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Impact of Parallelism and Memory Architecture on FPGA
Communication Energy

EDIN KADRIC, DAVID LAKATA, and ANDRÉ DEHON, University of Pennsylvania

The energy in FPGA computations is dominated by data communication energy, either in the form of memory
references or data movement on interconnect. In this article, we explore how to use data placement and par-
allelism to reduce communication energy. We show that parallelism can reduce energy and that the optimal
level of parallelism increases with the problem size. We further explore how FPGA memory architecture
(memory block size(s), memory banking, and spacing between memory banks) can impact communication
energy, and determine how to organize the memory architecture to guarantee that the energy overhead
compared to the optimally matched architecture for the design is never more than 60%. We specifically show
that an architecture with 32 bit wide, 16Kb internally banked memories placed every 8 columns of 10 4-LUT
logic blocks is within 61% of the optimally matched architecture across the VTR 7 benchmark set and a set of
parallelism-tunable benchmarks. Without internal banking, the worst-case overhead is 98%, achieved with
an architecture with 32 bit wide, 8Kb memories placed every 9 columns, roughly comparable to the memory
organization on the Cyclone V (where memories are placed about every 10 columns). Monolithic 32 bit wide,
16Kb memories placed every 10 columns (comparable to 18Kb and 20Kb memories used in Virtex 4 and
Stratix V FPGAs) have a 180% worst-case energy overhead. Furthermore, we show practical cases where
designs mapped for optimal parallelism use 4.7× less energy than designs using a single processing element.
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1. INTRODUCTION
Energy consumption is a key design limiter in many of today’s systems. Mobile devices
must make the most of limited energy storage in batteries. Limits on voltage scaling
mean that even wired systems are often limited by power density. In these situations,
reducing energy per operation can increase the performance delivered within a limited
power envelope.

Within FPGAs, for many applications, data movement energy—the energy for moving
data from one physical location on the FPGA to another—can dominate computational
energy. Data movement includes both energy for accessing memory and energy for
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moving bits over interconnect segments between processing elements (PEs). In this
article, we explore two interrelated issues that significantly impact data movement
energy in FPGA applications: parallelism and memory organization.

How does parallelism impact the energy required for computation? In sequential de-
signs, the energy reading and writing data in large memories is typically the dominant
component of energy. Since the energy to read from a memory grows with memory size,
parallel designs that use many smaller memories local to each PE rather than one large
memory can reduce memory energy. As long as the parallel design does not incur too
much energy communicating among its PEs, the decomposition can provide a net en-
ergy reduction. We formulate the trade-offs involved, show analytically how they lead
to an optimum level of parallelism that minimizes communication energy (Section 2),
and illustrate how parallelism tuning can be used to minimize energy both for an ideal
limit-study architecture and for designs mapped to a specific, energy-optimized FPGA
architecture (Section 6).

This result underscores the importance of the architectural question, How do we
organize memories in FPGAs to minimize the energy required for a computation? We
have several choices. What are the sizes of memory blocks? Where (how frequently) are
memory blocks placed in the FPGA? How are the memories activated? How are they
decomposed into sub-block banks? What read and write widths should the memory
blocks use? Then there are choices available to the RTL mapping flow. When mapping
a logical memory to multiple blocks, should they each get a subset of the data width
and be activated simultaneously, or should they each get a subset of the address range
and be activated exclusively? We develop simple analytic relations to reason about
these choices (Section 3). After setting up the background (Section 4) and methodology
(Section 5), we perform an empirical, benchmark-based exploration to identify the
most energy-efficient organization for memories in FPGAs and quantify the trade-offs
between area- and energy-optimized mappings (Section 7). We show how to choose a
one-size-fits-all FPGA memory architecture that contains the worst-case architectural
mismatch overhead from memory block size and placement below 60%.

Our contributions are as follows:

—Analytic characterization of the energy-optimal level of parallelism for applications
(Section 2)

—Analytic characterization of the energy overhead that results from mismatches be-
tween the logical memory organization needed by a task and the physical memory
organization provided by an FPGA (Section 3)

—Introduction of the continuous hierarchy memory (Section 3) and characterization of
its benefits (Section 7)

—Characterization of how parallelism impacts energy consumption, including demon-
stration of how parallelism tuning can reduce energy (Section 6)

—First empirical exploration of memory architecture space for energy minimization
(Section 7)

—VTR-compatible memory mapping for energy minimization (Section 5.2)

This article is a unification and expansion of Kadric et al. [2014, 2015]. The analysis
for parallel scaling (Section 2.3) is new. The analytic bounds on memory mismatch
overhead have been tightened using the golden ratio layout (Section 3). This article
includes the effects of width mismatch, which were omitted in Kadric et al. [2015], and
the parallelism benchmark set has been expanded beyond [Kadric et al. 2014]. We omit
parallel mappings to commercial architectures (included in Kadric et al. [2014]) and
the treatment of multiple memory sizes (included in Kadric et al. [2015]).

We start by describing the key phenomena involved and developing a simplified an-
alytical framework to illustrate and build intuition on the major effects and trends
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Fig. 1. Energy versus PE count (Npe) for the window filter benchmark (WinF).

(Sections 2 and 3). Then we introduce the specific FPGA and energy background (Sec-
tion 4) and experimental methodology (Section 5) to set up the empirical experiments
in Sections 6 and 7.

2. PARALLELISM AND DATA MOVEMENT ENERGY
To perform any computation, we must communicate data between the point in time
and space where each intermediate data item is computed and where it is consumed.
This communication can occur either through interconnect wires, if the operators are
spatially located at different places, or through memories, if the operators are sequen-
tialized on a common physical operator. At the extremes, the design could be fully
spatial (e.g., a spatial fast Fourier transform (FFT)) or fully sequential (e.g., a single
processor that computes the same FFT, storing intermediate data in a single, large
memory). Either way, we spend energy for communication—either toggling long wires
or reading and writing from large memories. We show that, in the general case, neither
extreme is the most energy efficient. In other words, we can optimize the energy re-
quired for communication by tuning the parallelism in the task, and there is typically a
level of parallelism that minimizes total communication energy (see Figure 1). The phe-
nomenon here is closely related to the ones explored in DeHon [2015], and we similarly
show that it is often better to distribute the data and computation than to centralize
it in a single memory. GraphStep [Delorimier et al. 2011] provides one concrete model
for how applications might be defined to allow this form of parallelism tuning. In the
remainder of this section, we explain and model the opposing communication energy
effects and show how they give rise to this optimum energy point.

