
PLD: Fast FPGA Compilation to Make Reconfigurable
Acceleration Compatible with Modern Incremental Refinement

Software Development

Yuanlong Xiao
University of Pennsylvania

Philadelphia, PA, USA
ylxiao@seas.upenn.edu

Eric Micallef
University of Pennsylvania

Philadelphia, PA, USA
micallef@seas.upenn.edu

Andrew Butt
University of Pennsylvania

Philadelphia, PA, USA
butta@seas.upenn.edu

Matthew Hofmann
University of Pennsylvania

Philadelphia, PA, USA
matth2k@seas.upenn.edu

Marc Alston
University of Pennsylvania

Philadelphia, PA, USA
maa24@seas.upenn.edu

Matthew Goldsmith
University of Pennsylvania

Philadelphia, PA, USA
mwgold@seas.upenn.edu

Andrew Merczynski-Hait
University of Pennsylvania

Philadelphia, PA, USA
andrewme@seas.upenn.edu

André DeHon
University of Pennsylvania

Philadelphia, PA, USA
andre@acm.org

ABSTRACT

FPGA-based accelerators are demonstrating significant absolute

performance and energy efficiency compared with general-purpose

CPUs. While FPGA computations can now be described in standard,

programming languages, like C, development for FPGAs accelera-

tors remains tedious and inaccessible to modern software engineers.

Slow compiles (potentially taking tens of hours) inhibit the rapid,

incremental refinement of designs that is the hallmark of modern

software engineering. To address this issue, we introduce separate

compilation and linkage into the FPGA design flow, providing faster

design turns more familiar to software development. To realize this

flow, we provide abstractions, compiler options, and compiler flow

that allow the same C source code to be compiled to processor cores

in seconds and to FPGA regions in minutes, providing the missing

-O0 and -O1 options familiar in software development. This raises

the FPGA programming level and standardizes the programming

experience, bringing FPGA-based accelerators into a more familiar

software platform ecosystem for software engineers.

CCS CONCEPTS

· Hardware → Reconfigurable logic and FPGAs; · Software

and its engineering → Development frameworks and envi-

ronments.

KEYWORDS

FPGA, Compilation, Partial Reconfiguration, Data Center, DFX

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9205-1/22/02.
https://doi.org/10.1145/3503222.3507740

ACM Reference Format:

Yuanlong Xiao, Eric Micallef, Andrew Butt, Matthew Hofmann, Marc Al-

ston, Matthew Goldsmith, Andrew Merczynski-Hait, and André DeHon.

2022. PLD: Fast FPGA Compilation to Make Reconfigurable Acceleration

Compatible with Modern Incremental Refinement Software Development.

In Proceedings of the 27th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS ’22),

February 28 ś March 4, 2022, Lausanne, Switzerland. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3503222.3507740

1 INTRODUCTION

At the twilight of Moore’s Law, reconfigurable-based accelerators

have emerged capable of delivering energy, cost, and performance

benefits compared with CPU and ASICs platforms [1, 10, 15, 19,

20, 24, 51, 58, 63]. The boom of data-center-based FPGA deploy-

ments [17, 45, 67] further provides more opportunities to diverse

FPGA-based applications on image processing [12, 31], machine

learning [13, 19], and data analysis [8, 13]. Xilinx now provides

Alveo Data-center cards that communicate with a Linux host via

PCIe similar to GPUs.

Despite the enhanced programmability of FPGAs, reducing bi-

nary compilation time is a key to enabling wide FPGA utilization.

Compile time determines the edit-compile-debug cycles that di-

rectly impacts developer efficiency. However, FPGA compilation is

slow. For modern, data-center-scale FPGA accelerator cards, com-

pile time can run into tens of hours. This is incompatible with

modern software engineering approaches that emphasize rapid,

incremental refinement of applications [2, 6]. In many ways, pro-

gramming FPGA computations today is like stepping back to the

batch processing era of the 1960s.

FPGA compilation is slow because it is a monolithic compile of

the entire accelerator in one piece using super-linear algorithms to

find high-quality solutions to hard, spatial optimization problems.

While a modern software compiler has distinct optimization levels

This work is licensed under a Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License.

