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Fine-grained dataflow processing of sparse Matrix-Solve
computation (A~x = ~b) in the SPICE circuit simulator can
provide an order of magnitude performance improvement on
modern FPGAs. Matrix Solve is the dominant component
of the simulator especially for large circuits and is invoked
repeatedly during the simulation, once for every iteration. We
process sparse-matrix computation generated from the SPICE-
oriented KLU solver in dataflow fashion across multiple spatial
floating-point operators coupled to high-bandwidth on-chip
memories and interconnected by a low-latency network. Using
this approach, we are able to show speedups of 1.2-64× (ge-
ometric mean of 8.8×) for a range of circuits and benchmark
matrices when comparing double-precision implementations
on a 250MHz Xilinx Virtex-5 FPGA (65nm) and an Intel
Core i7 965 processor (45nm).

I. INTRODUCTION

SPICE (Simulation Program with Integrated Circuit Empha-
sis) [1] is a circuit-simulator used to model static and dynamic
analog behavior of electronic circuits. A SPICE simulation
is an iterative computation that consists of two phases per
iteration: Model Evaluation followed by Matrix Solve (A~x =
~b). Accurate SPICE simulations of large sub-micron circuits
can often take hours, days or weeks of runtime on modern
processors. As we simulate larger circuits and include parasitic
effects, SPICE runtime is dominated by performance of the
Matrix-Solve. Various attempts at reducing these runtimes
by parallelizing SPICE have met with mixed success (see
Section II-D). This phase of SPICE does not parallelize easily
on conventional processors due to the irregular structure of the
underlying sparse-matrix computation, high-latency inter-core
communication of processor architectures and scarce memory
bandwidth. Modern FPGAs can efficiently support sparse-
matrix computation by exploiting spatial parallelism effec-
tively using multiple spatial floating-point operators, hundreds
of distributed, high-bandwidth on-chip memories and a rich
and flexible interconnect.

A parallel FPGA-based Matrix Solver must be robust
enough for circuit simulation application and should avoid
dynamic changes to the matrix data-structures to enable an
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Fig. 1: Flowchart of a SPICE Simulator
(Numbered blocks are calls to Matrix Solver)

efficient hardware mapping. Existing FPGA-based parallel
matrix solvers [2], [3] are not robust enough for SPICE
simulation problems. The sparse Matrix Solver package in
spice3f5, Sparse 1.3, has a highly-dynamic nature (matrix
non-zero pattern changes frequently) and is unsuitable for
parallelization on FPGAs. Instead, we use the KLU Matrix-
Solve package [4] which is a sparse, direct solver optimized
for circuit simulation application which avoids per-iteration
changes to the matrix structures. KLU is faster than Sparse 1.3
even for sequential performance (see Section V-A). The KLU
solver exploits the unique structure of circuit matrices and uses
superior matrix reordering techniques to preserve matrix spar-
sity. It performs symbolic factorization of the computation
at the start of the simulation to precompute the matrix non-
zero pattern just once. This static non-zero pattern enables
reuse of the matrix factorization compute graph across all
SPICE iterations. Our parallel FPGA architecture exploits this
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static compute structure to distribute processing across parallel
PEs and schedules dataflow dependencies between operations
over a low-latency interconnect. Our FPGA architecture is
optimized for processing dataflow operations on static graphs
efficiently and consequently delivers high speedups for the
Matrix-Solve compute graphs across a range of benchmark
circuits.

In this paper, we demonstrate how to parallelize the KLU
Matrix Solver for the SPICE simulator using FPGAs. In
previous work, we have accelerated SPICE Model-Evaluation
on FPGAs [5] and other parallel architectures [6]. In future
work we will assemble a complete SPICE simulator.

The key contributions of this paper include:
• Optimization of sequential SPICE Matrix Solve perfor-

mance by integrating a faster KLU matrix solver with
spice3f5 to replace the existing Sparse 1.3 package.
• Design and demonstration of double-precision implemen-

tation of sparse, direct KLU matrix solver on Xilinx Virtex-5
FPGA.
• Quantitative empirical comparison of KLU Matrix Solver

on the Intel Core i7 965 and a Virtex-5 FPGA for a variety
of matrices generated from spice3f5 circuit simulations
[7], [8], [9], the UFL Sparse Matrix collection [10] and
Power-system matrices from the Matrix Market suite [11].

