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Abstract—Finite automata are key compute models in modern
computational theory and important building blocks for digital
logic used for regular expression and protocol parsing, filtering,
and control. Finite automata evaluation would seem to be a
sequential operation, since we need to complete the evaluation
of one state to know the next state in which to evaluate the
logic. Nonetheless, parallel theory provides strategies for parallel
finite automata evaluation. We show how to exploit this parallel
evaluation strategy in practice on today’s high capacity FPGAs,
including a novel formulation for spatially pipelined evaluation.
For non-deterministic finite automata (NFA) with S states, we
can evaluate N inputs in a single cycle with O(N · S2) BRAMs
and O(N · S3) LUTs. This allows us, for example, to consume
64 inputs on a 16 state NFA in a single cycle on the Xilinx
XZCU9EG-ffvb1156-2-i SoC FPGA, achieving 47 GB/s (377 Gb/s)
single stream throughput for 8b inputs. For a 40 Gb/s network
link, we can support 28 state NFAs.

I. INTRODUCTION

The Finite Automata (FA) model is an important, restricted
compute model. FA are less powerful than Turing Machines
or Push Down Automata that have unlimited state, but capture
all computations that operate with limited (finite) state. They
directly capture the complexity of regular expression parsing
which shows up in lexing, protocol processing, filtering (in-
cluding intrusion detection [1]) and compression.

FA computations are state-dependent, meaning we must
know their current state to compute the output, including the
next state. This suggests we must compute each state transition
in sequence. However, early theory work [2], reviewed in
Sec. III, has shown that we can reformulate state transitions
as associative operations so that we can apply associative
reduce techniques, similar to the ones used for parallel-prefix
addition [3], to perform state evaluation in parallel. For an
S-state FA, these parallel computations do perform O(S)
more work than their sequential counterparts, so the parallel
transformation represents a work-delay tradeoff. In the past
this made the parallel FA solution viable only on large parallel
supercomputers, like the Connection Machine [4].

After decades of Moore’s Law scaling [5], modern FPGAs
now have adequate capacity to realize these parallel designs.
Furthermore, as the end of Dennard Scaling [6], [7] has slowed
frequency scaling [8], [9], there is increasing demand to turn
the exponential growth of gates into performance without
scaling clock frequencies. Here, we show practically how to
perform this parallelism transformation for modern FPGAs.
Specifically, we formulate the parallel FA evaluation problem
for spatial computation on FPGAs exploiting embedded mem-
ories and LUTs and using the direct mapping of NFAs to
FPGAs [10] (Sec. II-B). Our pipelined solutions (Sec. IV) go

beyond the original parallel-prefix FA designs, showing that
the designs can be fully pipelined such that N inputs can be
consumed on every cycle. These pipelined parallel solutions
are particularly valuable for regular expression parsing that
are largely insensitive to evaluation latency. While the area in
our solutions scales quickly in the number of states—O

(
S3
)

scaling for a FA with S states—the area scales linearly with
the speedup, N . We detail FPGA designs that are specific to
the number of states, S, but only require reprogramming of
memories to support any FA up to a given S.

Conventional FA implementations that consume a single
input per cycle can operate at the top frequency of the FPGA or
the embedded RAMs used for state lookup (e.g., 738 MHz on
speed-grade -2 Xilinx Zynq Ultrascale+ devices). Consuming
8b inputs, this limits the designs to 738 MB/s throughput on
a single input stream. With our techniques, we can multiply
this throughput by a factor of N . Depending on the number
of states in the NFA, we can fit designs with up to N=256
on Xilinx MPSoC Zynq FPGAs, meaning the same FPGAs
can process a single data stream at guaranteed, real-time data
rates of 196 GB/s. The real-time processing guarantees make
these designs suitable for use in network switch line cards or
network interface cards.