2.1. Memory Energy
The energy required to access a memory depends on its capacity and the number of
output bits. This is driven almost directly by the length of the wires that the bits must
traverse to move between the input/output (I/O) port for the memory and the memory
cell location within the array. Roughly, the energy (and delay) minimizing organization
for an M-bit memory is a

√
M ×

√
M array, meaning that all main wires in the memory

are of length
√

M so that their capacitance scales as
√

M and, consequently, their
switching energy scales as

√
M. Everything else being equal, a memory of four times

the capacity will cost twice the energy.
Since memory energy is driven by wire lengths, we cannot “cheat” the

√
M energy

growth by decomposing the memory into smaller memories and wiring to them. We
would still end up with address wires of length

√
M and I/O wires of length

√
M. If we

were dominated by memory cell capacitance, breaking the large memory into smaller
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memory banks and activating only one bank at a time could reduce the memory cell
energy, but we are still left with wiring energy that also has a

√
M dependence. We will

see later (Section 3) that banking can help us reduce mismatch energy.

2.2. Between Computations
For many computations, we can reduce the size of the memory by performing the
computation in parallel. Rather than having a single PE or computational datapath
with a large memory to hold all of the data, we can have multiple PEs, each with its
own, smaller memory. Ideally, for a problem with data size N, the size of the memories
scales as the serialization factor S = N/Npe, where Npe is the number of PEs. Smaller
memories reduce the energy for each memory operation as noted earlier. In the extreme,
we may be able to eliminate the memories all together and simply connect datapath
elements. For example, we could build a completely spatial FFT network with no
internal memories. However, increasing the number of PEs also increases the physical
size of the computation, potentially increasing the length of the wires in the system
and hence increasing energy. In tasks like the FFT, data must now be moved from the
PE where it is produced to the PE where it is consumed, and this data movement costs
energy.

2.3. Analysis
To understand how these effects interact, we develop simple energy models for the
computation. Since communication energy depends on interconnect lengths, which in
turn are driven by the design size, we first need a rough understanding of how the
design area grows with the number of PEs, Npe, and the problem size, N. We pay area
for memory to hold the state of the computation, Amem, area for the logic for each PE,
Alogic, and area for the interconnect.

Amem(M) ∝ M (1)

Memory area scales linearly with the number of bits stored.

S = N
Npe

(2)

Ape(S) = Amem (S) + Alogic (3)

The memory used by the PE will scale as the serialization factor, S, and that will drive
the PE area to scale by the serialization factor as well.

p′ = max(0.5, p) (4)

We use a Rent’s rule [Landman and Russo 1971] wiring model, in the spirit of Thompson
[1979] and Bhatt and Leighton [1984], to estimate the growth rate contribution from
wiring based on the Rent exponent, p. Rent’s rule says that the I/O wiring, IO, out of
a region with N computational elements, grows as IO = cNp, where c is a constant
dependent on the size of the primitive computational elements and p characterizes
the locality in the design. Rent’s rule wire area models have a breakpoint at p = 0.5,
where area grows linearly in N below p = 0.5 and as O(N2p) above p = 0.5. Using p′

(Equation (4)), we can describe the area growth in both cases as O(N2p′ ), allowing us
to state upcoming results more compactly.

A = Npe · Ape (S) + max

⎛

⎝C1

(
Np′

S

)2

, C2(Npe)2pnet

⎞

⎠ (5)
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Equation (5) captures both PE and interconnect contributions to estimate the area
growth of the implementation. The first term is the total area of all PEs, whereas the
second captures interconnect. The interconnect area in this max term can be driven by
either the wiring requirement for the physical substrate (pnet) or the communication
requirement of the application (p) and the extent to which the design is serialized, S.
C1 and C2 are constant factors for each of the cases, which may be different. pnet > p
means that the substrate (FPGA) is overdesigned for the application and will ultimately
determine the interconnect area instead of the design p; p < pnet means that the design-
required interconnect grows faster than the FPGA provides, meaning that design LUTs
must be spread out sparsely over physical FPGA LUTs to get adequate interconnect
wiring [DeHon 1999]. Np′ captures the volume of traffic that must cross the bisection
width of the chip and the denominator S accounts for the fact that it can be serialized
over S cycles, reducing the volume of physical wires required. Np′

/S or (Npe)pnet defines
one side length of the chip; the other will be proportional to this such that the area is
proportional to the square of this length term. Equation (5)’s max term deals with the
fact that wiring may drive total area, forcing the design to be spread out just to get
the required bandwidth for highly parallel computations when p > 0.5. As we will see,
this can have an effect limiting the amount of parallelism that should be exploited to
minimize energy.

With a model for area, we can now estimate energy requirements.

Emem(M) ∝
√

M (6)

Epe(S) = S · (Emem (S) + Elogic) (7)

The energy at the PE, Epe, is driven by the size of the memories and represents the
total energy over the PE processing all S computations assigned to the PE.

Ecomm ≤
log2(N)∑

i=0

(
N
2i × c(2i)p × 2⌈i/2⌉

√
A/N

)
(8)

∝ Np′√
A (9)

The communication energy, Ecomm, deals with both the volume of traffic and the length
of the wires that the traffic must traverse. Rent’s rule captures the number of wires at
each level of a hierarchical decomposition ((2i)p), and the areas computed above allow
us to associate a wire length with each level of the hierarchy (2⌈i⌉

√
A/N). The N

2i term
captures the number of subunits at a given level of the hierarchical decomposition.

E = Npe · Epe + Ecomm (10)

Equation (10) captures the total energy to perform the task over the entire problem of
size N. Substituting Equations (5), (7), and (8) into Equation (10), we get a total energy
that scales asymptotically as

E = O

(
N1.5

√
Npe

+ Np′
√

N + max
(
(Npe)2N2p′−2, (Npe)2pnet

)
)

. (11)

The first term represents the memory operations, and it decreases with Npe as we
make the memories in each PE smaller. The second term is the interconnect term, and
it increases with Npe. The first component of the area (N in the square root) is the
space to hold all of the memory, which is independent of Npe and sets a potential lower
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bound on the asymptotic energy of O(Np′+0.5). This gives us a goal of selecting an Npe

that does not force any of the components to exceed O(Np′+0.5). To achieve this,

N2−2p′ ≤ Npe ≤ min
(
N1.5−p′

, N
1

2pnet
)
. (12)

For pnet and p ≤ 0.5, Equation (12) says that Npe = O(N)—we should accommodate
larger designs by increasing the number of PEs proportionally with the problem size.
This arises because the wire lengths are not growing with N for p < 0.5 [Donath 1979].
The example shown in Figure 1(a) illustrates this with the energy-minimizing number
of PEs growing linearly with the problem size. For p > 0.5, the wire lengths do grow
and the number of PEs should grow more slowly as dictated by the terms on the right.
Nonetheless, the memory term on the left dictates that the number of PEs must be
growing for any p < 1.0. The terms on the right allow growth of O(

√
N) even when pnet

or p becomes 1.0; the allowed growth increases as p and pnet reduce from 1.0. When
pnet is large, we can get cases where the bounds in Equation (12) cross; this reflects
cases where O(Np′+0.5) is not achievable, and the actual minimum must be formulated
differently.