II. BACKGROUND

A. Summary of SPICE Algorithms

SPICE simulates the dynamic analog behavior of a circuit
described by non-linear differential equations. SPICE circuit
equations model the linear (e.g. resistors, capacitors, inductors)
and non-linear (e.g. diodes, transistors) behavior of devices
and the conservation constraints (i.e. Kirchoff’s current laws—
KCL) at the different nodes and branches of the circuit.
SPICE solves the non-linear circuit equations by alternately
computing small-signal linear operating-point approximations
for the non-linear elements and solving the resulting system
of linear equations until it reaches a fixed point. The lin-
earized system of equations is represented as a solution of
A~x = ~b, where A is the matrix of circuit conductances, ~b
is the vector of known currents and voltage quantities and
~x is the vector of unknown voltages and branch currents.
The simulator calculates entries in A and ~b from the device
model equations that describe device transconductance (e.g.,
Ohm’s law for resistors, transistor I-V characteristics) in the
Model-Evaluation phase. It then solves for ~x using a sparse
linear matrix solver in the Matrix-Solve phase. We illustrate
the steps in the SPICE algorithm in Figure 1. The inner
loop iteration supports the operating-point calculation for the
non-linear circuit elements, while the outer loop models the
dynamics of time-varying devices such as capacitors.

B. SPICE Matrix Solve

Spice3f5 uses the Modified Nodal Analysis (MNA) tech-
nique [12] to assemble circuit equations into matrix A. Since
circuit elements tend to be connected to only a few other
elements, the MNA circuit matrix is highly sparse (except

TABLE I: spice3f5 Runtime Distribution (Core i7 965)

Benchmark Model Matrix Matrix Solve (%)
Circuits Eval. Solve Sequential 30× Parallel
(bsim3) (seconds) (seconds) Model-Eval. Model-Eval

no parasitics
ram2k 55 10 16 84
ram8k 237 87 27 91
ram64k 2005 1082 36 94

with parasitics
ram2k 69 149 69 98
ram8k 300 2395 89 99
ram64k 2597 99487 97 99

high-fanout nets like power lines, etc). The matrix structure
is unsymmetric due to the presence of independent sources
(e.g. input voltage source). The underlying non-zero structure
of the matrix is defined by the topology of the circuit and
consequently remains unchanged throughout the duration of
the simulation. In each iteration of the loop shown in Figure 1,
only the numerical values of these non-zeroes are updated
in the Model-Evaluation phase of SPICE. This means we
can statically schedule the update of non-zeros once at the
beginning of the simulation and reuse the data-independent
schedule across all iterations.

To find the values of unknown node voltages and branch
currents ~x, we must solve the system of linear equations
A~x = ~b. The sparse, direct matrix solver used in spice3f5
first reorders the matrix A to minimize fillin using a technique
called Markowitz reordering [13]. This tries to reduce the
number of additional non-zeroes (fillin) generated during LU
factorization. It then factorizes the matrix by dynamically
determining pivot positions for numerical stability (potentially
adding new non-zeros) to generate the lower-triangular compo-
nent L and upper-triangular component U such that A = LU .
Finally, we calculate ~x using Front-Solve L~y = ~b and Back-
Solve U~x = ~y operations.

In Table I we tabulate the distribution of runtime be-
tween the Model-Evaluation and Matrix-Solve phases of
spice3f5. We generated datapoints in this table by running
spice3f5 on an Intel Core i7 965 on a set of benchmark
circuits. We observe that for large circuits the simulation
time can be dominated by Matrix Solve. We have previously
shown [5], [6] how to speedup Model Evaluation by ≈30×
for the bsim3 device model. When including this speedup,
we observe that matrix solve may account for as much as
99% of total runtime (ram64k in Table I). Hence, to achieve
a balanced overall speedup, a parallel solution to Matrix-Solve
is necessary.

C. KLU Matrix Solver

Advances in numerical techniques during the past decade
have delivered newer faster solvers. Hence, we replace
Sparse 1.3 with the state-of-the-art KLU solver [4], [14] which
is optimized for circuit simulation applications (runtime com-
parison in Section V-A). The KLU solver uses superior ma-
trix preordering algorithms (Block Triangular Factorization-
BTF and Column Approximate Minimum Degree-COLAMD)
that attempt to minimize fillin during factorization phase.