Our novel contributions include:
1) extension of parallel FA evaluation to direct NFA imple-

mentations (Sec. III)
2) spatial pipeline design to evaluate N inputs to an NFA

per cycle suitable for FPGA implementation (Sec. IV)
3) concrete mappings to Xilinx UltraScale+ FPGAs quanti-

fying resources and latency as a function of the number of
states, S, and the inputs per cycle, N , for NFAs (Sec. V)

II. BACKGROUND

A. Deterministic Finite Automata

A deterministic finite automaton (DFA) is a compute model
parameterized by an input alphabet, A, a set of states Q, a start
state q0, a set of accepting states, T , and a transfer function,
F , that takes a current state, qi and input symbol, Ii, and
determines the next state, qi+1.

qi+1 = F (qi, Ii) (1)

The transfer function F is a pure function, returning a single
next state qi+1 for each state, input pair. The DFA accepts
an input string I if the DFA ends in an accepting state after
processing all the characters Ii in I . For simplicity in defining
asymptotic results, we define S to be the number of states in
Q or |Q|. Fig. 1 shows a simple DFA.

c© 2019 IEEE

http://www.icfpt.org/


q0 q1 q3

a

q7

q5

q6

q2

q4

a

a

a

aa

a

b

b

b

b

b

b a

T = {q4, q5, q6, q7}

Fig. 1. Sample DFA
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Fig. 2. Sample NFA for Regular Expression (a|b)*a(a|b)(a|b)

B. Non-Deterministic Finite Automata

Non-deterministic finite automata (NFA) have similar pa-
rameters to DFA, but the transfer function F is allowed to
specify multiple next states. Furthermore, the NFA allows
transitions to occur without consuming an input (ε-transitions).
An NFA accepts a string if any of the allowed transitions leads
to an accepting state. Since the NFA can be in multiple states
at any point in time, it is more useful to formulate its transfer
function as mapping from sets of states, R, to sets of states:

Ri+1 = F (Ri, Ii) (2)

Any NFA can be converted into a DFA [11]. The basic
construction is to consider simulating the NFA being in all the
possible states and compute the next state as the set of possible
next states from the set of possible current states. This means
the states in the DFA-converted NFA may represent the power-
set of states in the original NFA. As a result, it is possible
the DFA-converted NFA may have exponentially more states
than the NFA. Fig. 2 shows a simple NFA. Fig. 1 above is a
conversion of this NFA into a DFA.

In register-rich FPGAs, it is possible, and often more
efficient, to directly track the NFA state set [10]. That is,
we can represent the NFA state as a bit vector representing
the set of states the NFA is currently in. On each input, the
NFA next state evaluation computes the set of states that the
NFA may transition into based on the input and the set of
previously occupied states. Fig. 3 shows the logic directly
implementing the NFA from Fig. 2. [10] and subsequent work
shows that this direct NFA implementation is often a better
implementation for FPGAs than performing a DFA conversion
and implementing the DFA. Micron’s Automata Processor
directly builds on this construction [12].

Any regular expression can be recognized by an NFA [13].
The NFA example in Fig. 2 recognizes the regular expression
(a|b)*a(a|b)(a|b) from [14].

In a sense, the NFA evaluation is a parallel evaluation, since
it evaluates the transition functions on all the potential states

Ri = [q0i, q1i, q2i, q3i]

q0i+1 = true

q1i+1 = q0i ∧ ai
q2i+1 = q1i

q3i+1 = q2i

ai indicate that character i is an ’a’

Fig. 3. Direct NFA Implementation of Fig. 2

simultaneously. Furthermore, the NFA can be expanded in
parallel with more states to simultaneously compute matches
against different regular expressions. However, even with this
form of parallelism, the NFA is still processing only a single
input character on each cycle. In contrast, we show how to
process multiple input characters on each cycle.

III. PARALLEL NFA EVALUATION

Ladner and Fischer observe that we can use a parallel-prefix
computation to evaluate the DFA state transformation across
a sequence of inputs in logarithmic time [2]. The key obser-
vation is to treat the evaluation of the DFA across multiple
inputs as function composition and exploit the associativity
of function composition to compute the composite function
across N inputs as an associative reduction in log(N) steps.
We extend this idea to direct NFA evaluation, but the basic
strategy remains the same.