When we select Npe within Equation (12), the total area remains O(N) and is, asymp-
totically at least, not wire dominated. For the cases where Npe = O(N), the serialization
factor becomes a constant S = N

Npe
that is independent of N. If we select S such that

Amem (S) = Alogic, the design is only twice as large as a fully serialized design, meaning
that the chip crossing wires are at most

√
2 longer than they might be in a fully serial-

ized design. Making S smaller than this increases the total area, and hence the length
of chip-crossing communications, whereas making S larger increases the length of the
nearest neighbor connections. Therefore, this distribution is, at least, within a small
constant factor of the energy-optimal S ratio. Unfortunately, the logic for a PE, Alogic,
is application specific, whereas an FPGA must typically pick a single, one-size-fits-all
organization for memory and logic that must satisfy all applications. As we will see in
the next section, we can design the FPGA memory organization so that the overhead
energy due to this mismatch is bounded by a small constant.

3. ARCHITECTURE MISMATCH ENERGY
FPGA embedded memories generally improve area- and energy efficiency [Kuon and
Rose 2007]. The previous section showed how this works for one class of applications.
When the embedded memory perfectly matches the size and organization needed by
the application, an FPGA embedded memory can be as energy efficient as the same
memory in a custom ASIC. Nonetheless, the FPGA has a fixed-size memory that is often
mismatched with the task, and this mismatch can be a source of energy overhead.

As noted (Equation (6)), memory energy scales as the square root of the capacity.
When the FPGA memory block (March) is larger than the application memory (Mapp),
there is an energy overhead that arises directly from reading from a memory bank that
is too large (E(March)/E(Mapp)).

There is also a mismatch overhead when the memory block is smaller than the
application memory. To understand this, we must also consider the routing segments
needed to link up the smaller memory blocks into a larger memory block. To build
a larger block, we take a number of memory blocks (⌈Mapp/March⌉) and wire them
together, with some additional logic, to behave as the desired application memory
block. In modern FPGAs, it is common to arrange the memory blocks into periodic
columns within the FPGA logic fabric (Figure 2). Assuming square memory and logic
blocks, the set of smaller memory blocks used to realize the large memory block might
roughly be organized into a square of side length ⌈

√
Mapp/March⌉, demanding that each
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Fig. 2. Column-oriented embedded memories.

address bit and data line connected to the memory cross roughly dm × ⌈
√

Mapp/March⌉
horizontal interconnect segments to address the memory, where dm is the distance
between memory columns in the FPGA architecture. Since there is an asymmetry that
we cross logic blocks in the horizontal direction and not in the vertical direction, we
can reduce the overhead by a constant factor by composing the large memory from an
h × v rectangle with v ≥ h, where h and v are the respective horizontal and vertical
dimensions (h · v · March = Mapp). If Eseg is the energy to cross a length-1 segment over
a logic island in the FPGA, and Emseg(March) is the energy to cross a length-1 segment
over a memory block of capacity March, the horizontal and vertical routing energy to
reach across the memory is

Eh = (dmEseg + Emseg(March)) × h, (13)

Ev = Emseg(March) × v. (14)

We define φ = dmEseg
Emseg(March) , allowing us to restate:

Eh = (φ + 1) Emseg(March) × h. (15)

Since the routing energy of wires comprises most of the energy in a memory read, and
since each bit must travel the height of the memory block (bit lines) and the width
(output select), per bit, the energy of a memory read is roughly the energy of the wires
crossing it. For a native memory block,

Ebit(M) ≈ 2Emseg(M). (16)

Therefore,

Emseg(March)

⎡

⎢⎢⎢

√
Mapp

March

⎤

⎥⎥⎥
≈ Emseg(Mapp) ≈ 0.5Ebit(Mapp). (17)

For this composed case, the per bit energy becomes

Ebit(Mapp > March) = Eh + Ev = (v + h (φ + 1)) Emseg(March). (18)

We set the derivative of Equation (18) with respect to v equal to 0 and solve for the
v that minimizes Ebit(Mapp > March), recalling that h = (1/v) · Mapp/March, and get

v =
√

(φ + 1) Mapp
March

, which results in

Ebit(Mapp > March) = 2

√

(φ + 1)
Mapp

March
Emseg(March). (19)

Equations (17) and (19) give the following memory mismatch ratio, driven by the
ratio of the energy for routing between memory banks to the energy for routing over
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Fig. 3. Energy overhead due to architectural mismatch for matrix-multiply.

memory banks:

Ebit(Mapp > March)
Ebit(Mapp)

≈
√

φ + 1. (20)

To illustrate the mismatch effects when memories are both too large and too small,
Figure 3(a) shows the result of an experiment where we quantify how the energy com-
pares between various matched and mismatched designs. Each of the curves represents
a single-PE matrix-multiply design that uses a single memory size; the size of the mem-
ory varies with the size of the matrices being multiplied. Each curve shows the energy
mismatch ratio (y-axis) between the energy required on a particular memory block
size (x-axis) and the energy required at the energy-minimizing block size (typically the
matched size); hence, all curves go to 1.0 at one memory block size and increase away
from that point. In contrast to the previous paragraph, where we used deliberately
simplified approximations to provide intuition, Figure 3(a) is based on energy from
placed-and-routed designs using tools and models detailed in the following sections.
Figure 3 also makes no a priori assumption about large memory mapping, allowing
VTR [Luu et al. 2014] to place memories to minimize wiring. The figure shows how the
energy mismatch ratio grows when the memory block size is larger or smaller than the
matched memory block size. In practice, designs typically demand a mix of memory
sizes, making it even harder to pick a single size that is good for all memory needs of an
application. Nonetheless, this single-memory size experiment is useful in understand-
ing how each of the mismatched memories will contribute to the total memory energy
overhead in a heterogeneous memory application.

There is also a potential energy overhead due to a mismatch in memory placement.
Assuming that we accept a column-oriented memory model, this can be stated as a
mismatch between the appropriate spacing of memories for the application (dmapp) and
the spacing provided by the architecture (dmarch). If the memories are too frequent,
nonmemory routes may become longer due to the need to route over unused memories.
This gives rise to a worst-case mismatch ratio:

Eroute overhead unused memories ≈ dmarch · Eseg + Emseg(March)
dmarch · Eseg

= φ + 1
φ

= 1 + 1
φ

. (21)

If the memories are not placed frequently enough, the logic may need to be spread out,
by at most a factor of φ + 1. This effectively forces routes to be longer by a factor of at
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most
√

φ + 1 as they run over unused logic clusters.