It employs the left-looking Gilbert-Peierls [15] algorithm to
compute the LU factors of the matrix for each SPICE iteration.
The solver attempts to reduce the factorization runtimes for
subsequent iterations (refactorization) by using partial pivoting
technique to generate a fixed non-zero structure in the LU fac-
tors at the start of the simulation (during the first factorization).
The preordering and symbolic analysis step labeled as Step 1©
in Figure 1 computes non-zero positions of the factors at the
start while the refactorization and solve steps labeled as Step
2© solve the system of equations in each iteration. Our FPGA

solution discussed in this paper parallelizes the refactorization
and solve phases of the KLU solver.

D. Related Work

1) Parallel SPICE: We briefly survey other approaches
for parallelizing the Matrix-Solve phase of SPICE. In [16],
a hybrid direct-iterative solver is used to parallelize SPICE
Matrix-Solve but requires modifications to the matrix structure
(dense row/column removals) and is able to deliver only 2–3×
speedup using 4 SGI R10000 CPUs. In [17], a coarse-grained
domain-decomposition technique is used to achieve 31×-
870× (119× geometric mean) speedup for full-chip transient
analysis with 32 processors at SPICE accuracy. In contrast,
our technique requires a single FPGA and can be used as an
accelerated kernel on individual domains of [17] to achieve
additional speedup.

2) FPGA-based Matrix Solvers: FPGA-based accelerators
for sparse direct methods have been considered in [3] and
[2] in the context of Power-system simulations. In [3], the
HERA architecture performs single-precision LU factorization
of symmetric Power-system matrices using coarse-grained
block-diagonal decomposition but no optimized software run-
times are reported. Unlike our design, their architecture reuses
the Processing Elements (PEs) for both computation and
routing thereby limiting achievable performance. In [2], a
right-looking technique is used to deliver 10× speedup for
the single-precision LU factorization (5–6× projected total
speedup reported in [18]) for Power-system matrices when
compared to a 3.2 GHz Pentium 4. Our approach parallelizes
all three phases (LU Factorization, Front-Solve and Back-
Solve; see Figure7c for a breakdown of runtimes) on FPGAs
by 11× (geomean) in double-precision arithmetic, and we
report speedups compared to the newer Intel Core i7 965
processor.

III. PARALLEL MATRIX-SOLVE ON FPGAS

We now describe the KLU algorithm in additional detail.
We also explain our parallelization approach and FPGA ar-
chitecture used for this application.

A. Structure of the KLU Algorithm

At the start of the simulation (in Step 1© of Figure 1),
the KLU solver performs symbolic analysis and reordering
in software to determine the exact non-zero structure of the L
and U factors. This pre-processing phase is a tiny fraction
of total time and needs to be run just once at the start
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1L=I; % I=identity matrix
2for k=1:N
3b = A(:,k); % kth column of A
4x = L \ b; % \ is Lx=b solve
5U(1:k) = x(1:k);
6L(k+1:N) = x(k+1:N) / U(k,k);
7end;
8% return L and U as result

Listing 1: Gilbert-Peierls Algorithm
1x=b;
2% symbolic analysis predicts non-zeros
3for i = 1:k-1 where x(i)!=0
4for j = i+1:N where x(j)!=0, L(j,i)!=0
5x(j) = x(j) - L(j,i)*x(i);
6end;
7end;
8% returns x as result

Listing 2: Sparse L-Solve (Lx=b, unknown x)

(see column ‘Anal.’ in Table IV). In our parallel approach,
we start with knowledge of the non-zero pattern. We are
parallelizing Step 2© of the KLU Matrix-Solver. This step
consists of a Refactorization, Front-Solve and Back-Solve
phases. In Listing 1, we illustrate the key steps of the fac-
torization algorithm. It is the Gilbert-Peierls [15] left-looking
algorithm that factors the matrix column-by-column from left
to right (shown in the Figure accompanying Listing 1 by
the sliding column k). For each column k, we must perform
a sparse lower-triangular matrix solve shown in Listing 2.
The algorithm exploits knowledge of non-zero positions of
the factors when performing this sparse lower-triangular solve
(the x(i), x(j) 6= 0 checks in Listing 2). This feature of the
algorithm reduces runtime by only processing non-zeros and
is made possible by the early symbolic analysis phase. It
stores the result of this lower-triangular solve step in x (Line
4 of Listing 1). The kth column of the L and U factors is
computed from x after a normalization step on the elements
of Lk. Once all columns have been processed, L and U factors
for that iteration are ready. The sparse Front-Solve and Back-
Solve steps have structure similar to the pseudo-code shown
in Listing 2.



