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ABSTRACT
We show that, with the VPR implementation of Pathfinder,
perturbations of initial conditions may cause critical paths to
vary over ranges of 17–110%. We further show that it is not
uncommon for VPR/Pathfinder to settle for solutions that
are >33% slower than necessary. These results suggest there
is room for additional innovation and improvement in FPGA
routing. As one step in this direction, we show how delay-
targeted routing can reduce delay noise to 13% for our worst-
case design and below 1% for most designs. Anyone who
uses VPR as part of architecture or CAD research should be
aware of this noise phenomena and the techniques available
to reduce its impact.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aides—placement and
routing ; B.6.1 [Logic Design]: Design Styles—logic arrays

General Terms
Algorithms, Measurement

Keywords
Timing-Driven Routing, VPR, Pathfinder, Noise, Sensivitity

1. INTRODUCTION
While exploring techniques to tolerate variation [9], using

VPR [1, 2], our efforts were severely hampered by results
that contradicted intuition. As we added controls to check
for and prevent systematic errors, it became increasingly ap-
parent that the results were not self consistent; they were
erratic and noisy. After seeking advice and tuning VPR, we
devised a simple test to asses the stability of the delay re-
sults from the router: adding tiny variations to the resource
graph several orders of magnitude smaller than the nominal
delays. The result—a critical path delay spread greater than
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Figure 1: Percent delay improvement for faster-
wire architecture over uniform architecture for the
Toronto 20 benchmarks

50% of the average—was so shocking and initially unbeliev-
able that we devised several more approaches to evaluate
the sensitivity of the router. We also tried randomly break-
ing ties during routing and randomly shuffling the order of
nets in the netlist file (this does not effect the structure, but
does alter the routing order). For each of these tests, one
would expect to see little or no change in the critical path
delay across the samples; however, in every case not only
did we get spreads in the 20–100% range, the distributions
were similar to the initial approach.

We hope to raise awareness of the current state of the pub-
lished and publicly available versions of the Pathfinder [6]
algorithm. VPR is the defacto standard router for academic
FPGA architecture and CAD research, and anyone who uses
it should be aware of noise inherent in its operation as well as
steps one can take to reduce the noise. We review and quan-
tify the effects of tuning with the pressure factor multiplier
to reduce delay noise (Section 4) and present a small modifi-
cations to VPR/Pathfinder to target a particular delay that
can further reduce delay noise (Section 5). These results
suggest that, while VPR/Pathfinder is very good, FPGA
routing is not a solved problem and, deeper analysis and
refinement of the Pathfinder algorithm is well warranted.

2. TRY THIS AT HOME
Our observations may be surprising. We encourage read-

ers to see these effects for themselves. Input files, external
tools (e.g. our netlist shuffler), scripts, and patches to VPR
4.3 [1] and 5.0.2 [7] to reproduce most of the techniques and
results presented in this paper are available at: http://www.
seas.upenn.edu/~icgroup/publications/pf_fpga_2011

We start with a simple example comparing two architec-
tures. We use the architecture k4-n4.xml from the VPR
5.0.2 distribution where all wires have the same character-
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Figure 2: Distribution of Delay from VPR when
routing 1000 Netlist Shuffles of alu4 at Channel
Width 28
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Figure 3: VPR routed and feasible delays as a func-
tion of channel width for alu4. Maximum iterations
is set to 1000 to ensure success at all widths routed.

istics for the first; in the second architecture, half the wires
are slightly faster such that if all bottleneck signals utilize
the faster resources we scale the critical path delay by 0.995.
We route each netlist on both architectures with the same
placement and channel width target, determined by running
VPR with defaults and the -verify_binary_search option,
to get the results in Figure 1. This graph is surprising for
two reasons: (1) the second architecture is slower than the
first on one quarter of the designs, (2) while the improve-
ment should only have a 0.5% impact on delay, we see delay
changes from -34% to +15%. This magnitude of effect can-
not be a result of the architectural change compared.