Eroute overhead unused logic ≤
√

φ + 1 (22)

If we make
√

φ + 1 = 1 + 1
φ

and solve for φ, we get φ =
√

5+1
2 ≈ 1.6, which is the

golden ratio [Heath and Euclid 1956]. The mismatch ratio due to route mismatch
(Equation (21)) is never greater than 1 + 1

φ
= φ ≈ 1.6. Similarly, the mismatch ratio

due to memories being too small (Equation (20)) or memories being placed too infre-
quently (Equation (22)) is never greater than

√
φ + 1 = φ ≈ 1.6. We can observe this

phenomenon in Figure 3(a) by looking at the 32Kb memory size that never has an
overhead greater than 1.2×. In Figure 3, we also identify the dmarch that minimizes
max overhead (shown between square brackets for each memory size in Figure 3). This
approximately corresponds to the earlier intuitive explanation, where the energy for
routing across memories is balanced with the energy for routing across logic. The 32Kb
case has Emseg(March)/Eseg = 2.53, suggesting a dmarch around 4. For this 32Kb case,
we found dmarch = 2 experimentally. Since segment energy is driven by wire length,
dmarch Eseg = φ · Emseg(March) roughly means that dmarch Lseg = φ · Lmseg(March); when we
populate memories this way, 1

1+φ
≈ 40% of the FPGA area is in memory blocks. This

design point is robust in that it guarantees that the worst-case mismatch overhead is
small for any design. This design point gives us an energy-balanced FPGA that makes
no a priori assumptions about the mix of logic and memory in the design. In contrast,
today’s typical commercial FPGAs could be considered logic rich, making sure that
the energy (and area) impact of added memories is small on designs that do not use
memories heavily.

Although the dmarch Eseg = φ · Emseg(March) balance can limit the overhead when the
memories are too small, we can still have large overhead when the memory blocks
are too large (E(March)/E(Mapp)). One way to combat this problem is to use internal
banking, or continuous hierarchy memories (CHMs): we can bank the memory blocks
internally so that we do not pay for the full cost of a large memory block when we
only need a small one. For example, if we cut the memory block into four, quarter-sized
memory banks, and only use the memory bank closest to the routing fabric when the
application only uses 1/4 (or less) of the memory capacity, we only pay the memory
energy of the smaller memory bank (Figure 4). This banking scheme is biased such
that the cost of accessing the bank closer to the I/O is lower than the cost of accessing
the other ones. This is useful on FPGAs since it reduces the mismatch, whereas on an
ASIC, where the sizes can be matched, there is often little reason to prefer one bank
over another. In the extreme, we might recursively decompose the memory by powers
of two so that we are never required to use a memory more than twice the size of
the memory demanded by the application, keeping the mismatch energy ratio down
to

√
2. There are some overheads for this banking that may suggest stopping short of

this extreme. Figure 3(b) performs the same experiment as Figure 3(a), except with
memory blocks that can be decomposed into 1/4 and 1/16 capacity sub-banks. With this
optimization, the curves flatten out for larger memory sizes. The physical size with
smallest max overhead is now shifted to 128Kb, still at 1.2×.

Another way to reduce the impact of memory block size mismatch is to include
memory blocks of multiple sizes in the architecture. This way, the design can use the
smallest memory block that will support the application memory. For example, if we
had both 1Kb and 64Kb memories, we could map the 2Kb and smaller application
memories to the 1Kb memory block and the 4Kb and larger application memories to
the 64Kb block and reduce the worst-case overhead to 1.1× (Figure 3(a)). The impact
of multiple memory sizes is explored experimentally in Kadric et al. [2015].
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Fig. 4. Internal banking of memory block.

Another point of mismatch between architecture and application is the width of
the data written or read from the memory block. Memory energy also scales with the
data width. In particular, energizing twice as many bit lines costs roughly twice the
energy. Although FPGA memory blocks can be configured to supply less data than
the maximum width, this is typically implemented by multiplexing the wider data
down to smaller data after reading the full width—the same number of bit lines are en-
ergized as the maximum width case, so these smaller data reads are just as expensive
as the maximum width read and hence are more expensive than they could have been
with a matched-width memory. For example, Altera’s tools report the same energy for
Stratix III M9K memory reads regardless of the width configured [Altera Corporation
2013]. Asymptotically, we expect memory read energy to scale as W

√
M. This means an

additional mismatch factor that could be as large as Warch
Wapp

. However, the small memory
blocks that are appropriate for FPGA embedded memories are dominated by peripheral
effects (e.g., address decode, sense amplifiers) such that the width mismatch effect
when Warch > Wapp is less severe in practice. To minimize energy, the memory layout
should be square, making cases where Warch >

√
March relatively more expensive.

Another potential point of mismatch is the simultaneous ports provided by the mem-
ories. We assume dual-ported memories (two read/write ports) throughout this article.

4. CONCRETE ARCHITECTURE AND ENERGY BACKGROUND
The previous sections dealt abstractly with energy effects. In this section, we describe
the architecture and energy modeling we build on to make concrete comparisons.

4.1. FPGA Memory Architecture
We build on the standard island-style FPGA model [Betz et al. 1999]. The basic logic tile
is a cluster of K-LUTs with a local crossbar providing connectivity within the cluster (cf.
Xilinx CLB, Altera LAB). These clusters are arranged in a regular mesh and connected
by segmented routing channels.

To incorporate memories into this mesh, we follow the model used by VTR [Luu et al.
2014], Xilinx, and Altera, where select columns are designated as memory columns
rather than logic columns (see Figure 2). Organizing the memory tiles into a homo-
geneous column rather than placing them more freely in the mesh allows them the
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freedom to have a different size than the logic tiles. For example, if the memory block
requires more area than the logic cluster, we can make the memory column wider
without creating irregularity within rows or columns. Altera uses this column memory
model in their Cyclone and Stratix architectures, and the M9K blocks in the Stratix III
[Lewis et al. 2009] are roughly 3× the area of the logic clusters (LABs) [Wong et al.
2011] while being logically organized in the mesh as a single tile. Large memories can
span multiple rows, such as the M144K blocks in the Stratix III, which are eight rows
tall while remaining one logical row wide, accommodated by making the column wider
as detailed earlier.

Within this architectural framework, we can vary the proportion of memory tiles to
logic tiles by selecting the fraction of columns that are assigned to memory tiles rather
than logic tiles. We control this by setting the number of logic columns between memory
columns, dm. VTR identifies this as a repeat parameter (repeat=dm + 1).