B. Parallelism Potential

From the pseudo-code in Listing 1 and Listing 2 it may
appear that the matrix solve computation is inherently se-
quential. However, if we unroll those loops we can expose
the underlying dataflow parallelism available in the sparse
operations. In Figure 2, we compare the apparent sequential
ordering of operations with the inherent dataflow dependencies
in the processing. Each non-zero matrix entry is labeled
in order of its evaluation (each step is one evaluation of
Line 5 in Listing 2 or Line 6 in Listing 1; those labeled
0 need no updating). An entry can be processed after all
dependent entries have been evaluated (i.e. one more than
the label of the source of last incoming edge). The first
matrix shows the dataflow edges in the computation in the
sequential description of the algorithm (software version).
The Gilbert-Peierls algorithm shown in Listing 1 processes
columns serially, we can see that the sequential order is of
length 6 (label of the last matrix element evaluated). The
second matrix shows the same dataflow graph with additional
labels for parallel paths (paths labeled a and b can evaluate
in parallel, all edges in c can evaluate in parallel). This fine-
grained dataflow parallelism allows different columns to be
processed in parallel and reduces the latency in the graph.
Consequently, the last matrix entry is evaluated at depth 4.
We represent the complete dataflow compute graph for this
example in Figure 3. We illustrate the sequential chain as well
as parallel wavefronts on the dataflow graph for this example
matrix in Figure 3.

We observe there are two forms of parallel structure in the
dataflow graph that we can exploit in our parallel design:

1. Parallel Column Evaluation: Columns 1, 2 and 3 in Fig-
ure 2 can all be processed in parallel (paths c in Figure 3).
The non-zero structure of circuit matrices contain such
independent columns organized into parallel subtrees due
to the natural clustering of analog circuit elements into
components with little or no communication with each other.

2. Fine-Grained Dataflow Parallelism: Certain column oper-
ations in Column 4 could proceed before all earlier columns
are evaluated. These are parallel dataflow paths that can be
evaluated concurrently (paths a and b in Figure 3).
We show the execution profile of an example benchmark

psadmit2 in Figure 4 to illustrate potential for parallel
operation. We observe that we can issue as many as 6% of the
operations in the first few steps of the graph while on average
we can issue as many as 75 operations/step (compare that to
our architecture size of 9-25 PEs, see Section IV). However,
the critical chain of dependencies in the evaluation can be long
and may limit achievable performance (long tail of Figure 4).
We must take care to avoid a bad distribution of operations as
it may spread the critical path across the machine requiring
unnecessary high-latency communication (see Section V-D).
Additionally, certain rows and columns in the matrix may be
substantially dense (due to high-fanout nets like power lines,
clock, etc) that may create bottlenecks in the compute graph
(high-fanin and high-fanout nodes) (See Figure 8).
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C. Parallel FPGA Architecture

We organize our FPGA architecture in a Tagged-Token
Dataflow style [19] as a network of Processing Elements
(PEs) interconnected by a packet-switched routing network
(Figure 5). This architecture processes dataflow graphs by
explicitly passing tokens between dataflow graph nodes (over
the network) and making independent, local firing decisions
to process computation at each node. This allows us to exploit
fine-grained dataflow parallelism available in the application
that is difficult to exploit on conventional architectures. Each
PE processes one dataflow graph node at a time but manages
multiple nodes in the dataflow graph (virtualization) to handle
dataflow graphs much larger than the physical PE count.

A node in the dataflow graph is ready for processing when
it receives all its inputs. This is the dataflow firing rule. When
the condition is met, the floating-point computation at the node

is processed by the PE datapath. The results are then routed to
the destination nodes as specified in the dataflow graph over a
packet-switched network using 1-flit packets [24]. Each packet
contains destination address and the floating-point result.

An FPGA implementation of this computation enables
concurrent evaluation of high-throughput floating-point opera-
tions, control-oriented dataflow conditions as well as pipelined,
low-latency on-chip message routing using the same substrate.
The PE shown in Figure 5 supports double-precision floating-
point add, multiply and divide and is capable of issuing one
floating-point operation per cycle. The network interfaces are
streamlined to handle one message per cycle (non-blocking
input). We explicitly store the Matrix-Solve graph structure
(shown in Figure 3) in local FPGA on-chip memories. The
Dataflow Logic in the PE keeps track of ready nodes and
issues floating-point operations when the nodes have received
all inputs (dataflow firing rule). The Send Logic in the PE
inspects network busy state before injecting messages for
nodes that have already been processed. We map the Matrix-
Solve graphs to this architecture by assigning multiple nodes
to PEs so as to maximize locality and minimize network
traffic (see Section IV). We route packets between the PEs
in packet-switched manner over a Bidirectional Mesh network
using Dimension-Ordered Routing (DOR) [20]. Our network
is 84-bit wide to support 64-bit double-precision floating-point
numbers along with a 20-bit node address (a million nodes).
For large graphs, we may not be able to fit the entire graph
structure entirely on-chip. We can fit the graphs by partitioning
them and then loading the partitions one after another. This is
possible since the graph is completely feed forward (DAGs)
and we can identify the order of loads. We estimate such
loading times over a DDR2-500 memory interface.