933

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0002-3749-2729
https://orcid.org/0000-0002-6528-4281
https://orcid.org/0000-0001-9177-7699
https://doi.org/10.1145/3503222.3507740
https://doi.org/10.1145/3503222.3507740

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Y. Xiao, E. Micallef, A. Butt, M. Hofmann, M. Alston, M. Goldsmith, A. Merczynski-Hait, and A. DeHon

−O0 compile seconds −O1 compile 10 minutes −O3 compile hours

Linking Network Linking Network

FPGA
Page

FPGA
Page

FPGA
Page

FPGA
Page

FPGA
Page

FPGA
Page

In
te

rfa
c
e

Soft
Proc.

Soft
Proc.

Soft
Proc.

Soft
Proc.

Soft
Proc.

Soft
Proc.

In
te

rfa
c
e

Logical Computation Dataflow

(Compile Processors) (Separate Compile) (Monolithic Compile)

Figure 1: Fast and Separate Compilation Mapping Strategies

(-O0 to -O3) to trade off performance and compile time, FPGA com-

pilers have limited strategies. This greatly degrades development

and debugging efficiency in the initial development stage, when

optimized implementations are not needed. On almost all aspects,

FPGA compilation is different from how we design compilers for

processors and how we compile software (Sec. 2.1ś2.2).

We argue that FPGA accelerator development can be more ap-

proachable for modern software developers by adapting some of

the good ideas from processor compilation including supporting

(1) separate compilation and linkage for modules with (2) distinct

fast and quality compile options for (3) single-source C code that

can run on both FPGAs and processor targets (See Fig. 1). This sup-

ports faster edit-compile-debug turns (seconds and minutes) and

always leaves the developer with a running application that can be

tested for validity and measured for performance. We present our

framework,PLD (Partition Linking and LoaDing onProgrammable

Logic Devices).

A streaming dataflow abstraction [9, 16, 22, 29, 30, 47, 55] be-

tween concurrent operators and an on-chip network are utilized to

support this separate compilation and linking. Separate compilation

enables incremental compiles of only the modules that change as

well as parallel compilation of independent modules. The on-chip

network can link together the separately compiled modules without

long FPGA compiles while supporting the dataflow communication

abstraction. The use of a standard, dataflow streaming interface

to connect independent modules allows tasks to change their im-

plementation and location without programmer intervention and

without impacting functionality.

Compiler options that trade off compile time with performance

(e.g. -O0, -O1, -O3 in traditional compiler) can further support rapid

recompilation and refinement (See Fig. 1). Separate compilation of

small modules can occur in minutes instead of hours, providing

an -O1 option. Compilation of the same C source code to proces-

sors, perhaps soft-cores in the FPGA fabric, can occur in seconds,

providing an -O0 option.

We make the following contributions:

• Articulate an abstraction for dataflow operators that can

migrate between FPGA accelerators and processors (Sec. 3)

• Show how to reduce FPGA compile time to minutes using

separate compilation of operators onto sub-regions of the

FPGA and how to link the separately compiled modules back

together in seconds (Sec. 4).

• Show how the same source can be compiled to processors

with compatible streaming interfaces (Sec. 5), allowing the

same module C source code to be compiled in seconds and

integrated into the computation.

• Provide firmware and an automated tool flow that supports

this discipline (Sec. 6), providing a familiar experience for

software developers.

• Characterize the compilation-time and performance tradeoff

introduced by these disciplines on the Rosetta Benchmark

set [74] (Sec. 7).

• Provide an open-source release of our PLD framework

(https://github.com/icgrp/pld2022).

2 BACKGROUND

2.1 Processor Compilation

Compilation for processors is typically fast. Historically, compiler

writers have actively eschewed non-linear algorithms, to keep com-

pilation fast. Furthermore, uniprocessor compilation has not had to

deal with complicated spatial concerns, giving them a simpler prob-

lem than the placement-and-routing needed for spatially arranging

computations on FPGAs. Additionally, processor compilation sup-

ports separate compilation with linking so that it is only necessary

to recompile the parts of the code that change. Linking connects the

separately compiled components of a program. Finally, processor

compilers support varying levels of effort from no optimization

(typically optimization level 0 or -O0) to level 3 (-O3) where more

aggressive, and potentially longer running, optimization algorithms

are invoked.