4.2. Energy Modeling and Optimization
Poon et al. [2005] developed energy modeling for FPGAs and identified how to size LUTs
(4-LUTs), clusters (8 to 10), and segments (length 1) to minimize energy. However,
Poon et al. did not identify an energy-minimizing memory organization. FPGA energy
modeling has since been expanded to modern direct-drive architectures and integrated
into VTR [Goeders and Wilton 2012].

Recent work on memory architecture has focused on area optimization rather than
energy. Luu et al. examined the area efficiency of memory packing and concluded that
it was valuable to support two different memory block sizes in FPGAs [Luu et al.
2011]. Lewis et al. showed how to size memories for area optimization in the Stratix V
and concluded that a single 20Kb memory was superior to the combination of 9Kb
and 144Kb memories in previous Stratix architectures [Lewis et al. 2013] but did not
address energy consumption, leaving open the question of whether energy-optimized
memory architectures would be different from area-optimized ones. Chin et al. explored
the energy impact of embedded memory sizes when they are used to map logic, but not
when they are used as read-write memories for application data [Chin et al. 2006].

4.3. Memory Energy Modeling
We use CACTI 6.5 [Muralimanohar et al. 2009] to model the physical parameters (area,
energy, delay) of memories as a function of capacity, organization, and technology. In
addition to modeling capacity and datapath width, CACTI explores internal implemen-
tation parameters to perform trade-offs among area, delay, throughput, and power. We
use it to supply the memory block characteristics for VTR architecture files at 22nm.
We set it to optimize for the energy-delay-squared product.

For internal banking (see Figure 4), CACTI gives us the area and energy (Emem)
of the memory banks, and we compute wire signaling energy (Ewires) to communicate
data and addresses between the referenced memory bank and the memory block I/O.
For example, consider the data in Figure 5 for a 1024×32b (32Kb) internally banked
memory. A monolithic 32Kb memory block is 113µm×67µm, which is high enough
to contain the 31µm×2 = 62µm required for the height of the two 256 × 32 memo-
ries of size 66µm×31µm (plus room for extra logic), as shown in Figure 5. The total
width in Figure 5 is 38 × 2 + 66 = 142µm, or 142/113 = 1.26× that of the mono-
lithic 32Kb memory block. We therefore adjust Emseg(32K banked) = 1.26 × Emseg(32K).
CACTI directly provides Emem. The I/O is placed close to the first bank (lower left
in Figure 5) so that reading the first 64 × 32b comes at no additional wiring cost.
Accessing the next small bank has the same memory cost but also a wiring cost of
Ewires = (15µm)(1 + 30 + 64)Cwire (Vdd)2. Cwire = 180pF/m, Vdd = 0.95V. (1 + 30 + 64)
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Fig. 5. Internal banking for 1024×32b memory.

Fig. 6. Energy estimation tool flow.

corresponds to one signal for the enable, 30 = 2×15 for the address bits (15b covers the
32K × 1 operating mode), and 64 for the 32b input and 32b output. Additionally, 15µm
is the distance to reach the bank. Similarly, we can compute the other Ewires costs. For
example, to reach the upper right bank, we need to pay a distance of (66 + 31) µm.
Then, the energy of an internally banked memory is given by Ebanked = Emem + αEwires,
where α is the average activity factor over all signaling wires.

5. METHODOLOGY
Figure 6 shows our tool flow. We developed and added several components on top of a
stock VTR 7 release.

5.1. Activity Factor Simulation
Activity factors and static probabilities assigned to the nets of a design have a major
impact on the estimated energy. Common ways to estimate activity include assigning
a uniform activity to all nets (e.g., 15%), or performing vectorless estimation with tools
such as ACE [Lamoureux and Wilton 2006], as done by VTR. For better accuracy, our
flow obtains activity factors by simulating the designs. We run a logic simulation on
the BLIF output of ABC (pre-vpr.blif file) on a uniformly random input dataset. For
example, for the matched 32Kb-memory matrix-multiply design in Figure 3(a), the
average simulated activity factor is 11%, whereas ACE estimates it to be 3%, resulting
in an energy estimation that is off by approximately 3.7x. The tunable benchmarks
(Section 5.6) are designed in a streaming way that activates all memories all the time
(independent of the random data), except matrix-multiply (MMul), for which the clock-
enable signal is on approximately 1/3 of the time. The VTR benchmarks do not come
with clock-enable for the memories, so we set them to be always on.

5.2. Power-Optimized Memory Mapping
When mapping logical memories onto physical memories, FPGA tools can often choose
to optimize for either delay or energy using power-aware memory balancing [Tessier
et al. 2007]. For example, when implementing a 2K×32b logical memory using eight
256×32b physical memories, we could choose to read W = 4b from each memory
(delay-optimized, Figure 7(b)). Since each memory internally reads at the full, native
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Fig. 7. Effect of memory block activation and output width selection on energy consumption.

width, the cost of the memory operation is multiplied by the number of memory
blocks used. Alternatively, we could read W = 32b from only one of the memories
(Figure 7(a)), in which case only one memory is activated at a time (reducing memory
energy), but extra logic and routing overhead is added to select the appropriate
memory and data. The power-optimized case often lies between these extremes. For
example, in the experiment in Figure 7(c), the optimum is to activate two memories at
once and read W = 16b from each.

Unfortunately, the VTR flow does not perform this kind of trade-off: it always opti-
mizes for delay. Odin decomposes the memories into individual output bits [Rose et al.
2012], and the packer packs together these 1-bit slices as much as possible within the
memory blocks to achieve the intended width [Luu et al. 2011]. In fact, VTR memo-
ries do not have a clock-enable, so they must be activated all the time. Instead, we
use VTR architectures with special memory block instantiations that contain a clock-
enable, modify VTR’s architecture-generation script (arch_gen.py) to support these
blocks, and add a p-opt stage before Odin to perform power-optimized memory map-
ping based on the memories available in the architecture. This includes performing
memory sweeps as illustrated in Figure 7(c) to select the appropriate mapping for each
application memory. For the robust architecture identified in Section 7, we find that
mapping without p-opt adds 10% geomean energy overhead, comparable to the 6%
benefit reported in Tessier et al. [2007]. Not using p-opt adds 41% worst-case energy
overhead, suggesting that this optimization is more important for designs with high
memory overhead. Our p-opt code and associated VTR architecture generation script
are available as online supplemental material.

5.3. Logic and Routing Architecture
The logic architecture uses k4n10 logic blocks (clusters of 10 4-LUTs) and 36×36
embedded multipliers (which can be decomposed into two 18×18 multiplies, or four
9×9 multiplies) with dmpy = 20 and the same shape and energy as in VTR’s default
22nm architectures (a height of four logic tiles, plus we use Lmpyseg = 4Lseg). The routing
architecture uses direct-drive segments of length 1 with Wilton switch boxes.