IV. METHODOLOGY

We now explain the experimental framework used in our
study. We show the entire flow in Figure 6.

A. Sequential Baseline: Integration of KLU with spice3f5

We use the last official release of the Berkeley SPICE
simulator spice3f5 in our experiments. We replace the
default Sparse 1.3 matrix solver available in spice3f5 with
the newer, improved KLU solver for all transient iterations.
For simplicity, we currently retain Sparse 1.3 to produce
the DC operating point at the beginning of the simulation.
We quantify the performance benefits of using the higher-
performance solver by measuring the runtime of Matrix-Solve
phase of spice3f5 using both solvers across a collection of
benchmark circuits. We use the PAPI 3.6.2 [22] performance
counters to accurately measure runtimes of these sequential
solvers when using a single core of the Intel Core i7 965
processor.

B. Experimental Flow

For our parallel design, we first generate the dataflow graphs
for LU factorization as well as Front/Back solve steps from
a single-iteration of Matrix-Solve phase. Since the non-zero
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structure of the matrix is static, the same compute graph is
reused across all iterations. Alternately, we generate these
compute graphs from a stand-alone KLU solver when process-
ing circuit simulation matrices directly for UFL and Power-
system matrices. Once we have the dataflow graphs, we assign
nodes to PEs of our parallel architecture. We consider two
strategies for placing nodes on the PEs: random placement
and placement for locality using MLPart [23] with fanout
decomposition. We use a custom cycle-accurate simulator that
models the internal pipelines of the PE and the switches to
get parallel runtimes. Our simulator uses a latency model
obtained from a hardware implementation of a sample design
(see Table III). We evaluate performance across several PE
counts to identify the best parallel design.

C. Benchmarks

We evaluate our parallel architecture on benchmark matrices
generated from spice3f5, circuit-simulation matrices from
the University of Florida Sparse-Matrix Collection [10] as well
as Power-system matrices from the Harwell-Boeing Matrix-
Market Suite [11]. For matrices generated from spicef5, we
use circuit benchmarks provided by Simucad [9], Igor Markov
[8] and Paul Teehan [7]. Our benchmark set captures matrices
from a broad range of problems that have widely differing
structure. We tabulate key characteristics of these benchmarks
in Table II. Our parallel FPGA architecture handles dataflow
graphs of size shown in column ‘Total Ops.’ of Table II.

D. FPGA Implementation

We use spatial implementations of individual floating-point
add, multiply and divide operators from the Xilinx Floating-
Point library in CoreGen [25]. These implementations do
not support denormalized (subnormal) numbers. We use the
Xilinx Virtex-5 SX240T and Xilinx Virtex-6 LX760 for our
experiments. We limit our implementations to fit on a single
FPGA and use off-chip DRAM memory resources for storing
the graph structure. The switches in the routing network
are assembled using simple split and merge blocks as de-
scribed in [24]. We compose switches in a 84-bit Bidirectional

TABLE III: Virtex-5 FPGA Cost Model
Block Area Latency DSP48 BRAM Speed Ref.

(Slices) (clocks) (blocks) (min.) (MHz)
Add 334 8 0 0 344 [25]
Multiply 131 10 11 0 294 [25]
Divide 1606 57 0 0 277 [25]
Processing
Element

2368 - 11 8 270 -

Mesh
Switchbox

642 4 0 0 312 -

DDR2
Controller

1892 - 0 0 250 [26]