2.2 FPGA Compilation

FPGA compilation is slow. Today’s data-center-scale FPGAs take

hours to map even for small designs (Tab. 2) and can take 10+

hours for large designs [5, 41, 57]. Typical FPGA compilation maps

the entire design at once. This is good for quality, allowing the

compiler to perform cross-module optimizations and use cross-

module constraints to drive efficient physical placements. However,

this means the mapping must deal with a large problemÐmillions

of individual elements on modern data-center-scale FPGAsÐfor any

change. Individual elements, most of which are gates producing a

single bit, must be placed and routed. The placement and routing

problems are all NP-hard problems, typically solved by heuristics,

and the good heuristics in use are super-linear, with no guarantees

on runtime or quality.

2.3 Partial Reconfiguration and Dynamic
Function Exchange

Modern FPGAs support partial reconfiguration, where a portion

of the FPGA is reconfigured while the rest of the FPGA continues

operation [25, 68]. This speeds bitstream loading since the size of the

bitstream, and hence time to load the bitstream, is proportional to

the amount of FPGA logic being reconfigured.While a full bitstream

may be hundreds of megabytes, a partial bitstream can be tens

of kilobytes. Xilinx now calls this Dynamic Function eXchange

934

https://github.com/icgrp/pld2022

PLD: Fast FPGA Compilation to Make Reconfigurable Acceleration Compatible with ... ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

(DFX) [68]. This provides a mechanism to decompose the FPGA into

partial reconfiguration (PR) regions that are separately compiled

and loaded. Vendors tool flow supports the definition of interfaces

between PR/DFX regions and the designation of logic to be mapped

to a DFX region, but leave it to the FPGA application designer to

decide how to use them. Directly dealing with DFX region design

and mapping is tedious and demands significant, low-level FPGA

expertise that precludes direct use by most software engineers. We

build on these capabilities to define FPGA łpagesž for separate

compilation (Sec. 4) and abstract the low-level details away from

software engineers with our toolflow (Sec. 6).

2.4 Vitis OpenCL

Xilinx Vitis provides a standard, OpenCL interface for communi-

cating with the FPGA accelerators and launching computational

kernels on the accelerator [66]. Vitis_HLS allows the kernel to be

specified in C and allows separate C kernels to be linked together.

Vitis supports separate HLS compilation from C to a Register Trans-

fer Level (RTL), like Verilog. However, Vitis does not support a

notion of separate compilation at the place-and-route, implementa-

tion level and hence does not support linking of separately compiled

functions and kernels post place-and-route. As we will see (Tab. 2),

place-and-route is often the most time-consuming part of mapping

from C to FPGA logic. Our solutions are compatible with the Vitis

OpenCL interfaces and HLS, providing separate compilation and

linkage as an alternative to the monolithic Vitis implementation

flow.

2.5 Data-Center FPGAs

Data-Center cards have high capacity FPGAs and local memory

and are designed to operate on the PCI bus [67]. PCI interface

functionality exists in the FPGA configurable logic. Since the PCI

interface is exposed to the server and Linux OS, it is necessary to

keep the PCI interface stable even when reconfiguring the FPGA

logic to support a distinct application or, in our case, to support an

incrementally compiled updates to the logic. As such, data-center

cards are designed with interface łShellsž that remain stable across

applications and use partial reconfiguration (DFX) (Sec. 2.3) to load

the application logic.

The largest data-center FPGAs from Xilinx use silicon interposer

technology where multiple die are stacked on top of a silicon inter-

connect substrate. Xilinx calls each such die a Super Logic Region

(SLR). Latency is higher and bandwidth lower at SLR crossings than

within the FPGA fabric logic on a single die. This often requires

extra care in communication across the SLR interfaces, including

additional pipelining.

3 COMPUTE MODEL

In this section, we describe howPLDutilizes a streaming dataflow [16,

29] model to abstract operator and communication implementa-

tions. This model allows the composition of highly parallel computa-

tions out of modular computing components or operators. Streaming

dataflow abstracts how operators are connected, hiding compute

and communication details and allowing operators to be imple-

mented on different architectures with different kinds of communi-

cation. This supports high-level composition of operators into com-

putational graphs while also supporting diverse implementation

architectures for operators and communication. Hiding operator

internals, it provides a well-defined meaning to operator interaction

while allowing separate compilation and independent refinement

of operator specification.

