosspoint can hold its configu-
ration without changing the asymptotic size of the crossbar.
The energy of evaluation for each gate is O(N) to drive its
output, plus O(1) for the gate evaluation, plus O(N) for its
k inputs to be driven for a total energy of O(N). Evaluat-
ing N gates means a total of O(N2) energy—a factor of N
larger than the lower bound of Ω(N).

4.2 Memory
The crossbar is known to be area expensive because we

dedicate a physical connection for every edge in the graph
and a physical gate for every vertex. We should be able to
store the state in the graph and the description of the edges
more compactly in memories. In particular, the vertex out-
puts require at most O(N) memory locations. If we give
each of the N vertices a log2(N) bit address, we can de-
scribe the connectivity in the graph with O(N log(N)) bits
of memory. In order to develop models for architectures
that exploit memories, in this section, we characterize the
asymptotic energy requirements of memories.

4.2.1 Monolithic
The simplest case is a monolithic memory bank where we

store M bits in one large array. We arrange the M bits into
a
√
M ×

√
M array and use log2(M) bits to specify the bit

in the array (Fig. 1(b)). This address is broken in half with
log2(M)/2 bits specifying the row address and log2(M)/2
bits specifying the column address. This organization al-
lows each memory bit to take up O(1) area in the middle
of the array. Each memory bit also contributes O(1) ca-
pacitance, and hence energy, to the row select and column
read lines. Reading out of the core of the memory takes
O(
√
M) energy to drive the single activated row select line

and O(
√
M) to drive each column read line. Since there are

O(
√
M) column read lines, this is a total of O(M) energy.

Selecting the row line demands driving O(log(M)) lines of

length O(
√
M) for O(log(M)

√
M) and O(log(M)

√
M) en-

ergy in gates, asymptotically less energy than the O(M)
energy in the core. Performing the final bit selection from
the O(

√
M) column results takes O(

√
M) energy for a mux

tree reduction and less than O(log(M)
√
M) to connect the

column address lines to the muxes; both of these are also
asymptotically less than the O(M) energy in the core. Con-

 gate
address

gate
eval

O(1)

Instruction
 Memory

 Data
Memory
(fully
 banked)

O(Nlog(N))
O(N)

O
(

 N

lo
g

(N
)

)

O
(N

)

Figure 3: Processor with Memory Organization

sequently, a memory read takes O(M) energy to obtain each
randomly accessed bit.

4.2.2 Sequential Access
Accessing a single bit is potentially wasteful since we pay

energy to bring
√
M bits out of the array core, but only use

one. If we can arrange to read the memory sequentially, we
can amortize the energy reading from the array core across
all the

√
M bits read. In particular, instead of using a mul-

tiplexer to select the column, we read the column bits into a
shift register. We then shift the bits serially out of the shift
register. For this case, we perform one read from the core
that still takes O(M) energy. For each of the

√
M bits read,

we shift the shift register for a cost of O(
√
M). After

√
M

shifts, we have spent
√
M ×O(

√
M) = O(M) energy on the

shifts and O(M) energy on the read from the core or a total

of O(M) energy. Each bit thus costs us O(
√
M) energy.

Sequential access is an important component of “spatial
locality” as the term is used for processor caches. Other-
wise, the processor cache use of “spatial locality” is, at best,
loosely related to the physical spatial locality developed in
the rest of this paper (Secs. 5–7).

4.2.3 Fully Banked
Random access into the monolithic memory (Sec. 4.2.1)

suffers because we must activate the entire memory. We
can reduce the energy by breaking the memory into sepa-
rate banks and only activating the bank that stores the data
being addressed. For example, simply breaking the memory
into two banks, means we activate a memory core of half
the size and hence half the energy. We do have to pay some
energy controlling bank selection, but that is on the order
of the address selection O(log(M)

√
M), which is small com-

pared to compared to the energy of the cores O(M). To get
an asymptotic benefit, we recursively subdivide the memory
banks, building a tree-based memory access.

Constructively, we layout the fully banked memory as an
H-tree (Fig. 1(c)). The leaves of the H-tree are the mem-
ory cells of size O(1). Each internal tree node in the H-tree
is of size O(1) and serves to route addresses down to the
leaves and route results out of the H-tree. The entire H-
tree is of size O(M), since the number of internal nodes is
also O(M) and the wiring only spreads the leaves and inter-
nal nodes by O(1). We cannot afford to clock the memory
access tree as that would take O(M) energy per cycle. If
we clocked operation at each level of the tree, that would
mean O(M log(M)) energy, which is greater than the mono-
lithic memory. Instead, we use asynchronous handshaking
at each tree node and are careful to only send address bits
down the necessary branch of the tree. Addresses are fed in
serially from the top. The first address bit is used by the
root node and sets the tree node to send down the left or
right branch as appropriate. The remaining address bits fol-
low through the root, each setting the internal node one level

down the tree. When the path reaches a leaf node, the value
from the leaf is sent back up the tree. As a result, we send
log(M) bits down through the top node, log(M)−1 through
the next, log(M) − 2 through the next, and eventually one
bit to the final internal node above the leaf. Each of these
log(M) active internal nodes then sees one bit coming back
out. This means O(log2(M)) energy spent by the switching
gates within the tree. However, we must also account for
the energy on the wires. The wires at the top of the tree are
of length

√
M . Roughly, the wires at the next level are

√
M

as well. At the following level, the wires have length
√
M/2.

Ewire =
√
M

log2(M)∑
i=0

(
i× 1

2d(log2(M)−i)/2e

)

≤ log2(M)
√
M

log2(M)∑
i=0

(
1

2di/2e

)

≤ log2(M)
√
M

log2(M)/2∑
i=0

(
2

2i

)
(1)

The sum is a geometric series that converges to O(1),1 so
we have:

Ewire ≤ O(log2(M)
√
M) (2)

Wire energy asymptotically dominates gate energy, so the
total energy for a bit read from this fully banked memory
is O(log(M)

√
M), which is asymptotically smaller than the

bit read energy for a monolithic memory. Writes behave
similarly and take the same asymptotic energy.