5.4. Technology
We use low-power (LP) 22nm technology [ITRS 2012] for logic evaluation and low
stand-by power (LSTP) for memories. We use ITRS parameters for constants such as
the unit capacitance of a wire at 22nm (Cwire = 180 pF/m). Then,

Cmetal = Cwire × tile length. (23)

We evaluate interconnect energy based on this Cmetal instead of the constant one that is
provided in the architecture file. This way, the actual size of the low-level components
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of the given architecture and technology, as well as the computed channel width, are
taken into account when evaluating energy. It is important to model this accurately, as
routing energy can dominate total FPGA energy (see Figure 7(c)).

5.5. Energy and Area of Memory Blocks
VTR assigns one type of block to each column on the FPGA (logic cluster, multiplier,
or memory), and can give them different heights, but assumes the same horizontal
segment length crossing each column. However, some memories can occupy a much
larger area than a logic tile, and laying them out vertically to fit in one logic tile width
would be inefficient. For energy efficiency, the memories should be closer to a square
shape, and to that end, we allow the horizontal segment length crossing memories to
be longer (which costs more routing energy, and hence Emseg(M) ̸= Eseg in Section 3).
We fix the height of the memory (h) ahead of time but keep the horizontal memory
segment length (Lmseg) floating:

h =
⌈√

Asw(W0) + Amem√
Alogic(W0)

⌉

. (24)

Here, W0 is a typical channel width for the architecture and benchmark set. We use
W0 = 80. Then, when VPR finds the exact channel width, Wact, and hence the tile
length and area (Alogic), we can adjust Lmseg accordingly:

Lmseg = Asw(Wact) + Amem

h
√

Alogic(Wact)
. (25)

Amem is the area for the memory obtained from CACTI, and Asw is the switch area
required to connect the memory to the FPGA interconnect. We obtain Asw from VPR’s
low-level models, similar to the way it computes Alogic = Aluts + Asw.

5.6. Benchmarks
To explore the impact of memory architecture, we use the VTR 7 Verilog benchmarks1

[Luu et al. 2014] and a set of tunable benchmarks that allow us to change the paral-
lelism level, P, in Section 6. Table I summarizes the benchmarks that have memories.
We expect future FPGA applications to use more memory than the VTR 7 benchmarks.
Some of them, such as stereovision, only model the compute part of the application and
assume off-chip memory. We expect this memory to move on chip in future FPGAs. The
tunable benchmarks allow us to explore parallelism tuning and provide better coverage
of the large memory applications that we think will be more typical of future FPGA
applications. For this reason, we do not expect a simple average of the benchmarks,
such as the geometric mean, to be the most meaningful metric for the design of future
FPGAs—it is weighted too heavily by memory-free and memory-poor applications.

We implemented the tunable benchmarks in Bluespec SystemVerilog [Bluespec
2012]; they are the following:

GMM: Gaussian mixture modeling (GMM) [Genovese and Napoli 2014] for an N × N
pixel image, with 8b per pixel and M = 5 models. P pixels are computed every cycle
(Npe = P). This operation is embarrassingly parallel, as each PE is independent of the
other ones. This benchmark has very high locality (p = 0).

WinF: 5×5 Gaussian window filter for an N × N pixel image, with 16b per pixel
and power-of-two coefficients. P = 1 uses line buffers so that one main memory read

1Except LU32PEEng and LU64PEEng (similar to LU8PEEng), on which VPR 7.0 routing does not complete after
10 days, and spree, which segfaults through Odin.
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Table I. Memory Requirements for the Benchmarks

Benchmark Mem Bits Memories (#) Largest Mem
VTR

boundtop 32K 1 1K×32
ch_intrinsics 256 1 32×8
LU8PEEng 45.5K 9 256×32

mcml 5088K 10 64K×36
mkDelayWorker32B 520K 9 1K×256

mkPktMerge 7.2K 3 16×153
mkSMAdapter4B 4.35K 3 64×60

or1200 2K 2 32×32
raygentop 5.25K 1 256×21

Tunable
MMul (N2+N)*32 2P (N2/P)×32
GMM 160 N2 P (N2/P)×160
Sort ≈(128N+4NlogN) log(N/P)-1+2P (N/P)×[32+logN]

FFT (-twiddle) ≈224N 4P (N/2P)×56
WinF (-line buffer) 16 N2 P (N2/P)×16

Fig. 8. Parallelism impact on memory and interconnect requirements for a (4 × 4)2 matrix-multiply.

and four line buffer reads and writes allow a throughput of 1 pixel per cycle. P = 2 and
P = 4 extend the filter’s window, share line buffers, and compute 2 and 4 pixels per
cycle, respectively. For P > 4, every time P is doubled, the image is divided into two
subimages, similar to the GMM benchmark (Npe = P). This benchmark has medium
locality, as each pixel needs to share information with its neighbors, but not with pixels
that are farther away (p = 0.5).

MMul: N × N matrix-multiply (A× B = C), with 32b integer values and datapaths
(see Figure 8, Section 6.1, Npe = P). This benchmark has low locality (p = 2/3).

FFT: N-point 28b fixed-point complex streaming Radix-2 FFT, with P × log(N/P)-
stage FFTs followed by log(P) recombining stages (Npe = P log(N)). The streaming
portion has high locality (p = 0), whereas the spatial combining section has high
communication requirements (p = 1).

Sort: N-point 32b streaming mergesort [Koch and Torresen 2011], where each data
point also has a log(N)-bit index. One value is processed per cycle, and the parallelism
comes from implementing the last log(P) stages spatially (Npe = log(N/P) + (P −
1)). We build a binary reduce tree to select the final output so that this streaming
implementation has p = 0.

5.7. Limit Study and Mismatch Lower Bound
Sections 6 and 7 show the energy consumption for different applications and memory
architectures. To identify bounds on the mismatch ratio, we also set up limit-study
experiments. Our limit study assumes that each benchmark gets exactly the physical
memory depth it needs, as if the FPGA were an ASIC. Therefore, there is no overhead
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for using memories that are too small (no need for internal banking as in Section 3) or
too large (no need to combine multiple memory blocks as in Section 5.2). We further
assume that the limit-study memories have the same height as that of a logic tile,
making them widely available and keeping the interconnect energy low for vertical
memory crossings. Finally, we place memory blocks every two columns (dm = 1) so that
place-and-route tools can always find a memory right where they need one. To avoid
overcharging for unnecessary memory columns, we modify routing energy calculations
and ignore horizontal memory-column crossings for the limit study (Emseg = 0). We also
want to minimize the effect of width mismatch, for which we could use a similar trick
as for the depth: use a large width (e.g., 1024b), but only pay for what the memory
actually uses (e.g., 32b). However, this artificially increases the channel width since
each input and output data bit needs to access the routing network (this is also the
case with the depth trick, but to a lesser extent, as each doubling in depth only adds
one bit to the address). Therefore, to minimize the effect of width mismatch, we run
multiple limit studies, with memory widths of 8b, 16b, 32b, 64b, and 128b, and choose
the one that achieve the lowest energy. CACTI energy does not decrease for width
below 8b.