3.1 Dataflow Composition Model

PLD uses the SCORE streaming dataflow computational model

[16] based on Kahn Processing Networks [29]. Basic kernel com-

putations are described in C as operators that receive inputs over

latency-insensitive streams [7] and produce outputs to latency-

insensitive streams. This builds on the extensive use of dataflow

streaming communication between concurrent computations in

High-Level Synthesis (HLS), including (1) between functions, (2)

between loops, and (3) (in Vitis [66]) between host and FPGA. We

extend the model and implementation to be agnostic to how an

operator or the producer or consumer that it communicates with is

mapped.

3.2 Communication Abstraction: Latency
Insensitive Links

The key to abstracting operators and communications is to define

how data is transferred and synchronized between operators. PLD

uses latency insensitive stream links [7] to provide this abstraction

across a wide range of implementations. The latency-insensitive

stream links act like FIFOs between the source and destination.

They include data presence as the producer writes results and the

consumer reads them. Reads from empty streams block until data be-

comes available. This provides integrated synchronization between

producer and consumer and makes the communication behavior

independent of the timing of the operators or the transport between

producer and consumer. Back pressure from the consumer through

the FIFO link stalls the producer to prevent data loss. Consequently,

if either the producer or consumer run faster or slower from being

mapped to FPGA or processor substrates, this doesn’t change the

functional behavior of the computation. Similarly, different com-

munication timing from various, possibly shared, communication

medium does not change functional behavior.

3.3 Application Description

The top-level kernel is a graph of operators connected by latency-

insensitive stream links as shown in Fig. 2(c). This graph can be

described in C by function composition of operator functions using

stream links as arguments (See Fig. 2(b)). We add pragmas that

specify where each operator is mapped (See Fig. 2(a)). The code in

Fig. 2(b)) works directly with native Vitis_HLS which ignores our

added pragmas. This top-level kernel specification can be automati-

cally compiled into a monolithic design with direct stream links for

compilation with Vitis_HLS (Sec. 6.3). Alternately, it can be com-

piled with our separate compilation tools (Sec. 6.2) to generate the

linking graph needed to configure the linking network (Sec. 4.3).

935

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Y. Xiao, E. Micallef, A. Butt, M. Hofmann, M. Alston, M. Goldsmith, A. Merczynski-Hait, and A. DeHon

void flow_calc(hls::stream< ap_uint<32> > & Input_1,

 hls::stream< ap_uint<32> > & Output_1){

#pragma HLS INTERFACE axis register port=Input_1

#pragma HLS INTERFACE axis port=Output_1

 ap_fixed<32,17> t[6], buf[2];

 FLOW_OUTER: for(int r=0; r<MAX_HEIGHT; r++){

 FLOW_INNER: for(int c=0; c<MAX_WIDTH; c++){

#ifdef RISCV

 printf("r=%d, c=%d", r, c);

#endif

 for(int i=0; i<6; i++) t[i](31, 0) = Input_1.read();

 ap_fixed<64,40> denom = t[1] * t[2] - t[4] * t[4];

 ap_fixed<64, 40> numer0 = t[0] * t[4] - t[5] * t[2];

 ap_fixed<64, 40> numer1 = t[5] * t[4] - t[0] * t[1];

 if(denom == 0){ buf[0] = 0; buf[1] = 0;}

 else{ buf[0] = numer0 / denom;

 buf[1] = numer1 / denom;}

 Output_1.write(buf[0]);

void flow_calc(hls::stream< ap_uint<32> > & Input_1,

 hls::stream< ap_uint<32>> & Output_1);

#pragma target=HW p_num=8

//#pragma target=RISCV p_num=8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

void top(hls::stream< ap_uint<32> > & Input_1, unpack

grad_xy grad_z

weight_y tensor_y

tensor_x

flow_calc

DMA Engine

(a) Operator Header: flow_calc.hpp

 hls::stream< ap_uint<32> > & Output_1){

#pragma HLS INTERFACE axis register port=Input_1

#pragma HLS INTERFACE axis register port=Output_1

 hls::stream< ap_unit<32> > up1, up2, gx, gz;

 hls::stream< ap_unit<32> > wy, ty, tx;

 unpack(Input_1, up1, up2);

 grad_xy(up1, gx);

 grad_z(up2, gz);

 weight_y(gx, gz, wy);

 tensor_y(wy, ty);

 tensor_x(ty, tx);

 flow_calc(tx, Output_1);