4.3 Processor with Memory
A simple, sequential case might store the graph descrip-

tion in one memory (instruction memory) and the data value
of each gate in another (data memory) as shown in Fig. 3.
The sequential processor would process the graph in topo-
logical order. For each node, it would:

1. read the gate description from the instruction memory
= 2k bits = O(1) bits since we take k to be a constant

2. read the address of each of the k inputs from the in-
struction memory; since there are O(N) sources, this
is k log(N) or O(log(N)) bits

3. read the k input bits from the data memory
4. perform the gate evaluation
5. store the result into the current gate address in the

data memory
6. increment the gate address

Each vertex requires O(log(N)) bits to specify its inputs,
so the total instruction memory holds O(N log(N)) bits.
The instruction memory is accessed sequentially, so it can
use the more efficient sequential access pattern into memory
(Sec. 4.2.2). The data memory only holds O(N) bits, but
these must be accessed randomly, so we use a fully banked
memory (Sec. 4.2.3). The instruction memory reads (op-

erations 1 and 2) take O(log(N)
√
N log(N)) energy. The

data memory reads (operation 3) and write (operation 5)

take O(log(N)
√
N). The gate evaluation (operation 4) takes

O(1) energy, and the gate address increment (operation 6)
takes O(log(N)). Instruction memory dominates, such that

1Throughout, we make use of the relationship:
a
(
1 + r + r2 + ...

)
≤ a

1−r
when r < 1.

each memory read takes O(log1.5(N)
√
N). Processing the

entire graph with N nodes takes O((N log(N))1.5).
If we had used a monolithic memory instead of the fully

banked memory for the data memory, the data memory
would have dominated with energy O(N), for a total energy
of O(N2)—comparable to the crossbar.

5. DESCRIPTION LOCALITY
The analysis in the previous section assumes each input

to a vertex may come from any other vertex. However, in
typical circuits, we expect a certain amount of locality. Most
inputs will come from a subset of the vertices that can be
made close to the gate. In circuit design, including the de-
sign of FPGA architectures [7, 8, 16], it is typical to char-
acterize this locality using Rent’s Rule [19] which says the
number of wires that exit a region containing N gates is
proportional to a fractional power of the gates in the region:

IO = cNp (3)

This can be directly mapped to Leighton’s α-bifurcator def-
inition [2]. Both characterizations recursively bisect designs
minimizing the cut size between regions and use the cut sizes
out of each subregion to characterize the locality. In both
cases, they suggest a geometric relationship on the cut sizes
at successive tree levels in the recursive bisection.

For designs with locality where p < 1, not all edges are cut
by the top bisection. In particular, only cNp edges are cut.
These edges cut by the top bisection will need all log2(N)
bits to describe their source. However, the other edges are
contained in smaller subtrees and can use fewer bits. This
can be used to show that the total number of bits needed
to specify routing is O(N) [8]. The number of bits required
to specify an edge is proportional to the logarithm of the
capacity of the smallest subtree that contains the edge. We
can count the number of bits required by charging each edge
for each subtree it must exit. That is, when a graph edge
needs to cross out of the top of a tree at level i, we need
one bit to specify which way the edge connects at that tree
level. Thus we need:

Nbits =

log2(N)∑
i=0

(
N

2i
× c

(
2i
)p)

(4)

The first term N
2i

is the number of subtrees at height i from
the leaf, while the second term is Rent’s Rule (Eq. 3) applied
to the size of the subtree (2i). Pulling out c and N and
combining the 2i terms we get:

Nbits = cN

log2(N)∑
i=0

((
2i
)(p−1)

)
(5)

For p = 1, the term being summed is one, so Nbits becomes
O(N log(N)) as we saw in the previous section when we did
not assume any locality. However, when p < 1, the exponent
p − 1 is less than one, making the term being summed a
fraction that decreases geometrically with i. As a result,
the sum converges to O(1), and we have Nbits=O(N).

Impact on Processor Case If we exploit this local-
ity when p < 1, the instruction memory in the processor
(Sec. 4.3) only needs to be of size O(N). This reduces the
area for the processor to O(N). Furthermore, the total bits
read from the instruction memory will be O(N) instead of
O(N log(N)). The total instruction memory energy reduces

O(log(N))

O
(

N
)

P
E

s
 p

e
r

s
id

e

packet
 switch

gate
eval

O(Nlog(N))W =

sequential
access
instruction
memory

Figure 4: Sequential Communication Exploiting
Data Locality

from O((N log(N))1.5) to O(N1.5). The data memory en-

ergy of O(
√
N log(N)) per gate means a total energy across

all N gates of O(N1.5 log(N)) which now dominates instruc-
tion energy and determines the asymptotic energy of oper-
ation. Exploiting description locality saves us a factor of√

log(N).

6. DATA LOCALITY
After exploiting description locality, the dominant energy

arises from accessing the data memory. Here, since we bring
the data to a single location to evaluate the gate, we must
pay O(

√
N log(N)) energy for every data fetch from the

banked memory. That is, we are not exploiting any locality
in movement of the data.

Alternately, we can perform the gate evaluation at dif-
ferent places and arrange the data for minimal movement.
Again, we consider performing the recursive bisection of the
graph to minimize cut sizes for Rent’s Rule. Each node
lives at the leaf of a tree. We layout the tree as an H-Tree
(Fig. 4). For this case, we additionally limit the fanout asso-
ciated with a node to k (See Sec. 6.1). At the leaf associated
with a node we include:

1. asynchronous logic to recognize when all k inputs have
arrived = O(1)

2. storage space for the k inputs to each gate = O(1)
3. the description of the behavior of the gate = O(1)
4. memory to store the address of the k successors to the

gate = O(log(N))
Since each leaf node needs O(log(N)) memory, the entire
structure requires area O(N log(N)). If we did not limit
the fanout to a constant, we could not guarantee the node
memories could be this small.