Mesh network (64-bit data, 20-bit node address) that supports
Dimension-Ordered Routing (shown in Section III-C). We
pipeline the wires between the switches and between the
floating-point operator and the coupled-memories for high-
performance. We configure a DDR2-500 MHz interface ca-
pable of transferring 32 bytes per cycle and using less than
60% of the user-programmable FPGA-IO with the BEE3
DDR2 memory controller [26]. We estimate memory load
time for streaming loads over the external memory interface
using lowerbound bandwidth calculations. We do not require
a detailed cycle-accurate simulation for the memory controller
since it is a simple, sequential, streaming access pattern that
we know and precompute. We show the area and latency
model in Table III We synthesize and implement a sample
double-precision 4-PE design on a Xilinx Virtex-5 device [27]
using Synplify Pro 9.6.2 and Xilinx ISE 10.1. We provide
placement and timing constraints to the backend tools and
attain a frequency of 250 MHz. We can fit a system of 9 PEs
on a Virtex-5 SX240T (77% logic occupancy) while systems
with 25 PEs are easily possible on a Virtex-6 LX760 (esti-
mated 65% logic occupancy). We note that our architecture is
frequency limited primarily by the Xilinx floating-point divide
operator and the DDR2 controller bandwidth. We can improve
our clock frequency further by using better division algorithms
(e.g. SRT-8) and better memory interfaces (e.g. DDR3) for
additional external memory bandwidth.

V. EVALUATION

We now present the performance achieved by our design
and discuss the underlying factors that explain our results.

A. Software Baseline: Sparse 1.3 Solver vs. KLU Solver

We first quantify the performance impact of using the faster
KLU matrix solver in spice3f5 on a variety of benchmark
circuits. We are able to deliver this performance improvement
using the exact same convergence conditions as Sparse 1.3
without any loss in accuracy nor any increase in Newton-
Raphson iterations. Thus, the resulting solution quality of the
simulator is not affected by the KLU solver. In Table IV, we
see that KLU improves the per-iteration matrix solve time by
as much as 3.76× for the largest ram2k benchmark while de-
livering a geometric mean improvement of 1.7× on the whole
benchmark set. We also observe that for some matrices KLU
delivers similar performance as Sparse 1.3 (e.g. 10stages,
r8k). The symbolic analysis time (column Anal. in Table IV)



TABLE II: Circuit Simulation Benchmark Matrices
Benchmarks Matrix Size Non-Zeros Sparsity

(%)
Add Multiply Divide Total Ops. Fanout

(DFG)
Fanin
(Non-
Zeros)

Critical-
Path
(cycles)

spice3f5, Simucad [9]
ram2k 4827 60.2K 0.2587 887.5K 887.5K 32.5K 1.8M 128 9106 83.1K

spice3f5, Clocktrees [8]
r4k 15656 46.9K 0.0191 46.9K 46.9K 31.3K 125.2K 2 6 46.8K
r8k 25890 77.6K 0.0115 77.6K 77.6K 51.7K 207.1K 2 6 48.2K
r10k 30522 91.5K 0.0098 91.5K 91.5K 61.0K 244.1K 2 8 49.1K
r15k 41761 125.2K 0.0071 125.2K 125.2K 83.5K 334.0K 2 8 47.8K
r20k 52704 158.1K 0.0056 158.1K 158.1K 105.4K 421.6K 2 8 53.3K

spice3f5, Wave-pipelined Interconnect [7]
10stages 3914 25.3K 0.1656 53.5K 53.5K 14.1K 121.3K 39 424 15.8K
20stages 11217 76.2K 0.0606 168.8K 168.8K 42.8K 380.4K 205 432 33.5K
30stages 16807 119.2K 0.0422 276.7K 276.7K 65.9K 619.4K 199 432 70.5K
40stages 22397 153.1K 0.0305 341.4K 341.4K 85.5K 768.5K 208 522 32.8K

Circuit Simulation, UFL Sparse Matrix [10]
sandia1 1088 6.0K 0.5114 11.3K 11.3K 3.5K 26.2K 6 60 12.4K
sandia2 1088 6.0K 0.5114 11.3K 11.3K 3.5K 26.2K 6 60 12.4K
bomhof2 1262 24.1K 1.5141 239.7K 239.7K 12.7K 492.1K 52 579 21.7K
bomhof1 2560 31.7K 0.4848 354.0K 354.0K 17.1K 725.2K 86 368 26.9K
bomhof3 7607 52.0K 0.0899 139.3K 139.3K 30.1K 308.9K 25 223 23.0K
memplus 17758 126.1K 0.0400 798.8K 798.8K 71.9K 1.6M 97 956 28.4K