}}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1

2

3

4

(b) Dataflow Graph Description: top.cpp (c) Dataflow Graph (d) Operator Function: flow_calc.cpp

up1 up2

Input_1 Output_1

gx gz

wy

ty

tx

 Output_1.write(buf[1]);

}}}

Figure 2: Dataflow Graph and Operators

3.4 Operator Discipline

There are some restrictions for C functions to make good, concur-

rent dataflow operators for acceleration. Refining computations

into this form is one of the demands for rapid, incremental com-

pilation of C. This allows the developer to move one function at a

time and to incrementally refine each operator to meet the full set

of requirements then tune for performance.

Fig. 2(d) shows a C example for the operator. Operator functions

must be refined to use streaming computation and limit themselves

to constructs that can be supported by a fixed-hardware acceler-

ator. All function arguments for communicating data should be

hls::streams (lines 1-2) and the functions should use the associ-

ated stream API operations for all communication. Operators must

avoid allocation or recursion since these cannot be directly sup-

ported by HLS mappings on the FPGA; to exploit processor-only

operations when they are on the processor, like print, they should

be guarded by suitable ifdef software macro guards (lines 8-10).

Operators must use a standard set of datatypes with compatible

implementations for processor and FPGA (e.g., arbitrary precision

integer and fixed-point libraries: ap_int, ap_fixed). Operators

should not use global sharedmemory directly, instead relying on the

streaming dataflow setup to stream data in and out of the kernel as

needed; this restriction could be removed in future work, but DMA

streaming is a powerful technique to achieve high-performance

FPGA kernels.

4 PAGE DECOMPOSITION

The basic idea to support separate compilation is to divide the FPGA

into a collection of independent regions. We call each atomic region

of management a łpagež, similar to Active Pages [48] by analogy

with a virtual memory łpagež that is the atomic region of mem-

ory management (Sec. 4.1). Each FPGA page holds a contiguous

region, typically rectangular, of the FPGA resources include gates

(LUTs), memory (BRAM), and coarse-grained arithmetic (DSPs).

Unlike Active Pages, which focused on data-parallel computations,

PLD supports concurrent execution and communication between

pages with heterogeneous logic that is provided by a linking net-

work (Sec. 4.3). The linking network along with some common

support logic for clocking and DMA data streaming form a fixed

infrastructure context for the pages (See Fig. 3).

4.1 FPGA-Mapped Pages

FPGA compile time is driven by both the size of the logic being

mapped and the resources the logic is being mapped onto. If smaller

pieces of logic (operators) are mapped onto small FPGAs (small

pages), the mapping time is smaller than mapping an entire appli-

cation (all the operators) onto a large FPGA (an entire data-center

scale FPGA). The key to accelerating FPGA mapping time is to

divide the FPGA up into many separate and smaller compilation

problems that can be solved independently and potentially in paral-

lel. Once the FPGA is divided into pages, an operator can be mapped

to a physical FPGA page without concern for what resources other

operators use.

Vitis provides an abstract shell1 option [69] that allows one to

create a design file that only describes the necessary interface logic

to a DFX regionÐone of our pages. This is essential to achieving

1Abstract shell is not to be confused with the łShellž logic used to hold the fixed PCI
logic in on data-center boards (Sec. 2.5); the abstract shell is purely a mechanism in
the CAD flow and is not directly related to the PCI interface shell. Both uses of łshellž
are about abstracting out the details of the design that exist beyond the shell interface,
but the terms are being used at different levels in the abstraction stack.

936

PLD: Fast FPGA Compilation to Make Reconfigurable Acceleration Compatible with ... ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

fast compilation as it allows the page compilation to ignore the

logic on the FPGA beyond the page and its interface with the rest

of the FPGA. Without the abstract shell option, Vitis will still load

and check all the logic for the linking network and all the pages,

slowing down page compilation.

Each page communicates with the linking network through a

standard leaf interface. The leaf interface is included in the operator

logic mapped to the page and provides the common logic so that

the operator can talk to the linking network.