6. PARALLELISM TUNING
In Section 2, we saw that the amount of parallelism used to perform a task affects
its energy consumption and that the optimum level of parallelism grows with problem
size (Equation (12) and its implications). In this section, we show experimental results
from optimizing the parallelism for the tunable benchmarks at different dataset sizes.

6.1. Example: MMul
Let us first review a specific example of a task where parallelism can be tuned to
illustrate how memory is decomposed and how communication requirements change.
Figure 8 shows the shape of an N × N by N × N matrix-multiply A × B = C for
different parallelism levels P (N = 4 is shown). The computation is decomposed by
columns, with each PE performing the computation for N/P columns of the matrix.
The B data is streamed in first and stored in P memories of size N2/P, then A is
streamed in row major order. Each A data point (A[i, k]) is stored in a register, data
for each column ( j) is read from each B memory, a multiply-accumulate is computed
(C[i, j] = C[i, j] + A[i, k] · B[k, j]), and the result is stored in a C memory of size N/P.2
Once all of the A data points of a row have been processed, the results of the multiply-
accumulates can be streamed out, and the C memories can be used for the next row.
When P = N, C does not need memories. Either way, increasing P keeps the total
number of multiply-accumulates and memory operations constant. However, since the
memories are organized in smaller banks, each memory access now costs less, and
energy is reduced, as long as the interconnect per PE does not increase too much.

6.2. Parallelism Tuning with Limit-Study Architecture
To explore the effect of parallelism on energy without the bias introduced by a fixed
memory architecture, we first sweep the size and parallelism of our five tunable bench-
marks using the limit-study architecture described in Section 5.7. This is how we obtain
Figure 1 for WinF. We can see that as the number of PEs increases, the total energy

2This is different from the matrix-multiply in Section 3, where C was stored in an output memory of size N2

(P = 1), keeping only one size of memory for the application.
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Fig. 9. Optimum parallelism level versus problem size.

decreases, reaches a minimum, then starts increasing. The decrease is due to decreas-
ing memory energy (see Figure 1(b)). The increase is due to increasing interconnect
energy. We also notice that the optimum number of PEs (Popt) increases with increasing
problem size. We run the same experiment for the other benchmarks, normalize the
energy at Popt to the energy at P = 1, and we get Figure 9(a). We see that the other
benchmarks follow the same trend. The benefit of tuning parallelism to the optimum
number of PEs grows with the problem size. For the largest sizes shown, tuning par-
allelism provides energy savings of 2.1× for WinF, 1.7× for MMul, 1.1× for FFT, 2.4×
for Sort, and 1.4× for GMM. It should be clear from both Figure 9(a) and Equation (11)
that the parallelism benefit will continue to grow with problem size.

6.3. Parallelism Tuning with Concrete FPGA Architecture
We now explore the benefits of parallelism with a concrete FPGA architecture using
internally banked 16Kb memory blocks with width = 32 and dm = 7 (the robust
architecture identified in Section 7). The optimum level of parallelism may change
from the limit study to adapt to the given physical architecture, but the major trend
still holds. Figure 9(b) shows the same experiments as before on this concrete FPGA
memory organization. This time, the energy savings at Popt compared to P = 1 are
larger than in the limit-study case: 4.7× for WinF, 2.6× for MMul, 1.1× for FFT,
3.3× for Sort, and 3.0× for GMM. In addition to finding the right level of parallelism,
these concrete designs benefit from selecting a logic-memory balance that reduces the
mismatch overhead.

The largest design in Figure 9(b) is the 512 × 512, eight PEs GMM, using 250,000
LUTs, 90,000 registers, 40Mb of memory, a 206×206 array, and a channel width of 128.
This fits comfortably on modern FPGAs. In fact, Kadric et al. [2014] showed the same
energy reduction through optimal parallelism trends for a subset of the benchmarks
(and fixed problem sizes) on the Stratix IV. In cases where the ideal parallelism level
is too large, we may be limited by the FPGA size. This is, for example, the case for
larger GMM sizes, not shown in Figure 9(b), which require more PEs, and hence larger
arrays, than our tools can currently support.
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Fig. 10. Sweep of physical memory block size at fixed [dm = 7, width = 32b].

7. MEMORY EXPLORATION
Section 3 suggested that we could build a robust FPGA that bounds the worst-case
energy mismatch. In this section, we explore the different memory architecture param-
eters (depth, width, dm, internal banking) and identify optimum regions of operation.

7.1. Memory Block Size Sweep
We start with the simplest memory organization that uses a single memory block size
and no internal banking (Figure 10) at a fixed dm = 7 and width = 32b. For comparison,
energy is normalized to the lower bound obtained using the limit study. We include all of
the benchmarks from Section 5.6, including multiple sizes for the tunable benchmarks,
where we set the number of PEs to the optimum values found in Figure 9(a). Most
of the curves have an energy-minimizing memory size between the two extreme ends
(1Kb and 256Kb), including the geomean curve. Benchmarks with little memory have
an energy-minimizing point at the smallest memory size (1Kb). Benchmarks with no
memory have a close-to-flat curve, paying only to route over memories but not for
reads from large memories. The 4Kb memory architecture minimizes the geometric
mean energy overhead of all benchmarks at 37%. As noted (Section 5.6), the geometric
mean is weighted heavily by the many benchmarks with little or no memory and thus
may not be the ideal optimization target for future FPGA applications. gmm_N256_P4
and mkPktMerge define the maximum energy overhead curve and suggest that an 8Kb
memory minimizes worst-case energy overhead at 110% of the lower bound.

Figure 11 shows the detailed breakdown of energy components for three benchmarks,
where the memory capacity is varied, both for the normal case (top row) and for the in-
ternally banked memories (bottom row). We also show a blue line highlighting the lower
bound obtained from the limit study. Most benchmarks have the shape of Sort_N2K_P2,
with an energy-minimizing memory size between 4Kb and 32Kb. Small benchmarks
with small memories have the shape of mkSMAdapter4B, with large increases in memory
energy with increasing memory block size. The bottom row shows how internal banking
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Fig. 11. Detailed breakdown of energy versus memory block size [dm = 7, width = 32b].

reduces this effect. It may even allow the minimum energy point to shift. For example,
in WinF_N256_P16, the minimum shifts from 16Kb to 64Kb, reducing total energy at
the energy-minimizing block size from 410pJ to 370pJ, or by 11%.