Power-system, Matrix Market [11]
psadmit1 494 2.3K 0.9564 4.3K 4.3K 1.4K 10.0K 10 46 5.0K
psadmit2 1138 5.3K 0.4163 9.8K 9.8K 3.2K 22.8K 11 62 7.1K
bcspwr09 1723 18.4K 0.6200 106.6K 106.6K 10.0K 223.3K 53 160 27.3K
bcspwr10 5300 155.9K 0.5552 1.9M 1.9M 93.1K 3.9M 155 538 132.4K

TABLE IV: Runtime per Iteration of KLU and Sparse 1.3
Bnch. Sparse 1.3 (ms) KLU (ms) Ratio

LU Slv. Tot. Anal. LU Slv. Tot.
Simucad [9]

ram2k 11.6 0.6 12.3 6.9 3.0 0.2 3.2 3.7
Clocktrees [8]

r4k 8.7 5.6 14.4 16.3 6.2 1.4 7.6 1.8
r8k 19.1 12.9 32.0 58.8 26.7 6.0 32.8 0.9
r10k 23.7 15.8 39.6 33.9 14.7 3.1 17.8 2.2
r15k 33.1 22.0 55.1 46.9 20.5 4.2 24.8 2.2
r20k 42.0 27.9 70.0 60.5 28.8 6.1 35.0 1.9

Wave-pipelined Interconnect [7]
10stages 0.9 0.4 1.4 4.0 1.1 0.2 1.4 0.9
20stages 3.4 1.3 4.7 6.1 2.0 0.4 2.4 1.9
30stages 3.1 1.2 4.4 9.3 3.1 0.6 3.7 1.1
40stages 5.3 2.3 7.7 12.1 4.2 0.8 5.0 1.5

Geometric Mean 1.7

is ≈2× the runtime of a single Matrix-Solve iteration. This
means that even if the analysis phase remains sequentialized
and we speedup iterations by 100× (see Figure 7a), analysis
accounts for only 1% of total runtime after 10K iterations
(3.3K timesteps for an average of 3 iterations/timestep seen in
our benchmark set). We use this faster sequential baseline for
computing speedups of our FPGA architecture.

B. FPGA Speedups

In Figure 7a, we show the speedup of our FPGA architecture
using the best placed design that fits in the FPGA over the
sequential software version. We obtain speedups between 1.2–
64× (geomean 8.8×) for Virtex-5 and 1.2–86× (geomean
10×) for Virtex-6 (predicted) over a range of benchmark
matrices generated from spice3f5. We achieve speedups of

3–9× (geomean 5×) for circuit simulation matrices from the
UFL Sparse Matrix collection. We further deliver a speedup of
6–22× (geomean 11×) for Power-system simulation matrices
accelerated using FPGAs in [3]. Our solution is two orders
of magnitude superior to the one presented in [3] due to the
choice of a better matrix solve algorithm and independent
processing of routing and floating-point operations. We re-
sort to random placement of graph operations for ram2k,
memplus, bcspwr09, bcspwr10 netlists due to their
large size. In Figure 7b, we show the floating-point throughput
of our FPGA design as well as the processor. We see that the
FPGA is able to attain rates of 300–1300 MFlop/s (geomean
of 650 MFlops/s on 9-PE Virtex-5 with a peak of 6.75
GFlops/s) while the processor is only able to achieve rates
of 6-500 MFlops/s (geomean of 55 MFlops/s on a single-
core with a peak of 6.4 GFlops/s). From these graphs, we can
observe a correlation between circuit type and performance:
memory circuits with high-fanout parallelize poorly (1.2×)
while clocktree netlists with low-fanout parallelize very well
(64–88×). We investigate this further in Figure 8.

C. Performance Limits

We now attempt to provide an understanding of FPGA
system bottlenecks and identify opportunities for improve-
ment. We first measure runtimes of the different phases of
the matrix solve in Figure 7c to identify bottlenecks. This
shows that memory loading times can account for as much
as 38% of total runtime while the LU-factorization phase can
account for as much as 30%. Memory load times (limited by
DRAM bandwidth) can be reduced by around 3–4× using a
higher-bandwidth DRAM interface (saturating all FPGA IO
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(a) Speedup across different benchmarks
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(b) Sustained Floating-Point Rates
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(c) Runtime Breakdown of Different Phases
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(d) Additional Speedup Possible

Fig. 7: Understanding performance of FPGA Solver

and using DDR3-800) while the LU-factorization runtime can
be improved with better placement of graph nodes.