Page sizing is a balance between compilation time, efficiency, and

convenience. Small pages allow shorter mapping times. However,

small pages pay higher overhead for the leaf interface to the linking

network and higher communications overhead. Small pages also

put higher demands on the developer (or mapping tools) to divide

the logic into small operators that will fit in each page. Pages also

suffer fragmentation similar to memory pages. Larger pages may

have high internal fragmentation when the operator logic does

not fully use the logic capacity allocated to the page, while smaller

pages demand the developer and the mapping software keep track

of more pages. The efficiency is roughly:

E f f . =

∑
(Operator Page Use)

∑
(Page Size + Leaf Interface) + Linking Net

(1)

Our network interfaces run about 500 LUTs and the current linking

network needs about 500 LUTs per endpoint. As such, we choose

about 18,000-LUTs pages so that we have around 95% efficiency

before considering fragmentation.

Page sizing is further complicated by the fact that today’s com-

mercial FPGA fabrics are not completely regular. Memory (BRAM)

and coarse-grained logic (DSPs) are inserted into the gate-level

fabric as heterogeneous columns at irregular intervals. As such, it

is impossible to divide the logic up into a grid of equal sized pages.

Furthermore, fixed logic in the FPGA (e.g., PCI interface, hardcore

processors, and PLLs) also break up the regularity of the logic fabric.

As a result, pages on conventional FPGAs are a heterogeneous mix

of resources (See Tab. 1).

4.2 Data-Center FPGAs and Cards Abstraction

PLD virtualizes the data-center FPGAs as pages and only provides

page resource information to the developers abstracting away te-

dious physical implementation information from software devel-

opers. Since the vendors have already partitioned the data-center

FPGA into one static region (for bitstream configuration and com-

munication with the Linux host) and one user DFX region, the

traditional partial reconfiguration techniques cannot be leveraged

directly. Fortunately, the new hierarchical DFX feature enables sub-

DFX region partitions [68]. PLD leverages this new technique to

reserve the original user DFX region as a level 1 (L1) DFX region

(block 1 in Fig. 3) to utilize the static shell (block 3 in Fig. 3).

This is compatible with the Vitis OpenCL driver from the vendor.

We partition the L1 DFX region into a cluster of level 2 (L2) DFX

regions (PLD pages 2 in Fig. 3).

4.3 Linking Network

To connect the physical FPGA pages containing separately compiled

operators, PLD adopts a linking network. The linking network

provides a similar high-level abstraction to software linking and

P
C

Ie
 t

o
/f

ro
m

 H
O

S
T

Page23

Page 22

Page 21

Page 20

Page 4

Page3

Page 2

Page19

Page 18

Page17

Page 16

Page 7

Page 6

Page5

Page15

Page 14

Page 12

Page 11

Page 10

Page 9

Page 8

High Bandwidth Memory High Bandwidth Memory

S
ta

ti
c

S
h
el

l

Linking Network

HBM Driver

Page

13

Debug &

Profile

Logic

L
in

k
in

g
 N

et
w

o
rk

L
in

k
in

g
 N

et
w

o
rk

Binary

Configure

Module

DMA

Engine

Interface

S
L

R
 1

S
L

R
 0

Interrupt

& Reset

Logic

Level-1 DFX Region Level-2 DFX Region Static Region

1 2 3

Figure 3: PLD FPGA Decomposition: Pages, Linking Net-

work, and Support Infrastructure

loading, connecting the individual implementations for operators

together so they can transfer data. Our linking network provides the

physical connectivity implementation for the latency-insensitive

dataflow streams. The linking network can be configured to connect

operator inputs and outputs, as physically instantiated on pages,

together according to the application dataflow graph.

PLD uses aHoplite, lightweight, deflection-routed [18, 46], single-

flit packet, packet-switched network [34] using a Butterfly Fat Tree

(BFT) topology [32] as shown in Fig. 3. We set control registers

in the leaf interface to add appropriate packet destination headers

to data so they will be routed through the network. These control

registers can be changed with control packets on the network, so

that operators can be re-linked without recompiling the source

or destination pages. As such, it is only necessary to send a few

packets per page to link it into the network.