All links in the H-tree are O(1) wide so that the H-tree
has the same asymptotic area as the leaves. The internal
nodes in the tree serve as a bit-serial, packet-switched net-
work. This is similar to the fully banked memory, except
that routing bits are needed both to route up the tree to
the point of cross-over and back down. Since the path up
the tree is the same length as the path back down, adding
bits to route up the tree does not asymptotically change the
number of bits needed to address a destination.

Each leaf node behaves as follows:
1. wait for all inputs to arrive
2. evaluate gate
3. send result bit to all ≤ k successor vertices; this also

depends on the fanout limit.
Evaluation energy at the leaf nodes remains O(1) per node

or O(N) total. We can sequentially access the successor gate

address memory. We must read O(log(N)) bits at energy

O(
√

log(N)) per read, for a total of O(log1.5(N)) energy per
node or O(N log1.5(N)) energy to perform these reads from
all nodes.2 This leaves the energy required to route the data
to the successors over the H-tree network. Here, we must
account for the number of edges that must be routed to each
height in the tree, the bits that specify the destination, and
the lengths of the wires at each level in the tree.
• There are N

2i
subtrees at height i from the leaf.

• By Rent’s Rule, we know we have c
(
2i
)p

edges that
must cross out of each of those subtrees.
• The number of bits in an address will be less than

log(N); for simplicity, we make no further attempt to
account for the fact that many stages see fewer bits.
• The length of the top wire in the tree isO(

√
N log(N)).

• Wire lengths halve every other stage as noted for the
fully banked memory.

Putting this together, we get:

Ecomm ≤
log2(N)∑

i=0

(
N

2i
× c

(
2i
)p
× log(N)

×O
(

2di/2e
√

log(N)
))

≤ O(N log1.5(N))

dlog2(N)/2e∑
i=0

((
2i
)(2p−1)

)
For p = 0.5, the term in the sum is one, making the total:

Ecomm(p = 0.5) ≤ O(N log2.5(N)) (6)

For p > 0.5, the sum is largest at the maximum value of
i = dlog2(N)/2e where it evaluates to O(Np−0.5). The other
terms recede geometrically from the maximum value, so the
entire sum comes to O(Np−0.5). As a result, we have:

Ecomm(p > 0.5) ≤ O(Np+0.5 log1.5(N)) (7)

At p = 1, this is O(
√

log(N)) larger than the memory case
in Sec. 5 due to the area increase to hold O(N log(N)) bits
for the description; however, for any p < 1, the benefit from
locality of data movement is greater, and this is scheme has
asymptotically lower energy. Picking spatial locations for
computations and moving the data minimally to these loca-
tions saves a factor of O(N (1−p)/

√
log(N)). For p < 0.5,

the sum is largest at the minimum value of i = 0 where it
evaluates to one. Again, the other terms form a receding
geometric sum as i increases, so the summation comes to
O(1). For p < 0.5, we have:

Ecomm(p < 0.5) ≤ O(N log1.5(N)) (8)

In all cases this data communication energy equals or dom-
inates gate evaluation and memory read energy.

6.1 Fanout Limit
Imposing a fanout bound does not limit the netlists we

can support nor change the asymptotic results. We can
transform any netlist with bounded fanin and unbounded

2Strictly speaking, by exploiting the description locality,
we read a total of O(N) successor address bits rather
than O(N log(N)) when p < 1, so, the total energy is

O(N
√

log(N)) for p < 1, but this doesn’t change the to-
tal asymptotic result that follows since the data movement
term dominates the asymptotic energy use.

fanout into one with bounded fanout without asymptotically
changing the number of nodes in the network or its depth
[14]. Roughly, an N node graph with a fanin bound of k and
unbounded fanout can be transformed into a graph with a
bounded fanout of k that has no more than 2N nodes. Con-
sequently, the asymptotic results here hold even if we think
about starting with a netlist with unbounded fanout.

7. INSTRUCTION LOCALITY
While data communication locality reduces the cost of

communication, we spend more energy providing the address
for routing the data than we do for actually sending the
data. Furthermore, we are forced to give up the full area
compactness of description locality. Instead of storing the
location address bits at the leaves, we can save additional
energy by storing the routing bits in the tree local to the
switches that they control.

7.1 Sequential
Starting with the sequential case from the previous sec-

tion, storing the configuration in the tree means we time-
multiplex the switches rather than packet switching with
route addresses stored at the leaves. Each internal switch
at level i now has a memory of size O

((
2i
)p)

to tell it the
sequence of configurations it must perform in order to route
the data (See Fig. 5(a)). The switches remain asynchronous.
Each switch reads O(1) bits form the memory to tell it the
next route operation to perform, waits for input to arrive on
the specified source, handshakes with the source, switches
the input data to the specified output, and handshakes with
the destination LUT or switch. The Rent’s Rule subtree
IO model already captures fanout effects. That is, some
switches may switch data out two sides, and this effect is al-
ready accounted for in the Rent IO of the subtrees to which
they connect. Consequently, it is not necessary to assume
bounded fanout as in Sec. 6 for the designs in this section
and the next (Sec. 8). Each LUT at the leaf waits for all
inputs to arrive, computes the result, and sends the result.