Next, we keep the architecture (k4-n4), placement, and
channel width the same but alter the ordering of the CLBs
within the input netlist file. This netlist shuffling transfor-
mation does not alter the structure of the problem, only
the order in which VPR routes signals. Figure 2 shows the
results of routing with 1000 unique permutations of alu4

along with the routed delay from the original netlist order-
ing. This shows that VPR/Pathfinder is highly sensitive to
the order in which nets are routed, with some net orderings
being 67% worse than others. The result VPR produces
with the original ordering is 29% worse than the best result
in this range.

A common architectural parameter to vary during experi-
ments is the channel width. Channel width may affect delay
when there are insufficient resources to allocate least delay
paths for all nets, forcing some nets to take non-minimal
paths to avoid congestion. Adding tracks to each channel
allows more critical signals to take shorter paths, at least
until the critical signals all utilize the least delay routes.
However, it is not uncommon for VPR to produce graphs
like Figure 3 where the delay descent is not monotonic in
channel width. We define the feasible delay, Tfeasible, as the
smallest delay found by any of our routing attempts; this de-
lay is known to be achievable and is an upper bound on the
true minimum delay, Ttrue, for the routing task. Note that
the feasible delay line is flat, suggesting that the decrease in

delay is not because the architecture cannot be routed at
minimum delay for low channel widths, but that the router
is doing an increasingly poor job of finding low delay paths.

3. IMPLICATIONS
These results suggest that the critical path delay that the

VPR/Pathfinder router will find for any netlist, placement,
and architecture includes a large, random component in ad-
dition to the true delay, Ttrue, the architecture supports.

Tvpr rt(net,place,arch) = Ttrue(net,place,arch)+Noise (1)

We observe Noise that ranges from 0–67% with a median
of 17% (Figure 2) compared to Tfeasible, our upper bound
estimate on Ttrue (Tfeasible ≥ Ttrue).

Graphs like Figure 1 are common ways of showing the
varying effects of an architecture or CAD optimization across
a benchmark set. Prior to seeing results like Figure 2, we
thought these graphs were primarily capturing the fact that
some netlists could benefit more from the optimization than
others. It is now clear that at least part of the difference in
benefits among the netlists is this randomNoise component.

Anyone using VPR/Pathfinder in the CAD flow to analyze
architectures or pre-routing CAD optimizations should be
aware of this noise level. Changes that have an impact below
this noise level will be difficult to quantify reliably and will
demand more work than simply reporting the mean speedup
on 20 benchmarks. Larger changes can be measured, but the
precision of the result is limited by the noise effects.

These results suggest both a need to better understand
Pathfinder behavior to be able to interpret its results and a
need to continue to improve our routing techniques to reduce
this noise effect.

4. PRESSURE FACTOR MULTIPLIER
Lemieux previously reported that the VPR router would

produce results across a large delay range and demonstrated
how tuning pres_fac_mult (pfm) can shrink that range in
a trade off with runtime [5]. pfm controls the rate at which
the Pathfinder edge cost function shifts priority to conges-
tion minimization instead of delay minimization. The edge
cost for net i→ j to use node n is:

C(n, i, j) = αij ∗ dn + (1− αij) ∗ (bn + hn,t) ∗ pn (2)

pn = 1 + max (0, (1 + occupancy − capacity)) pft

pft = pf1 × (pfm)t−1 (3)

αij = min

(
Tij

Tcrit
,max crit

)
(4)