A. Strategy

We start by observing that we can specialize the next state
transition function, F , with respect to an input symbol a as
Fa(R) = F (R, a). The specialized function, Fa(R), is a
functional state transform mapping from state sets to state
sets that tells us how input a (or Ij) transforms from state set
Rj to Rj+1. Now, if we want to know how a pair of inputs
Ij and Ij+1 transform the state from set Rj to Rj+2, we can
compute the composite function Fj,j+1(R) = Fj+1(Fj(R)).
This composite function is also a state set transform, just
like the single input state transform function. Similarly, if
we want to know how a sequence of 4 inputs Ij , Ij+1,
Ij+2, Ij+3 transform the state, we can compose functions
Fj,j+3(R) = Fj+2,j+3(Fj,j+1(R)). Fj,j+3(R) is also a state
set transform. We can continue in this manner to compute the
state set transform Fj,j+N−1(R) in log2(N) state composition
steps. Note that this is a tree reduce so only requires N − 1
total state set transform composition computations.

B. Matrix Formulation

For NFAs, it is useful to formulate F and the state trans-
formers as binary matrices. We start by representing F as
a three-dimensional matrix FSM [a, qi, qi+1] of dimension
|A| × S × S, which holds a one at each position (a,qi,qi+1)
when the FA in state qi on input a can transition (including
all ε-transitions) to state qi+1; equivalently, FSM [a, qi, qi+1]



q0i q1i q2i q3i
a q0i+1 q1i+1 q2i+1 q3i+1 q0i+1 q1i+1 q2i+1 q3i+1 q0i+1 q1i+1 q2i+1 q3i+1 q0i+1 q1i+1 q2i+1 q3i+1

’a’ 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
’b’ 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

Fig. 4. Matrix Representation for Sample NFA from Fig. 2

STa =


1 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , STb =

1 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0



STab =


1 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , STba =


1 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0


Fig. 5. Specialized and Compose State Transforms for NFA from Fig. 2

is one only when qi+1 ∈ Ri+1 for Ri+1 = F ({qi}, a). Fig. 4
shows the FSM matrix for the Sample NFA in Fig. 2.

A state transform, ST , is a two-dimensional matrix, S×S,
that has a one in each position ST [s, t], if an input state set that
includes state s will transform to an output state set that has
state t. The specialized state transformer, STa, is then easily
computed by selecting the S×S submatrix in FSM associated
with input a; that is: for each (s, t), STa[s, t] = FSM [a, s, t].
Fig. 5 shows the state transforms that result from specializing
the NFA in Fig. 2 to each of the potential input symbols.

Similarly, composition of state transformers is simply a
binary matrix-matrix multiplication on the state transformers.
For each entry, (s, t), in the state composer matrix, we
compute the dot product:

NSTcompose[s][t] =

S−1∨
j=0

NST1st[s][j] ∧NST2nd[j][t] (3)

That is, if there is any j such that the first transform can
activate state j on input state s and the second transform
activates state t on state j, then the composed transform will
activate state t on input state s. Fig. 5 also shows the composite
state transforms for example sequences of input symbols.

Once we have the state transform Fj,j+N−1(R), we can
apply it to state set Rj to compute Rj+N in one evaluation of
the composite function Fj,j+N−1(R). Given the binary matrix
representation of the NFA state transformer, NST , we can
evaluate the transformation it applies to a state by performing
a binary vector-matrix multiplication between the input state
vector and the transformer matrix. For each state, we compute
the dot product:

Rout[t] =

S−1∨
j=0

Rin[j] ∧NST [j][t] (4)

R×STab =
[
1 0 0 0

]
×


1 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 =
[
1 0 1 0

]

Fig. 6. State Transformation Example using Composite State Transformer
STan from Fig. 5
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Fig. 7. Parallel-Prefix NFA Evaluation for N = 8 Inputs

Fig. 6 shows the application of a composite state transformer
to a sample current state.

To fully evaluate the FA, we will often want to know all the
intermediate states, Rj+k for each k from 1 to N−1, that is the
prefix of states; this allows us to identify any accepting states
visited in the NFA. While there are clever ways to compute
the prefix in logarithmic depth, a simple way to compute the
prefix is with a sequence of F calculations. Once pipelined,
this is a good implementation for the size of designs we can
currently build.

C. Putting it Together

Putting this together, Fig. 7 shows the parallel-prefix com-
putation for N = 8. SP is the specializer that computes
Fi(R) from F (R, Ii). SC is the matrix-matrix multiplica-
tion state transform composer that computes Fj,j+m(q) from
Fj,j+k−1(q) and Fj+k,j+m(q) (Eq. 3). NS computes the
next state by performing the vector-matrix multiplication to
evaluate a composed ST for a particular state input (Eq. 4),
and F is the original next state computation based on a
character input.