To achieve the O(
√
M) energy for reading from each of the

switch memory banks, we must layout the switch memories
as a square. This means that the width of the switch at tree
level i becomes O(

√
(2i)p). For i = log2(N), there is one

switch width at the root of the tree. Every two tree levels, we
double the number of switch widths we must accommodate
across the width. Consequently, the width of the tree of
capacity N becomes:

W =

log2(N)/2∑
i=0

(√
N

2i
×O

(√
(22i)p

))

=
√
N

log2(N)/2∑
i=0

(
O

((
2i
)p−1

))
(9)

For p < 1, this is a receding geometric sum, so we have
W=O(

√
N). This tells us that the entire design requires

only A = W 2 = O(N) area. It further tells us that the wire

lengths for each subtree of capacity N are only O(
√
N),

asymptotically the same as if we did not have memories
embedded in the tree.

The energy of operation is now composed of:
• Energy per gate evaluation = O(1) per gate.
• Energy for each communication link including the en-

ergy reading from the switch instruction memory. At

O((2))i
p

O(N)PEs per side
O

(

N

)
W

= gate input values

gate eval

sequential access switch instruciton memory

time−multiplexed
 switch

i=1

i=2

i=3

i=4

i=1

i=2

i=3

i=4

gate

switch

O
((2

))
i

p

W
=

O
(N

)

 [
fo

r
p
>

0
.5

]
p

PEs per side O()N

(FPGA-like Architecture)

O(N)PEs per side

gate eval

O
((2

))
i

p
t

O
(N

)
<

O
(

N
)

W
=

sequential access switch instruciton memory

time−multiplexed
 switch

 gate
 input
values

i=1

i=2

i=3

i=4

(a) Sequential Communication (b) Parallel Communication (c) Heterogeneous Multicontext

Figure 5: Instruction Locality Architectures

level i of the tree, we drive a wire of length O(
√

2i) and

spend memory read energy O(
√

(2i)p). Since p < 1,
the energy reading from the memory is less than the
energy driving the wire, so the energy per link at level
i is O(

√
2i).

We perform a similar sum to the previous section to account
for the number of switches of a given height, the wirelengths
driven by each switch height, and the number of edges that
must be switched through that switch height.

Ecomm ≤
log2(N)∑

i=0

(
N

2i
× c

(
2i
)p
×O

(
2di/2e

))

≤ O(N)

log2(N)∑
i=0

(
O

((
2i
)p−0.5

))
(10)

For p = 0.5, the term in the sum is O(1), so the communi-
cation energy, and hence total energy, is O(N log(N)). For
p < 0.5, p− 0.5 < 0, so the sum converges to O(1) and the
communication and total energy is O(N); since this matches
the lower bound of Ω(N), we can conclude the p < 0.5 case
requires Θ(N) energy. For p > 0.5, the term in the sum is
maximum at i = log2(N) and takes on the value O(Np−0.5).
As i decreases, the terms are geometrically smaller, so the
sum converges toO(Np−0.5), making communication and to-
tal energy O(Np+0.5). Keeping the instructions local to the
switches they are configuring saves a factor of O(log1.5(N))
and achieves asymptotically optimal energy for p < 0.5.

7.2 Parallel (FPGA)
Alternately, we can dedicate spatial wiring for each edge

in the graph. This gives us an architecture analogous to an
FPGA. To simplify analysis and build on the designs and
calculations we have already performed, we consider a but-
terfly fat-tree-based spatial interconnect [13, 28]. Instead
of having a single wire from each subtree, and hence a sin-
gle switch linking subtrees, we have a number of switches
proportional to the Rent’s Rule proscribed IO for each sub-
tree (See Fig. 5(b)). Switches are passively configured with
O(1) local configuration bits; as with an FPGA these are
continuously applied rather than being read from memory.

As such, switches simply pass values combinationally; there
is no need for any sequenced behavior. Gates at the leaves
perform as in the sequential case, waiting for all inputs to
arrive, computing the output, handshaking with the inputs
and handshaking with the outputs.

Again, we start by assessing the width of the entire tree.
The width of each of the switch groups combining subtrees
at height i is now O

((
2i
)p)

instead of O(
√

(2i)p), but the
number of switch groups across the width remains the same.
We get a width:

W =

log2(N)/2∑
i=0

(√
N

2i
O
(

22pi
))

=
√
N

log2(N)/2∑
i=0

((
2i
)2p−1

)
For p < 0.5, the sum converges to O(1), for p = 0.5, it
converges to O(log(N)), and for 1.0 > p > 0.5, it becomes

O(Np−0.5). This makes the width O(
√
N), O(log(N)

√
N),

and O(Np), respectively, and area O(N), O(N log(N)), and
O(N2p).

With these lengths, we can calculate communication en-
ergy. The p < 0.5 case is the same as the previous sum
(Eq. 10), so also achieves O(N) communication energy and
Θ(N) total energy. The p > 0.5 case becomes:

Ecomm(p > 0.5) ≤
log2(N)∑

i=0

(
N

2i
× c

(
2i
)p
×O

((
2i
)p))

≤ O(N)

log2(N)∑
i=0

(
O

((
2i
)2p−1

))
The sum converges to O(N2p−1) bringing communication
and total energy to O(N2p). For p = 0.5, we get:

Ecomm ≤
log2(N)∑

i=0

(
N

2i
× c

(
2i
)0.5
×O

((
2di/2e

)
log(2i)

))

≤ O(N)

log2(N)∑
i=0

(O (i))

The sum converges to O
(
log2(N)

)
, and hence communi-

cation and total energy converge to O(N log2(N)). For

p ≥ 0.5, the energy requirements are asymptotically larger
than the sequential case in the previous section due to the
larger area and hence longer wires.

If CAD mapping can avoid glitching, or limit it to a con-
stant effect, this fully parallel design could be synchronous
without damaging the asymptotic result; only the registers
at the leaves need to be clocked, and they only need to be
clocked once per evaluation cycle. This can be done with
no more than O(N + W ×

√
N) = O(N + Np+0.5) energy,

which is no larger than the communication energy.