7.2. Impact of dm

In Section 3, we showed analytically why the spacing between memory columns, dm,
should be chosen to balance logic and memory to minimize worst-case energy con-
sumption. For simplicity, we limited Figure 10 to only use dm = 7. Since the optimal
values of dm may vary among benchmarks, Figure 12 shows geomean (a) and worst-
case (b) energy overheads when varying both memory block size and dm, still at a fixed
width = 32b. Without adding internal banking, sweeping dm allows us to identify a
lower energy point with 98% worst-case overhead (dm = 8) versus the 110% we found
previously when only looking at dm = 7. We see broad ranges of values that achieve near
the lowest geometric mean point, with narrower regions that minimize the worst-case
overhead. The heatmap shows that overhead has a stronger dependence on memory
block size than memory spacing. If we approximate the Cyclone V as 8Kb and dm = 9,
and the Stratix V as 16Kb and dm = 9,3 we can see that these two commercial ar-
chitectures are around the energy-minimizing valley for both geometric mean and
worst case. However, we can improve energy further by using internal banking, which
broadens the energy-minimizing valleys, shifts them toward larger memory sizes, and
overall reduces the overhead. Compared to the 16Kb, non–internally banked commer-
cial architectures (≈ Stratix V), we can reduce the worst case by 46% ((180-98)/180)
by selecting an energy robust design point that bounds mismatch effects, which means
using an architecture closer to that of the Cyclone V. Then we can reduce the energy
by another 38% ((98-61)/98) by using internal banking and retuning the memory orga-
nization. This also reduces the geomean by 36% ((42-27)/42). We achieve these benefits
with the 16Kb, internally banked, dm = 7 architecture. Since our logic block is smaller,
our energy minimizing cases tend to place the memories more frequently than the
commercial architectures, closer to the robust balance point identified analytically in
Section 3. In Kadric et al. [2015], we also explored architectures with two memory
sizes and found that without internal banking, they achieved a similar reduction in

3Modeled points have square logic clusters and memories, whereas real Stratix and Cyclone devices are
rectangular. Cyclone V and Stratix V logic blocks have 10 6-LUTs—larger logic blocks than the 10 4-LUT
clusters that we use here.
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Fig. 12. Energy overhead versus memory block size and dm.

Table II. Area Comparison of Select Memory Organizations

Internal Maximum Relative
Architecture Bank? Size Width dm Overhead Area

robust, energy-min. Yes 16Kb 32 7 61% 1.09×
≈ “Cyclone V” No 8Kb 32 9 98% 1.00×
≈ “Stratix V” No 16Kb 32 9 180% 1.07×

worst-case overhead to one memory with internal banking. Combining internal bank-
ing and two memory sizes can further reduce energy overheads at the expense of
higher area. Table II shows that our robust, internally banked memory architecture
has modest area impact compared to the alternatives.

7.3. Impact of Memory Width
Figure 13 shows geomean (a) and worst-case (b) energy overheads when varying mem-
ory capacity and data width, with and without internal banking. Each point on the
heatmap shows the energy overhead at the dm that minimizes it. The lower-right corner
is missing because we do not explore the cases where width > depth. Each heatmap
shows an energy-minimizing valley running along the bottom-left to top-right axis.
Once again, we observe that using internal banking broadens the valley, highlighting
the most robust architectural point at 16Kb and width = 32b, with internal banking.
Not shown on the heatmap, this point has dm = 7. This architecture keeps the worst-
case overhead below 61% and the geomean overhead below 27% across mismatches in
memory block size, memory column spacing, and memory width.
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Fig. 13. Energy overhead versus memory block size and data width.

Fig. 14. Sensitivity of Figure 13(b) (worst-case overheads) to CACTI estimates.

7.4. Sensitivity
The best memory sizes and the magnitude of benefits achievable are sensitive to the
relative cost of memory energy compared to interconnect energy. Since PowerPlay [Al-
tera Corporation 2013] estimates that the Altera memories are more expensive (about
3× the energy—perhaps because the Altera memories are optimized for delay and ro-
bustness rather than energy) than the energy-delay-squared-optimized memories that
CACTI predicts are possible, it is useful to understand how this effect might change
the selection of architecture. Therefore, we perform a sensitivity analysis where we
multiply the energy numbers reported by CACTI by factors of 2× and 3× (Figure 14).
Without internal banking, the relative overhead cost of using an oversized memory
is increased, shifting the energy-minimizing bank size down to 4Kb (instead of 8Kb
previously). The benefit of internal banking remains around 60% throughout all cases.

Even though CACTI can be configured to tune memories for energy, its basic archi-
tecture is delay oriented and does not include many energy-oriented optimizations that
could be relevant to energy-minimizing FPGA embedded memories. There is consider-
able room for future work to optimize these memories, and impact both the energy of
the ideally matched, limit-study memories, and the fixed-size FPGA memory blocks.

8. CONCLUSIONS
Communication energy dominates computations, whether the communication is mov-
ing data in and out of memories or moving data over wires to different processing points
on the chip. Tuning the level of parallelism exploited for an application can shift this
communication energy between memories and interconnect, often changing the energy
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required for the computation. As a result, for each application and dataset size, there
is an optimal level of parallelism that minimizes energy. This minimum energy point
balances the energy spent communicating between PEs with the energy spent reading
from local data memories. The optimal level of parallelism grows with problem size,
as does the energy benefit compared to a nonparallel design. We show 4.7× energy
reduction compared to the nonparallel design.

These communication results underscore the need for an energy-optimized on-chip
memory system, and the need to support flexible memory and processing systems
that can be tuned to the application and dataset size. We have shown how to size
and place embedded memory blocks to guarantee that energy is within a factor of
1.6 of the optimal organization for the application. On the benchmark set, we have
seen that a 32b wide, 16Kb, internally banked memory block keeps the worst-case
mismatch energy overhead below 61% compared to an optimistic limit-study lower
bound. Without internal banking, the Cyclone V memory organization of 32b wide,
8Kb memories with dm = 9 achieves close to the smallest worst-case overhead of 98%.
Although the memory organization is similar, the Cyclone V logic block is closer to
20 6-LUTs, thus it represents a more logic rich design. Commercial architecture with
32b wide, 16Kb, non–internally banked memory blocks have a worst-case overhead of
180%. Tuning for robust energy cuts the worst-case mismatch overhead by 46%, and
internal banking provides 38% savings on top of that.
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