IV. SPATIALLY PIPELINED PARALLEL NFA EVALUATION

The parallel-prefix formulation shows that it is possible to
compute the NFA next state for N characters in logarithmic
delay. However, the serial prefix still takes O(N) time for
evaluation, so offers no speedup. The trick is that this con-
figuration (Fig. 7) is now highly pipelineable, which we now
show in this section. We also look concretely at how this maps
to modern FPGAs.

The first thing to note from the parallel-prefix formulation,
perhaps best seen in Fig. 7, is that the critical path from current
state to the N ’th next state is a single next state evaluation,
NS. The critical path for this next state evaluation can be
a single S-input OR (Eq. 4). Everything that occurs before
the next state evaluation, the specializers and the associative
reduce tree, are not in the critical path to advancing the
state. Similarly, the sequential state evaluation that follows
the next state evaluation is not necessary to evaluating the
next N ’th next state. That means, when we pipeline this
hardware to consume N inputs per cycle, the only dependence
between iterations is the NS evaluation of Rj+N from Rj

at the bottom of the associative reduce tree. Once pipelined,
Rj+N becomes the Rj input for the next state computation
(See Fig. 10), creating the only cycle limiting throughput
(the Initiation Interval (II)).1 We can pipeline specialization,
associative reduce, the prefix, and the final state evaluations
to the point where they meet the throughput of this central
next state evaluation. This means the throughput for an N -
input parallel evaluation should be N times the rate at which
a single next state evaluation can be performed, or roughly a
factor of N speedup.

The latency from I[j] to Rj will still be O(log(N)). This
will make the spatially pipelined version most attractive for
parsing where there is no latency constraint.

A. Next State (NS)

For the highest throughput pipelining, we will want to be
able to perform each of the operations in the pipeline spatially,
ideally in a single cycle. As previously noted, the next state
evaluation can be performed as vector-matrix multiplication
(Eq. 4), which is a set of S parallel binary dot products on
pairs of S-input vectors. A single 6-LUT can take in 3 inputs
from each of the vectors and compute the OR3 of the AND of
the pairs (See Fig. 8). After this, we can build an OR-reduce
out of 6-LUTs, for a total of:

NSLUTs =
2S

6

(
1 +

1

6
+

1

62
+ · · ·

)
≤
(
S/3

1− 1
6

)
=

2S

5
(5)

This means that each dot product will require 2S
5 6-LUTs.

There are S dot products for a total of 2S2

5 6-LUTs. The
central next state evaluator is the only cycle in the graph, and
its asymptotic delay, ignoring 2D-VLSI interconnect delay, is
O(log(S)).

1With additional transformation this II can be reduced as well, but page
limitations prevent elaboration of those transforms.
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Fig. 8. Binary Dot-Product Mapped to 6-LUTs (shown 18b vectors)

B. Specializer (SP)

The simplest specializer is a memory lookup (Fig. 9). Given
the input character I[j], a memory produces the S2 output bits
for a specialized state transformer matrix. Each Virtex 36Kb
BRAM can produce up to 72b of output for up to 512 address
inputs. For input alphabets, A, with no more than 512 symbols
(|A| ≤ 512), we will need S2

72 such BRAMs per specializer.
To operate fully spatially, a configuration consuming N inputs
will need N specializers. So, the total BRAMs needed for
specialization will be:

SPBRAMs = N

⌈
S2

72

⌉
(6)

C. State Composer (SC)

To compose states, we perform the binary matrix-matrix
multiplication on the state transformer matrices (Eq. 3). The
basic computation is a dot product just like the binary vector-
matrix multiplication for the next state. Here, as with any
matrix-matrix multiply, we must perform one dot product
for each element in the output matrix, for a total of S2 dot
products, meaning the whole state composer requires 2S3

5 6-
LUTs. Logically, this is the same latency as the next state
evaluator since all the S2 dot products can occur in parallel.
Since this has high wiring complexity, O(S3) gates, its layout
may be more complicated and require additional pipelining to
meet the rate of the NS unit. The entire associative reduce tree
requires N − 1 state composers.