A modest packet-switched network is deployed in PLD for the

fastest linking. The standard leaf interface connection into the net-

work can become a performance bottleneck when the operator

needs higher bandwidth than a single network port provides. The

streaming dataflow abstraction admits to a wide range of linking

network architectures that could provide different compile-time

versus performance and overhead points. Wider network interfaces

and networks with less link sharing will support higher perfor-

mance at the expense of larger overhead. By cutting the network

region up into switch pages, it would be possible to dedicate un-

shared wire connections between operators and separately compile

the application-customized linking switch pages, as well [64].

5 SOFTCORE INTEGRATION

Mapping to small FPGA pages is still slower than mapping to a

processor. However, we can always configure portions of the FPGA,

including an FPGA page, as a processor. The processor serves as a

simple overlay architecture that admits to fast compilation. Since

users start with C code, PLD also allows them to easily compile

937

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Y. Xiao, E. Micallef, A. Butt, M. Hofmann, M. Alston, M. Goldsmith, A. Merczynski-Hait, and A. DeHon

mem_valid

mem_ready

mem_instr

mem_addr[31:0]

mem_wdata[31:0]

mem_rdata[31:0] PicoRV32

picorv_mem (BRAM arrays)

bram_interface

...

...

le
af

 i
n
te

rf
ac

e

B
F

T
-N

o
C

stream_port

instr.ELF

0x10000004

0x10000018

0x10000020

0x10000034 m
em

_
co

n
tr

o
ll

er

Page

Figure 4: RISC-V Integration for One PR Page -

mem_controller is responsible for connecting native

memory interface, stream interface and BRAM access

interface; processor instructions (ELF) are loaded from the

BFT-NoC via the leaf interface.

the same C source to an overlay processor as an -O0 mapping to

quickly get code changes integrated and running on the accelerator.

5.1 Processor Prototype Implementation

As a prototype implementation, PLD pre-loads each page with a

PicoRV32 soft processor [62], as it is area-efficient and easy to

set up. PicoRV32 with 32-bit multiplier includes a simple native

memory interface running at 200MHz to match the overlay linking

network. In this configuration, the PicoRV32 needs 2K LUTs, which

easily fits in the DFX pages along with leaf interface logic. As the

PicoRV32 uses a unified instruction and data memory, different

instruction and data memory size can be allocated according to

the operator’s number of input and output stream ports and the

applications need. PLD pages support at most 192 KB (96 BRAM18s)

of unified memory.

5.2 Streams Support and Compatibility
Libraries

Key to integrating the processors in place of FPGA pages is support-

ing streaming communications and the standard interface to the

linking network. PLD supports hls::stream by defining general

peripheral ports with global memory address and support logic to

interface with the leaf interface FIFOs. As shown in Fig. 4, each

stream datawidth is 4-bytes, matching the datawidth of the 32b

processor. To take advantage of customization features, FPGA HLS

C++ code often use datatypes from ap_int and ap_fixed libraries.

These arbitrary-precision variables can be mapped to FPGA logic

using minimum LUTs, rather than 32b or 64b datapaths on pro-

cessors. However, Xilinx ap_int and ap_fixed libraries use more

than the minimum number of bits to represent these types, which

can be a challenge when our partial reconfigurable pages only have

48 or 96 BRAM18s. Therefore, we develop our own, more memory

efficient, ap_int and ap_fixed libraries that are compatible with

the existing Xilinx HLS C++ code. Mapping all the operators from

the Rosetta Benchmarks (Sec. 7.2), the code and data footprint for

each operator is typically 30ś60 KB, consuming 16ś32 BRAM18s.

pre-linker/loader

(pld)

stream.h

ap_int.h

ap_fixed.hriscv-gcc

caller

a.c b.c firmware.lib

riscv-gcc

caller

b.elfa.elf

top.c host.c

dfg

extractor

vitis_caller

dfg.ir

driver.c

host.exe

page2.dcp

page3.dcp

page1.dcp

overlay lib

overlay.xclbin

host.exe

overlay.xclbin

101010110005
101010110015
101010110025

10101011fff5

...

header elf binary

Figure 5: -O0 Compile Flow

6 PLD TOOL FLOW

To realize our separate compilation and linking, PLD provides an

automated tool flow to map operators to pages and configure the

linking network. PLD uses Vitis as a backend to compile from

C to placed-and-routed logic for individual pages, hiding all the

details of DFX compilation and linking. PLD also automatically

switches between compiling FPGA page targets (-O1, Sec. 4.1) and

softcore processor targets (-O0, Sec. 5) based on compilation flags

and directives. We develop a standard Makefile configuration so

only the pages with changing logic must be recompiled, and build

parallelism can launch separate page compiles concurrently. An

operator withmapping control directives is shown in Fig. 2(a) Line 3.