Where dn is the delay of the node, bn is a base cost for using
the node, hn,t is the congestion history term for the node,
Tij is the longest unregistered path containing the 2-point
net i → j, pf1 is the initial pressure factor, and pfm is the
pressure factor multiplier. To quantify this effect, we com-
pare the normal VPR router run with two different values
pfm values: 1.3 (the default for VPR 5.0.2) and 1.1. For
each of these cases, we routed 1000 different permutations
of each of the Toronto 20 benchmarks [3]. A single place-
ment and channel width, is used for all routing trials. The
results in Table 1 confirm that reducing pfm does improve
delay and shrink the range of values observed. However, the
noise is still significant (≥25%) and uncontrolled for most
designs (14 of 20).
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Figure 4: Routed Delay versus Specified Delay Tar-
get for 100 Netlist Shuffles of Delay-Targeted Rout-
ing of alu4 at Channel Width 28

5. DELAY TARGETED ROUTING
So [8] demonstrated that routing with a delay target and

pruning paths that did not meet that target could often
achieve the congestion-oblivious lower bound route—the de-
lay achievable when all nets are allowed to take the min-
imum delay path ignoring congestion. So used a sophisti-
cated scheme for slack allocation. We exploit the same basic
idea of delay targets but use a simpler strategy that trivially
integrates with VPR/Pathfinder and works with any target
bound. Rather than allow the critical path delay in VPR to
float, we target a fixed delay goal, Ttarget. This is achieved
by replacing the critical delay (Tcrit) in the VPR/Pathfinder
criticality computations (Equation 4) by Ttarget, giving us:

αij = min

(
Tij

Ttarget
,max crit

)
(5)

VPR’s imposed upper bound (max crit) on allowed critical-
ity prevents the criticality term from exceeding 1.0 on super
critical paths. The VPR 5.0.2 default for max crit is 0.99.
We also add delay target satisfaction to the termination con-
ditions of the main Pathfinder loop. This approach avoids
the arduous task of slack budgeting and, like Pathfinder’s
congestion negotiation, permits potentially valuable super
critical intermediate states.

Figure 4 shows that delay-targeted routing can consis-
tently achieve the requested target, Ttarget, when the target
is slighly above Tfeasible. When the target is not close to the
Tfeasible, it will often return routes faster than requested.

We can perform a single route for a particular Ttarget in
time comparable to a timing-driven VPR route at a fixed
channel width, whereas So’s technique takes an order of
magnitude more time per target.

A single delay target does not address the delay minimiza-
tion problem; for that we use the search in Algorithm 1.
In the initial route, congestion is disabled, allowing each
path to takes its delay minimizing path, thus computing the
congestion-oblivious lower bound on delay. We determine an
upper bound by exponentially increasing our target until one
succeeds—the same technique used by VPR when searching
for a minimum channel width. The reduction is a binary
search with two modifications. Upon a successful route trial
we pivot on the resulting delay instead of the input target
since Figure 4 showed that the delay-target search often find

Algorithm 1: Delay Target Search

Tcurrent=CongestionObliviousRoute
max = min = Tcurrent /* Initial lower bound */

repeat /* Find initial upper bound */

max *= 2
until try route(max)
stage=0
repeat /* Refine */

retry = 0
stage++
success=false
repeat

Ttarget = (max+min)/2
if ((Tcurrent = try route(Ttarget))!=FAIL) then

Ttarget+ = (max− Ttarget)/1000
success=true

until retry++ >= retries or success
if success then

max = Tcurrent

else
min = Ttarget

until max <= min ∗ (1 + target precision)
or stage >= max stages
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Figure 5: Spread of Routed Delays vs. Channel
width for pfm Tuning and Delay-Targeted Routing
for 200 netlist shuffles of alu4

delays well below its target. In practice this provides a sig-
nificant acceleration in the reduction of the search window.
Secondly: we are still limited by the heuristic nature of the
router and cannot trust a negative result (Figure 5). To
compensate we slightly shift the target to perturb the route
and sample again from the noise distribution.

One consequence of using the delay target in Equation 5
is that Ttarget also limits criticality when Ttarget is even
slightly larger than Ttrue. This allows delay-targeted routing
to run with larger max crit values that do not necessarily
converge in default VPR.