D. Prefix

The prefix portion of the computation uses only F units
that can be built as pairs of SP and NS units. We can reduce
the length of the pipeline by using the STj,j+N

2
transformer

to compute the next state plus N/2. This leaves us with two
prefix pipelines of length N/2, and we call this design 2-pipe
prefix. The 2-pipe prefix requires N NS units and N SP
units. Fig. 10 shows the complete pipelined, 2-pipe parallel-
prefix computation.

E. Pipeline Registers

The pipeline registers grow large. Pipelining the reduce
requires O(N · S2) registers. The need to carry characters



Symbol I[j] input is used as the lookup address to all the BRAMs in the SP:

BRAM 1 BRAM 0
bits bits

address 71 70 ... 0 address 71 70 ... 0
0 FSM[0][11][11] FSM[0][11][10] ... FSM[0][6][0] 0 FSM[0][5][11] FSM[0][5][10] ... FSM[0][0][0]
1 FSM[1][11][11] FSM[1][11][10] ... FSM[1][6][0] 1 FSM[1][5][11] FSM[1][5][10] ... FSM[1][0][0]
...

...
...

. . .
...

...
...

...
. . .

...
511 FSM[511][11][11] FSM[511][11][10] ... FSM[511][6][0] 511 FSM[511][5][11] FSM[511][5][10] ... FSM[511][0][0]
Read ↓ ↓ ... ↓ Read ↓ ↓ ... ↓
Out ST[11][11] ST[11][10] ... ST[6][0] Out ST[5][11] ST[5][10] ... ST[0][0]

Fig. 9. Specializer from 36Kb BRAM [512×72 organization] (shown S = 12, log(|A|) ≤ 9)
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Fig. 10. Spatially Pipelined, Parallel-Prefix FA Evaluation (shown N = 8)

forward until used in the pipelined sequential prefix means
registers grow as O(N2C), where C is the number of bits
in each character. In SLR32 mode on the Virtex architecture,
the structure supporting the 6-LUTs can also be used as a
shift register of length up to 32. As a result, many of the
long register runs can be implemented compactly. Register
requirements do not dominate for the size of designs we can
place on today’s FPGAs.

F. Putting it Together

Assuming log2(|A|) ≤ 9, design requirements are summa-
rized in Tab. I. For simplicity, Tab. I assumes all units (SP,
SC, NS, F ) operate on the same unit clock. In practice, the
NS cycle limit grows as O(log(S)) gate delay. The other units
may require more pipeline stages to match the NS cycle delay.

TABLE I
RESOURCE ESTIMATES (log(|A|) ≤ 9, UNIFORM UNIT LATENCY)

Parallel BRAMs 2N
⌈
S2

72

⌉
Prefix 6-LUTs 2N

(
S3

5

)
+ 2N S2

5

NFA Regs. O
(
N · S2 +N2 · C

)
Latency log2(N) +N

TABLE II
XILINX ZYNQ PART CHARACTERISTICS

Xilinx Family Artix-7 UltraScale+
Tech. Node 28 nm 16 nm

Board ZedBoard ZCU102
Part XC7Z020-clg484-1 XCZU9EG-ffvb1156-2-i

6-LUTs 53,200 274,000
36Kb BRAMs 140 913

Transceivers 0 24×16.3Gbps
Memory Freq. 388 MHz 738 MHz

[15, Tab. 65] [16, Tab. 80]

V. FPGA MAPPING

The previous sections have shown how we can formulate
parallel and pipelined NFA evaluation. In this section, we look
concretely at how that maps to current FPGA technology. We
specifically characterize how many NFA states are currently
viable with what level of parallelism. We also characterize the
performance they provide and the pipelining required.

A. Key Technology Characteristics

Concretely, we map to Xilinx Virtex SoC FPGAs from the
Zynq and MPSoC families. These SoCs include embedded
ARM processors as well as the FPGA fabric. Our designs only
exploit the LUTs and BRAMs in the FPGA fabric, but we use
the embedded processors to manage at-speed validation. Tab. II
summarizes the technologies and capabilities of the parts used
for characterization.

The peak frequency in our design is set by the maxi-
mum operating frequency of the BRAMs implementing the
SP (Sec. IV-B, Fig. 9). We use the BRAMs in dual port,
NO CHANGE mode where the peak frequency is 738 MHz
as summarized in Tab. II.