In Figure 7d, we attempt to bound the additional im-
provement that may be possible in achieved runtime for
the dominant phase: LU factorization. For these estimates
we ignore communication bottlenecks. We first compute the
latency of the critical path of floating-point instructions in
the compute graph. Critical path latency is the ideal latency
that can be achieved assuming infinite PEs, unlimited DRAM
bandwidth and no routing delays. This provides an upper
bound on achievable speedup (Tobserved/Tcritical) (shown as
Infinite PEs in Figure 7d) for these compute graphs. When
we consider the effect of finite PE count (limited hardware),
we must account for serialization due to reuse of physical
resources. We add an idealized (approximate) estimate of
these serialization overheads at 25 PEs and 9 PEs to get
a tighter bound on achievable speedup (labeled accordingly
in Figure 7d). We observe that little additional speedup is
achievable for clocktree netlists and small powersystem ma-
trices (e.g. sandia1,sandia2,psadmit1,psadmit2).
For larger benchmarks such as wave-pipelined interconnect,
memory circuit and rest of the power matrices higher addi-
tional speedups are possible. For wavepipelined interconnect
and memplus netlist we observe that serialization at finite PE
counts reduces achievable speedup substantially. For netlists
with high potential speedups, we are currently unable to
contain the critical paths effectively into few PEs. We will
see later in Figure 9 in Section V-D, that we may be able to
recover this speedup if we can perform placement for these
large graphs.

In Figure 8, we attempt to explain the high variation (1.2×–
64×) in achieved speedups across our benchmark set. We
observe that speedup is inversely correlated to the maximum
amount of fanin at a non-zero location (measure of non-zero
density in a column). Thus matrices with high-fanin (ram2k
with a fanin of 9106) have low speedups (of 1.2×) while
matrices with low-fanin (r4k with a fanin of 6) have high
speedups (of 64×). This sequentialization is unavoidable if
we insist on bit-exactness with the software solver. However
if we can sacrifice bit-exactness requirements, we can achieve
additional performance for bottlenecked matrices.

D. Cost of Random Placement and Limits to MLPart

In Figure 9 we show the speedup from using a high-
quality placer, MLPart, over a randomly distributed graph. We
quantify the performance benefit on systems of 9 PEs and 25
PEs. We observe that random placement is only 2× worse than
MLPart for 9 PEs but get as much as 10× worse when scaled
to 25 PEs. At 9 PEs, for certain matrices, random placement is
actually superior to MLPart since MLPart does not explicitly
try to contain the critical path in a few PEs. This suggests we
need a placer that explicitly localizes the critical path as much
as possible. From Figure 7a, we note that the 25-PE Virtex-
6 implementation is only able to deliver additional 25–50%
improvement in performance over the 9-PE Virtex-5 design.
We expect such placement algorithms that explicitly contain
the critical path in fewer PEs to be useful in helping our design
scale to larger system sizes.
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Fig. 9: Cost of Random Placement at 25 PEs and 9 PEs

VI. FUTURE WORK

We identify the following areas for additional research that
can improve upon our current parallel design.
• For large matrices, we can achieve greater speedups if we

can distribute the dataflow operations across the parallel
architecture while capturing critical path in as few PEs as
possible using a suitable fast placer.
• For circuits with high-fanout nets (or dense rows/columns)

we can sacrifice bit-exactness of result to get greater
speedup with associative decomposition strategies.
• For large system sizes >25 PEs, we need to decompose

the circuit matrix into sub-matrices that can be factored in
parallel (discussed in Section II-D). The decomposed sub-
matrices can then use our FPGA dataflow design.
• We intend to integrate an entire SPICE simulator on an

FPGA to achieve a balanced overall application speedup.
• We also intend to compare the performance of the FPGA

solver with an equivalent parallel solver running on multi-
core processors and GPUs.

VII. CONCLUSIONS

We show how to accelerate sparse Matrix-Solve in SPICE
by 1.2–64× (geometric mean 8.8×) on a Xilinx Virtex-5
SX240T FPGA. Our design was also able to accelerate circuit
simulation matrices from the UFL Sparse Matrix Collection
as well as Power-system matrices from the Matrix-Market
suite. We delivered these speedups using fine-grained dataflow
processing of the sparse-matrix computation over a spatial
FPGA architecture customized for operating on dataflow
graphs. Matrices with a uniform distribution of non-zeros (low

maximum fanin in the graph) achieve the highest speedups on
our architecture. Placement for locality can provide as much
as 10× improvement for sparse matrix solve as we scale to
parallel systems with 25 PEs or more.
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