7.3 Multicontext
The fully spatial, fully parallel, FPGA-like case requires

asymptotically more energy than the sequential locality case
(Sec. 7.1) when the spatial case requires asymptotically more
area and hence asymptotically longer wires. Note that the
p < 0.5 case that did not require asymptotically longer wires
did not require asymptotically more energy. This suggests
that we might be able to achieve the same asymptotically
low energy as the sequential case without giving up all com-
munication parallelism. However, we must be careful not to
include too much communication hardware.

Specifically, the previous case suggests that as long as the
number of wires at a tree root grows as O

((
2i
)pt) with

pt < 0.5, we can keep the side length of the tree to O(
√

2i).
Consequently, we build a tree with pt < 0.5 and provide
the same asynchronous context memories for the upper level
switches as we did in the sequential case (Sec. 7.1) as shown
in Fig. 5(c). However, we size these memories based on their
required wire sharing. The memory for a switch at the root

of a tree at level i must be have O

(
max

(
1,

(2i)p

(2i)pt

))
. For

the interesting cases where p > pt, this is: O((2i)p−pt). This
means that the switches have heterogeneous context depth,
increasing toward the root of the tree where edge growth ex-
ceeds available 2D wiring. Switching behavior is the same
as the sequential case except that some tree switches have
multiple physical parent connections like the spatial case.

The designs fits in O(N) area with width O(
√
N) and the

same asymptotic energy as the sequential case. To properly
demonstrate this result we need to:

1. validate memory area is asymptotically small enough:
At height i, the wire width for the channel is O

((
2i
)pt)

and the height of the channel is O(
√

2i). This gives

area O
((

2i
)pt+0.5

)
. Each of the O

((
2i
)pt) memories

is of size O
((

2i
)p−pt

)
for a total area of O

((
2i
)p)

,

which is less thanO
((

2i
)pt+0.5

)
as long as p < pt+0.5.

We can guarantee this holds by selecting pt ≥ p− 0.5,
which we can do and keep pt < 0.5 for any p < 1.

2. make sure we can place and route to the memories
without changing the asymptotic area or side lengths:
The previous calculation assumed that we could pack
switches anywhere in the channel. This is possible if
we can route the signals from the lower channel to
the point of the switch. Since the number of wires
from the lower channel are within a constant factor
of the number of wires in a channel, if we space out
the root wires to allow the lower channel wires to route
alongside them to the point where the switch is placed,
it only makes the channel a constant amount wider,

T
o

p
 C

h
a

n
n

e
l

Right Channel

Left Channel

Figure 6: Routing to Multicontext Memories

thus leaving the asymptotic channel width unchanged
(See Fig. 6).

3. account for the read energy from memories: The read

energy for a switch at level i, O(
√

(2i)p−pt), is never

greater than the O(
√

2i) energy of the associated wire.
4. account for the communication energy: This is the

same as the sequential case since the wire lengths are
asymptotically the same length.

When limited to O(1) metal layers for planar VLSI, this het-
erogeneous, multicontext FPGA saves O(Np−0.5) compared
to a fully spatial FPGA that allocates a wire for every edge,
achieving the same asymptotic energy as the sequential case.

8. MULTILEVEL METALIZATION
The fully spatial, FPGA-like case with p ≥ 0.5 consumed

more energy than the sequential case because the wires grew
asymptotically longer. This is driven by growing channel
widths when limited to a constant number of wire layers. If
we can instead use a suitably growing number of wire lay-
ers, we can avoid this cost and achieve the same asymptotic
energy as the sequential instruction locality case (Sec. 7.1).
In particular, if the wire layers grow as O((2i)p−p2D), where
p2D < 0.5, we can keep the 2D channel widths down to
O((2i)p2D). We must account for both the 2D and z-axis
wire lengths in routing, but if we pick p2D ≥ p/2, the z-
axis wire length of O((2i)p−p2D) is never greater than the
planar wire length of O((2i)p2D). For p < 1, we can pick a
p2D < 0.5 that satisfies that constraint, so the total wire en-
ergy remains asymptotically the same as the sequential and
multicontext case. We must guarantee that we can perfectly
use the additional wire layers. DeHon and Rubin showed
that this was possible using a Mesh-of-Trees interconnect
structure [9]. As with the O(1) metal layer FPGA, if we
can contain glitching effects, the asynchronous assumption
is not necessary to achieve this bound. The total clock en-
ergy would only be O(N) per evaluation cycle.

9. LESSONS
Table 1 summarizes the asymptotic bounds developed in

this paper. It shows a rich landscape where energy reduces
both with the exploitation of more locality in the archi-
tecture (roughly top to bottom) and with the gate array
netlist locality (Rent p, left to right). The locality exploita-
tion in FPGAs does give them an asymptotic energy advan-
tage compared to processors. The sequence of optimizations
shows that exploiting locality to reduce the distances that
edge data travel is a larger benefit than being able to share
a single physical compute operator. Locality exploitation is
more important than physical operator sharing.

Table 1: Asymptotic Energy Required for N-node Gate Array Evaluation
Asynch. Rent Exponent p

Organization Locality Sec. Handshake 1 1>p>0.5 0.5 <0.5

Crossbar none 4.1 No O(N2)

P Monolithic Mem. none 4.3 No O(N2)

P Fully Banked description 4.3, 5 Yes O
(
(N log(N))1.5

)
O
(
N1.5 log(N)

)
Sequential Comm. data 6 Yes O

(
Np+0.5 × log1.5(N)

)
O(N log2.5(N)) O(N log1.5(N))

Sequential Comm. instruction 7.1 Yes O
(
N1.5 log0.5(N)

)
O(Np+0.5) O(N log(N)) θ(N)

Parallel (FPGA) instruction 7.2 No O
(
N2p

)
O(N log2(N)) θ(N)

Hetero Multicontext instruction 7.3 Yes O
(
N1.5 log0.5(N)

)
O(Np+0.5) O(N log(N)) θ(N)

Multilevel (FPGA) instruction 8 No O
(
N1.5 log0.5(N)

)
O(Np+0.5) O(N log(N)) θ(N)

Multicontext designs can have lower energy than FPGAs
when the number of metal layers is limited, but the multi-
context designs must be organized differently from previous
proposal for multicontext FPGAs. Sharing of interconnect
is important for p ≥ 0.5 (when limited to O(1) metal layers).
We must be careful not to overbuild wiring to the point that
it makes wire lengths grow faster than O(

√
N). For constant

numbers of metal layers, this means it is beneficial to share
interconnection links to keep the layout size down.