Xilinx parts in these families also come with a range of
high-speed serial I/O links. Tab. II shows the XCZU9EG has



24, 16.3 Gbps transceivers providing 390 Gbps of I/O band-
width. The XCZU19EG has 4, 100 Gbps ethernet transceivers.

B. Methodology

We developed a parameterized circuit generator in Python to
produce Verilog descriptions of all the building blocks (SP, SC,
NS) and connect them together into suitable associative reduce
and prefix trees. The generator is parameterized by the number
of simultaneous characters to process, N , the maximum num-
ber of states, S, and the number of registers to add between
stages, r. We tune r to increase pipelining for larger designs
to approach the peak operating frequency of the BRAMs as
identified above. In some cases, we also pipeline the dot
products (Fig. 8) and input fanout in the SC at the LUT level.
We map the produced Verilog designs to the FPGA through
synthesis, placement, and routing with Vivado 2017.1. We set
-shreg_min_size to 8 to prevent the added pipeline shift
registers between SCs in adjacent tree levels from being turned
into SRL32s while allowing the SRL32s to be used for the
long pipeline chains that cross tree levels. We enable retiming
by setting the STEPS.SYNTH_DESIGN.ARGS.RETIMING
property to true.

We validated function and functionality at speed using a
bank of BRAMs to supply input characters to the pipelined,
parallel NFA evaluator and to receive the outputs. This allowed
us to provide the high throughput input and output capture nec-
essary to fully exercise these designs. We used the embedded
ARM processor on the Zynq SoC FPGAs to load the dual-
port input BRAMs and offload the dual-port output BRAMs
on a slow speed clock, then ran the full throughput tests
on a high-speed clock to validate high frequency operation.
We loaded a few designs on a ZedBoard to validate correct
operation at frequency. While we note (Sec. V-A) that these
FPGAs have the I/O bandwidth to feed the high throughput
implementations we report, we did not directly connect the
pipelined parallel-prefix NFA to off-chip data streams, dividing
that as a separate engineering task largely orthogonal to the
result we are demonstrating here.

For the bulk experiments that follow, we performed Out-
of-Context design flow mapping [17] that only synthesized,
placed, and routed the pipelined, parallel-prefix NFA from
input registers through SPs, through the SC reduce and prefix,
to the final NS computations (Fig. 10). This models the
creation of a hard macro block or IP-core that could then be
integrated into a larger design. The select designs mapped to
the ZedBoard verified that the Out-of-Context frequency was
achievable for full designs.

C. Experiments

1) Feasible Parallelism: In Tab. III we generate designs for
a variety of NFA states, S, and parallel input characters, N ,
and report the LUT and BRAM resource usage. This shows
it is practical to support designs with tens of NFA states,
processing tens to hundreds of state inputs at a time on today’s
MPSoC Zynq devices. With LUT usage growing as O(N ·S3),
for a fixed-capacity device, the number of inputs that can be
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supported in parallel drops as states grow. LUTs rather than
BRAMs tends to be the limiting resource, which matches the
asymptotic trend of BRAM needs growing as O(N ·S2), while
LUT needs growing as O(N ·S3). The BRAM count in Tab. III
exactly matches the equations in Tab. I.

2) Feasible Operating Frequencies: As noted (Sec. IV) the
only critical cycle that cannot be pipelined is the next state
(NS) calculation. Fig. 12 shows how NS frequency scales
with S. For the XCZU9EG, the cycle does not limit frequency
until S > 48. The curve show small non-monotonic frequency
results due to the heuristic nature of the CAD tools.