To test the efficacy of this technique, we performed the
same netlist shuffle delay experiment we performed for pfm
(Section 4) for the delay-targeted router (with pfm = 1.1
and max crit = 0.999) and included the results in Table 1.
Delay targeted-routing, though not perfect, reduces the noise
to a tolerable level for all but a few designs (four designs with
ranges around 10%).



VPR 5.0.2 Delay
pfm = 1.3 pfm = 1.1 Targeted

Design W CDF med. % med. % med. %

alu4 28 11.0 67 9.3 45 9.0 7.3
apex2 34 12.0 65 12.0 32 12.0 0.0
apex4 36 12.0 79 9.7 84 9.3 13.0
bigkey 20 6.0 74 5.6 58 5.6 0.9
clma 42 28.0 57 28.0 11 28.0 0.1
des 20 12.0 40 12.0 5 12.0 3.2

diffeq 22 8.0 110 7.4 59 7.4 0.0
dsip 20 7.3 30 7.3 6 7.3 0.0

elliptic 34 15.0 59 14.0 32 14.0 0.0
ex1010 36 20.0 17 20.0 3 20.0 1.9
ex5p 36 11.0 66 10.0 25 10.0 0.0
frisc 38 15.0 58 15.0 28 15.0 0.0
misex3 30 12.0 83 9.5 72 9.1 10.0

pdc 50 20.0 60 17.0 63 17.0 9.3
s298 22 19.0 88 15.0 50 14.0 4.0

s38417 30 16.0 39 16.0 2 16.0 0.0
s38584.1 28 12.0 38 12.0 2 11.0 0.0

seq 34 12.0 63 11.0 31 11.0 0.0
spla 44 16.0 61 14.0 43 14.0 2.0
tseng 20 7.5 72 7.4 39 7.3 0.9

Table 1: Comparison of Routed Delay Range for
VPR pfm Tuning and Delay-Targeted Routing.
Each result is based on 1000 netlist shuffles. W is
the target channel width. The dots mark the re-
sult found by VPR (original ordering). Vertical lines
in Cumulative Distribution Function (CDF) column
mark the median.

Figure 5 revisits the channel width noise in Figure 3. To
provide perspective, the boxplots represent the distributions
for delay-targeted routing and unmodified VPR routing at
each channel width. By including the distributions, we ex-
pose the non-monotonicity of the curve not as a meaningful
effect, but as set of random points selected from the Noise
distribution at each channel width. The distributions better
fit our expectations, the range shrinks and shifts downward
with each additional pair of tracks. The delay-targeted re-
sults are also a distribution, just one that is much tighter
than the pfm=1.1 case. Even at 28 tracks per channel the
range is just 7.3%, showing that delay-targeted routing sig-
nificantly reduces the anomalies we saw in Figure 3.

We see the improvements in routing quality offered by our
delay-targeted routing not as a final solution to the quality
and noise problems raised but more as further demonstra-
tion of the opportunity to improve Pathfinder-based routing.
Future work is needed to better characterize or guarantee
quality and noise bounds and to reduce the additional run-
time required to achieve high quality.

6. RELATED WORK
Yan [10] explored the sensitivity of architecture results

to CAD tools. The changes that result from different pre-
routing tool flows (logic mapping, placement) also present
different tasks into routing, but Yan only presents a few dis-
tinct cases into routing for each benchmark and makes no
attempt to differentiate the impact of systematic improve-
ment from better placements or mappings from the random
impacts of routing. In that sense, our experiments more

cleanly characterize just the sensitivity of routing to changes
that should not change the results. Nonetheless, the high-
est level intent is the same—to alert users to the potential
pitfalls and suggest approaches to mitigate these effects.

Our work is also related to the known optimums and lower
bound work from Cong (e.g. [4]). We demonstrate that our
most popular tools (VPR/Pathfinder) are not finding the
best solutions and quantify how far from optimum they are.
As with Cong’s work, this highlights the need for future work
in algorithms and implementations to close the gap.
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