Parallelism is (asymptotically) energy neutral at the ar-
chitectural level. At fixed voltages, more parallel solutions
demand no more asymptotic energy than sequential ones as
long as wire lengths do not grow faster than O(

√
N). If we

do have fixed performance goals and allow voltage scaling,
the parallel solutions may actually be lower energy, since
they can use the parallelism to achieve the performance goal
with lower operating voltage.

Programmability is (asymptotically) energy neutral. The
presence of configuration bits does not impact the asymp-
totic analysis for the FPGA-like cases (Secs. 7.2 and 8). The
constants become smaller, but the asymptotes do not.

10. RELATED WORK
Most of the theoretical work on energy complexity deals

with activity factors for particular types of computations
(e.g., [1, 17]). This is complementary to the current work
that addresses general bounds where circuit classes are only
differentiated by their locality.

Another class of work specifically deals with energy-time
tradeoffs that arise form VLSI circuits (e.g., [22, 3]). These
explore the impact of tuning voltage and sizing (ET 2), which
we did not address in this paper. These tradeoffs are impor-
tant, but not valid over large enough of a range to be fully
asymptotic. These works almost entirely address tradeoffs
in specific circuits and do not address architectural tradeoffs
for general classes of computations. As such, this tuning is
also largely complementary to the work described here.

11. OPEN QUESTIONS
The results obtained so far show that there are fundamen-

tal reasons that FPGA-like architectures can offer energy
advantages. However, there are other phenomena that must
be characterized to capture the complete story.

How large are the associated constants and when do the
asymptotes matter? We have deliberately focused on asymp-
totic bounds only. Certainly an asynchronous switch is larger
than single SRAM cell and the multicontext design is larger

than the sequential instruction locality design. It will be
useful to establish how large N must be for various asymp-
totes to matter (e.g. when the fully banked design is lower
energy than the monolithic memory, when the sequential
instruction locality is lower energy than the processor using
fully banked memory). Constants will also be necessary to
differentiate the energy in the cases that achieve the same
asymptotic energy.

Processors have the option to describe a large computa-
tion, but only exercise a small portion of it, or to only exer-
cise portions of the computational graph infrequently. Sim-
ilarly, gates and wires that do not toggle on a cycle need
not consume energy if controlled properly. We deliberately
assumed homogeneous activity to keep the analysis simple
and the results general. As the prior theoretical work show
(Sec. 10), specific designs have structurally different activ-
ities that can be exploited to identify even lower energy
bounds. It will be useful to explore a richer model that ac-
counts for non-homogeneous activities and understand how
this impacts the energy picture.

GPGPUs, vector processors, and even scalar microproces-
sor exploit the fact that instructions can often be produc-
tively shared across collections of bits (e.g. multi-bit words)
and across operations (e.g. SIMD, SPMD) or reused (e.g.,
subroutines, looping), such that the operation description is
small compared to the bit operations performed. For this
work, we assumed that every gate needed a unique instruc-
tion. To complete the picture, it will be useful to character-
ize the impact of this instruction sharing and reuse on the
asymptotic energy bounds.

This paper has focused on constructive upper bounds. Ex-
cept for the p < 0.5 case where the constructive upper bound
matches the trivial lower bound, we have not established
non-trivial lower bounds on the energy requirements.

12. CONCLUSIONS
Asymptotically, communication locality exploitation mat-

ters. Architectures that are organized to minimize the move-
ment of data and instructions can operate with asymptoti-
cally lower energy than alternatives that do not, including
sequential processors that move data from a central memory
to a single, shared computational block. This gives FPGA-
like designs an inherent energy advantage compared to pro-
cessors. The same energy advantage can be achieved with
designs that share interconnect, but operators and data must
be spatially distributed similar to FPGAs. Since communi-
cation locality is essential, FPGA-like designs must contain

processor to processor wiring distances to O(
√
N) (where N

is the capacity of the smallest subtree that includes both pro-
cessors) to achieve the tightest bounds; designs that allow
switching or wiring to grow asymptotically faster will not
be able to achieve the lowest energy bounds demonstrated.
For designs with moderate locality (0.5 ≤ p < 1.0), wiring

requirements grow too fast to achieve the O(
√
N) distance

when limited to a constant number of metal layers. It is
necessary to either use multilevel metalization with wiring
levels growing sufficiently fast or multicontext designs that
contain physical interconnect links below pt = 0.5 in order
to achieve the lowest energy bounds identified.

13. ACKNOWLEDGMENTS
This work was inspired in part by insights gained from

Cory Waxman’s time-multiplexed FPGA energy modelling
effort. This research was funded in part by National Sci-
ence Foundation grant CCF-0904577. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily re-
flect the views of the National Science Foundation.