The state combiner, SC, should be pipelineable to achieve
the maximum frequency target. We expect to need larger
pipelining, r, as S grows in order to achieve the highest
frequency operation. Fig. 12 also shows that a single SC
unit can achieve up to S = 28 with simple pipelining. By
further pipelining the SC at the LUT level, and, in some cases,
pipelining the fanout from the inputs of the SC module to the
S points of consumption within the SC, we can achieve full
frequency operation up S = 52 for the XCZU9EG. Beyond
S = 52, we see operating frequency drop with S. As noted,



TABLE III
REDUCE 2-PIPE INPUT CHARACTERS PIPELINED: RESOURCES VS STATES (S) AND PARALLELISM (N ), CELLS SHOW: LUT COUNT (BRAM COUNT)

S N
– 2 4 8 16 32 64 128 256
4 67 (4) 147 (8) 307 (16) 700 (32) 1565 (64) 3279 (128) 6691 (256) 13492 (512)
8 312 (4) 744 (8) 1591 (16) 3392 (32) 7137 (64) 14612 (128) 29542 (256) 59383 (512)

12 995 (8) 2555 (16) 5652 (32) 11963 (64) 24822 (128) 50471 (256) 101754 (512)
16 2536 (16) 6852 (32) 15483 (64) 32780 (128) 67709 (256) 137526 (512)
20 3980 (24) 10700 (48) 24019 (96) 50968 (192) 105213 (384)213678 (768)
24 6888 (32) 18742 (64) 42741 (128) 90812 (256) 187361 (512)
2813020 (44) 39507 (88) 90914 (176) 193800 (352)
3221151 (60) 60896 (120) 140382 (240)
3628743 (72) 84553 (144) 194899 (288)
4041350 (92)119409 (184)
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there is no logical restriction preventing further pipelining, but
it will require more careful control of register insertion and
placement for the additional pipelining to be effective.

3) Frequency and Pipelining: As the design grows with
N , it will need pipelining to accommodate the long wire
connections between SC units to prevent the reduce tree from
limiting operating frequency. To see how these effects manifest
on today’s FPGAs, we mapped designs varying r, the number
of registers inserted between each SC. Fig. 13 shows how
frequency drops as N increases for fixed S = 16 and S = 20
designs. It includes separate curves for different r, to illustrate
how r must grow to maintain high frequency for large N .

Fig. 14 shows how frequency and pipelining requirements
vary with S for fixed N = 16 and N = 32. Up to the S = 24
design for N = 16, the XCZU9EG is able to achieve near
full frequency, but drops at S = 28. We know from the NS
and SC experiments in Fig. 12 that these state sizes should be
able to achieve full frequency. The larger designs may require
more aggressive physical optimization options and additional
care to achieve peak throughput.

D. Discussion

Our results show that it is feasible to run NFA evaluation
at 190 GB/s (S = 4) for the MPSoC Zynq. Using these tech-
niques, we can turn growing FPGA resources into throughput
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without increasing clock frequencies. That means we can ride
the capacity scaling of FPGAs to support higher data rates.

The O
(
S3
)

LUT scaling means this technique will not
support NFAs with hundreds or thousands of states anytime
soon. However, when the large number of NFA states comes
from combining regexps or NFAs, it is possible, and will
be better, to decompose the NFA back into its constituent
components and run these techniques on the independent
NFAs in parallel, as can be easily implemented on an FPGA.
This cost model suggest a different optimization criteria for
regexp combining or decomposition which should be explored
in future work.

Other prefix variants have better asymptotic area character-
istics and will likely become interesting for larger designs.

VI. RELATED WORK

As multicore processors and SoCs become the norm and
network bandwidth continues to increase, high throughput FA
evaluation has gained increasing attention. As applications
are parallelized to exploit multicore processors and SIMD
datapaths, sequential parsing of input streams threatens to
become the sequential bottleneck, limiting achievable per-
formance. As we push to higher network bandwidth, there
is a demand for higher throughput packet processing and
deep-packet inspection; the push to software-defined networks



TABLE IV
SINGLE-STREAM PEAK THROUGHPUT COMPARISON

Any Real- Thput
Design NFA? Time? Part (Gb/s)
HARE [19] no yes Arria V 3
DP FSM [20] yes no Xeon X5650 24
Automata Processor [12] yes yes Micron AP 1
Parallel AP [21] yes no Micron AP 25

32× D480 devices
Multistrided [22] yes yes Virtex 5 LX-220 11
SFA [23] yes no Xeon E5646 112
this work yes yes ZCU9EG 1500

and in-network functions creates even greater demand for
programmable parsing and flexible datastream processing.

Note that the key challenge is providing high throughput
on a single, high-speed data stream. If the data stream is
composed of multiple, independent data streams to process,
each independent stream can be assigned to a separate core or
a separate, single-character-per-cycle FA hardware datapath.
As long as no single stream exceedes the throughput of a
processor core or single-character-per-cycle FA, this simple
data parallelism is sufficient. There are many examples in
the literature that achieve high throughput regular expression
processing only for this multiple, low throughput stream
case. For example, [18] achieves 400 Gb/s with a pipelined
automaton using a set of parallel FA evaluation pipelines. The
rest of the designs in this section address the more challenging
single-stream processing problem which our design addresses.

HARE provides a customized architecture for regular ex-
pression evaluation [19]. On an Altera Arria V (28 nm tech-
nology FPGA), they achieve 3.2 Gb/s of throughput. How-
ever, while HARE handles many common regular expression
patterns, it does not handle all regular expressions or finite
automata. It lacks the generality provided by our architecture.

Recent work explores parallel FA evaluation on multicore
processors with a focus on statistical properties that predict the
state the FA may be in at key points in the input sequence [20],
[24]. Successful prediction, allows the input to be decomposed
into subsequences that can be processed in parallel. [20]
reports up to 24 Gb/s throughput. These statistical techniques
cannot guarantee real-time throughput as our design can.

The Parallel Automata Processor work shows how to ex-
ploit parallelism in NFA evaluation on the Micron Automata
Processor, but still requires sequential evaluation of state se-
quences and also relies heavily on statistics of state sequences
to reduce the number of state sequences that must be evaluated
[21]. Specifically, it does not exploit associative reduction nor
show how to pipeline evaluation. They report a factor of 25.5
speedup over sequential processing on the Micron Automata
Processor that operates at 1 Gb/s on 8-bit input characters [12].

Note that our work is fundamentally different than the
work that deals with multiple characters per cycle under the
name multistride [22], [25], [26] or multicharacter [27]. The
multistrided techniques unroll the FA evaluation loop so that
multiple characters can be processed at once [22]. [22] report
speeds of 11 Gb/s, and the key difference is that the next state

logic in these multistrided designs still depends on sequentially
evaluating the logic of multiple states. It does expose multiple
input transitions to logic optimization that can try to reduce
the combinational path of the logic, but it still must complete
evaluation of the composite path in a single cycle, whereas our
design shows how to decompose and pipeline that composite
evaluation over many cycles. Furthermore, the multistride
implementation can have an exponential increase in area as
the alphabet and hence edges increase exponentially with the
number of characters (or unroll factor) as measured in [18].

The SFA formulation [23] also works on state transformers
(Sec. III-B) by computing a new DFA representing the poten-
tial state transforms resulting form a sequence of inputs. This
allows the parallel computation of state transformers using
DFA state transitions, but, unlike our formulation, the number
of states in the SFA are potentially exponential in the number
of DFA states. To combine the results of parallel computations
in parallel, they still require an associative reduce on state
transforms, for which the solution in this paper would directly
apply. Running on dual 2.4 GHz Intel Xeon E5646 6-core
processors, they report peak throughputs of 14 GB/s, with
many cases achieving lower throughputs. Their performance is
DFA and input-sequence dependent, whereas ours can provide
real-time guarantees based only on the number of FA states.

Previous work shows how to build FSM overlay designs that
can be programmed by filling in memories without the need
to invoke the slow FPGA CAD flow [28]. Our work can be
seen as an extension that shows how to build parallel overlays
that can consume N inputs per cycle for any FSM within a
bounded number of states, S.

VII. CONCLUSION

We show that it is viable to use parallel-prefix computation
to perform NFA evaluation consuming multiple input char-
acters per cycle using today’s FPGAs. Furthermore, we show
how to pipeline evaluation down to a single S-input OR reduce
for an S state NFA. For Ultrascale+ Virtex technology, it is
possible to run at the full clock rate of the BRAMs up to S=48
states before next state (NS) evaluation starts to limit clock
frequency. This makes it possible to achieve guaranteed real-
time throughput on single streams of data into the hundreds of
gigabits per second on today’s FPGA technology. For NFAs
with S states consuming N characters per cycles, LUT area
scales as O

(
N · S3

)
. Both the resource scaling with S and

the frequency challenges for large S mean the technique is
limited to design with small numbers of states. Nonetheless,
the throughput can scale roughly linearly with area allocated.
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