14. REFERENCES

[1] A. A. Ashok, Chandra, and P. Raghavan. Energy
consumption in VLSI circuits. In Proceedings of the
ACM symposium on Theory of computing, pages
205–216, 1988. 10

[2] S. Bhatt and F. T. Leighton. A framework for solving
VLSI graph layout problems. Journal of Computer
System Sciences, 28:300–343, 1984. 2.3, 5

[3] B. D. Bingham and M. R. Greenstreet. Modeling
energy-time trade-offs in VLSI computation. IEEE
Trans. Comput., 61(4):530–547, April 2012. 10

[4] M. Budiu, G. Venkataramani, T. Chelcea, and S. C.
Goldstein. Spatial computation. In Proc. ASPLOS,
pages 14–26, 2004. 2.2

[5] W. J. Dally, J. Balfour, D. Black-Shaffer, J. Chen,
R. C. Harting, V. Parikh, J. Park, and D. Sheffield.
Efficient embedded computing. IEEE Computer,
41(7):27–32, July 2008. 2.2

[6] A. DeHon. DPGA utilization and application. In
FPGA, pages 115–121, February 1996. 1

[7] A. DeHon. Balancing Interconnect and Computation
in a Reconfigurable Computing Array (or, why you
don’t really want 100% LUT utilization). In FPGA,
pages 69–78, February 1999. 5

[8] A. DeHon. Rent’s Rule Based Switching
Requirements. In Proc. SLIP, pages 197–204. ACM,
March 2001. 5, 5

[9] A. DeHon and R. Rubin. Design of FPGA
Interconnect for Multilevel Metalization. IEEE Trans.
VLSI Syst., 12(10):1038–1050, October 2004. 8

[10] H. Esmaeilzadeh, E. Blem, R. S. Amant,
K. Sankaralingam, and D. Burger. Dark silicon and
the end of multicore scaling. In ISCA, pages 365–376,
2011. 2.1

[11] D. J. Frank. Power constrained CMOS scaling limits.
IBM J. Res. and Dev., 46(2/3):235–244, March 2002.
2.1

[12] S. H. Fuller and L. I. Millett, editors. The Future of

Computing Performance: Game Over or Next Level?
The National Academies Press, 2011. 2.1

[13] R. I. Greenberg and C. E. Leiserson. Randomness in
Computation, volume 5 of Advances in Computing
Research, chapter Randomized Routing on Fat-Trees.
JAI Press, 1988. Earlier version MIT/LCS/TM-307.
7.2

[14] H. J. Hoover, M. M. Klawe, and N. J. Pippenger.
Bounding fan-out in logical networks. Journal of the
ACM, 31(1):13–18, January 1984. 6.1

[15] M. Horowitz, E. Alon, D. Patil, S. Naffziger,
R. Kumar, and K. Bernstein. Scaling, power, and the
future of CMOS. In IEDM, pages 7–15, December
2005. 2.1

[16] M. Hutton. Interconnect predition for programmable
logic devices. In Proc. SLIP, pages 125–131, 2001. 5

[17] G. Kissin. Upper and lower bounds on switching
energy in VLSI. JACM, 38(1):222–254, January 1991.
10

[18] J. Lamoureux, G. G. F. Lemieux, and S. J. E. Wilton.
GlitchLess: Dynamic Power Minimization in FPGAs
Through Edge Alignment and Glitch Filtering. IEEE
Trans. VLSI Syst., 16(11):1521–1534, November 2008.
3.3

[19] B. S. Landman and R. L. Russo. On pin versus block
relationship for partitions of logic circuits. IEEE
Transactions on Computers, 20:1469–1479, 1971. 1, 5

[20] F. T. Leighton. New lower bound techniques for VLSI.
In Proc. Symp. FOCS, pages 1–12. IEEE, 1981. 2.3

[21] Y. Lin and J. Cong. Power modeling and
characteristics of field programmable gate arrays.
IEEE Trans. Computer-Aided Design,
24(11):1712–1724, November 2005. 1

[22] R. Melhem and R. Graybill, editors. Power-Aware
Computing, chapter ET2: A Metric For Time and
Energy Efficiency of Computation. Kluwer Academic
Publishers, 2001. 10

[23] K. Poon, S. Wilton, and A. Yan. A detailed power
model for field-programmable gate arrays. ACM Tr.
Des. Auto. of Elec. Sys., 10:279–302, 2005. 1

[24] J. E. Savage. Planar circuit complexity and the
performance of VLSI algorithms. In VLSI Systems and
Computations, pages 61–68, 1981. 2.3

[25] G. Stitt, B. Grattan, J. Villarreal, and F. Vahid. Using
on-chip configurable logic to reduce embedded system
software energy. In FCCM, pages 143–151, 2002. 2.2

[26] C. Thompson. Area-time complexity for VLSI. In
Proc. ACM STOC, pages 81–88, May 1979. 2.3

[27] S. Trimberger, D. Carberry, A. Johnson, and J. Wong.
A time-multiplexed FPGA. In FCCM, pages 22–28,
April 1997. 1, 2.2

[28] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker,
T. Tung, O. Rowhani, V. George, J. Wawrzynek, and
A. DeHon. HSRA: High-Speed, Hierarchical
Synchronous Reconfigurable Array. In FPGA, pages
125–134, February 1999. 7.2

[29] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia,
V. Bryksin, J. Lugo-Martinez, S. Swanson, and M. B.
Taylor. Conservation cores: reducing the energy of
mature computations. In Proc. ASPLOS, pages
205–218, 2010. 2.1, 2.2

http://www.cs.berkeley.edu/projects/brass/documents/fixedws_fpga99.html
http://www.cs.berkeley.edu/projects/brass/documents/fixedws_fpga99.html
http://www.cs.berkeley.edu/projects/brass/documents/fixedws_fpga99.html
http://ic.ese.upenn.edu/abstracts/rentsw_slip01.html
http://ic.ese.upenn.edu/abstracts/rentsw_slip01.html
http://ic.ese.upenn.edu/abstracts/mot_trvlsi2004.html
http://ic.ese.upenn.edu/abstracts/mot_trvlsi2004.html
http://www.cs.berkeley.edu/projects/brass/documents/hsra_fpga99.html
http://www.cs.berkeley.edu/projects/brass/documents/hsra_fpga99.html

Supplemental Material for DeHon: “Location, Location, Location...”, FPGA 2013

APPENDIX
A. GATE ARRAY EVALUATION MODEL

A more precise definition of the gate array evaluation
model from Sec. 3.1 is as follows:
• The computation is a directed graph G = (V,E).
• Each vertex v ∈ V is a gate with bounded fanin k.
• A subset of vertices I ⊂ V are netlist inputs and have

no predecessors in G, and a subset of nodes O ⊂ V are
netlist outputs and have no successors in G.
• Each vertex vi ∈ V computes its output as a function

fi of its up to k inputs and routes this same output to
each of its output edges.
• An edge e ∈ E is a pair of nodes (vsrc, vsink) that

conveys the output of vsrc to vsink. An edge, e, may
be registered. An unregistered edge conveys the value
produced by its source vsrc to the sink vsink before
vsink evaluates its input for a given evaluation. A reg-
ister edge conveys the value produced by its source vsrc
on the previous cycle of evaluation. Identity vertices
can be used in the graph when a value produced by a
vertex needs to be used both registered and unregis-
tered and when a value must be retimed for multiple
cycles before use.
• In one evaluation of the netlist, each vertex is com-

puted once obeying precedence constraints in the graph.
Consequently, every edge (or net) is assumed to switch
once per evaluation.

B. VLSI AREA AND ENERGY MODEL
This section provides more background for the VLSI model

used in the paper and briefly summarized in Sec. 3.2.
Our primitive building blocks are gates, individual mem-

ory cells, and wires. We assume static CMOS gates that dis-
sipate energy only when switched and have dynamic switch-
ing energy proportional to C (Vdd)2. We take the supply
voltage, Vdd, as fixed so energy is proportional to the ca-
pacitance switched, C. A primitive gate or memory cell has
a constant number of inputs (e.g. a 3-input and gate or a
6T SRAM cell), a constant width, and height, and hence
a constant, O(1), area. The inputs present O(1) capaci-
tive load on their drivers, and hence cost O(1) energy, Ein,
when switched. The gate itself requires O(1) internal energy,
Egate, when switched.

Each wire has constant, O(1), width (e.g. 2F where F
is the half-pitch in a particular technology node [1]) and
area proportional to its length, l. The capacitance of a wire
will be proportional to its area and hence length, making
the energy to switch a wire segment proportional to length,
Ewire (l) = O (l).

We start considering models with a constant number, O(1),
of routing metal layers greater than one (e.g. two, one for
horizontal wiring and one for vertical). Since all wires out
of a region or sub-block of a design are of width O(1) and
must be routed on O(1) metal layers in this model, the
width of a region or sub-block in the design is at least pro-
portional to the number of wires crossing into the region,
Width(region) ≥ O(wires cross into region). Orthogonal
wires can cross on different metal layers. When a wire on
one layer crosses n wires on another layer, it must be at least
of length O(n).

We account for energy in terms of physical nets with one
gate driving a tree of wire segments. Total energy for a
physical net will be:

Enet = Egate +
∑

i∈ wire segments

Esegi +
∑

j∈input loads

Einj

Since gate driving and gate input energy is O(1), this gives:

Enet = O(1) + O(net wire length) + O(# gate input loads)

Since there must be finite spacing between gates and gate
inputs, the wire length term will asymptotically capture the
impact of gate input loads and gate switching. Physical net
switching energy then simplifies to:

Enet = O(net wire length)

In Sec. 8 we allow the number of metal layers to increase
with N . Logic and memory are contained to a single level on
the surface of the chip. We assume a wire segment crossing
from the substrate to level l is of length l and hence takes
energy O(l) for the crossing. We account for via area in each
layer a segment crosses [2].

C. ASYNCHRONOUS EVALUATION
In Sec. 3.3, we noted that the conversion to asynchronous

can be done without changing the asymptotic size or num-
ber of switching events. In particular, we can represent each
original netlist signal using two bits so we can encode the
non-presence of data and add a reverse signal to perform
handshake acknowledgment of the inputs. A gate waits on
the arrival of all of its inputs before producing an output.
The 3 signals now used in place of each original wire toggle
a constant number of times (4 times) during an evaluation.
Similarly, the internal logic is only a constant factor larger
than the simple gate. Native asynchronous FPGAs have
been developed in previous work [4, 3]. In figures, we show
O(1) wire bundles that include directional wires and hand-
shaking as a single line.

D. REFERENCES
[1] International technology roadmap for semiconductors.

<http:

//www.itrs.net/Links/2011ITRS/Home2011.htm> ,
2011. B

[2] A. DeHon and R. Rubin. Design of FPGA Interconnect
for Multilevel Metalization. IEEE Trans. VLSI Syst.,
12(10):1038–1050, October 2004. B

[3] J. Teifel and R. Manohar. Highly pipelined
asynchronous FPGAs. In FPGA, pages 133–142, 2004.
C

[4] C. Wong, A. Martin, and P. Thomas. An architecture
for asynchronous FPGAs. In ICFPT, pages 170–177,
2003. C

Web links for this document: <http://ic.ese.upenn.edu/abstracts/location_fpga2013.html>

http://www.itrs.net/Links/2011ITRS/Home2011.htm
http://www.itrs.net/Links/2011ITRS/Home2011.htm
http://ic.ese.upenn.edu/abstracts/mot_trvlsi2004.html
http://ic.ese.upenn.edu/abstracts/mot_trvlsi2004.html
http://ic.ese.upenn.edu/abstracts/location_fpga2013.html

	location_fpga2013_body
	location_fpga2013_appendix_only_dist