Each operator has a line with a target specification. Changing the

target will change whether the page is loaded as a native FPGA

partial bitstream or a standard processor overlay loaded with a

compiled processor instruction stream. Changing the target also

sets up the compiler dependencies to build the appropriate bitstream

or instruction stream. PLD can run on both local machines and the

Google Cloud Platform. PLD can be easily extended to other cloud

platforms.

6.1 -O0: Fast Mapping to RISC-V

Fig. 5 shows PLD toolflow for the -O0 optimization. The input

includes separate C files (a.c and b.c), top function (top.c) that de-

scribes the operators’ connections, and host.c that uses the Vitis

OpenCL interface to instantiate kernels and launch DMA to inter-

face with the kernels.

When the target in the header file for an operator is set to RISCV

(Fig. 2(a) Line 4), PLD launches the -O0 compile flow, and calls the

RISC-V toolchain to compile each operator’s C file to a standalone

binary in standard ELF (executable and linkable format) format. A

pre-linker/loader (pld) packs the binary with headers that indicate

the final page number and the memory address for each binary byte.

A dfg extractor produces a data flow graph intermediate file (dfg.ir)

from top.c that pld uses with the the binary components to con-

struct the driver.c file to orchestrate partial bitstream loading and

938

PLD: Fast FPGA Compilation to Make Reconfigurable Acceleration Compatible with ... ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

pre linker/loader

(pld)

hls_caller hls_caller

a.c

b.va.v

xclbin

generator

xclbin

generator

operator

packer

operator

packer
mux.v

output.v

input.v

interface lib

page_a.v page_b.v

Overlay.xclbin

page3.dcp

page1.dcp

a.xclbin b.xclbin overlay.xclbin

b.c

dfg

extractor

vitis_caller

driver.c

dfg.ir

host.exe

top.c host.c

overlay lib

Figure 6: -O1 Compile Flow

linking network configurations. For -O0 compiled operators, the

driver loads the packed ELF binaries into the appropriate softcore

memories. This driver.c and host.c are compiled by the Vitis soft-

ware compiler to generate the top-level host executable, host.exe.

Executing host.exe along with the overlay bitstream (overlay.xclbin)

on the Linux host will run the application.

6.2 -O1: Incremental Mapping to FPGA Fabrics

With the same source code, PLD can launch the -O1 compile flow

(Fig. 6) if the target pragma is HW for that operator (Fig. 2(a) Line

3). The hls_caller of PLD generates customized scripts to direct

Vitis_HLS to compile the C source to Verilog files. The operator

packer wraps each operator’s Verilog files with our pre-defined

leaf interface (Sec. 4.1). This interface is used for the communica-

tion between the linking network and the page logic. Just as in the

-O0 flow, the dfg extractor generates a dataflow graph intermediate

(dfg.ir), and the pld module uses it to generate driver.c that is respon-

sible to configure the linking network by sending configuration

packets through the network. Host.c and driver.c are all compiled

by the Vitis software compiler to generate the host.exe. To run

the application, the Linux host needs to load the overlay.xclbin (L1

binary) first to set up our overlay. Then it loads all the page xclbins

(L2 binary) to map the operators to real FPGA fabrics.

The partial bitstream (xclbin file) for each operator can be com-

piled independently. The xclbin generator alongwith the pre-compiled

overlay library are the key to accelerating compilation time for the

operators. According to the page target of the operator, which rep-

resents the physical page to which the operator will be mapped,

the xclbin generator selects the appropriate abstract shell from our

pre-compiled overlay library and generates a customized script to

guide Vitis to place the operator in the appropriate DFX region.

The customized script directs Vitis to only place and route that

single operator on the small target physical page region. Since the

Vitis abstract shell only loads the minimal context related to the

page, Vitis can perform much less work during placement and

routing than the monolithic flow. All the operators’ compilations

can be performed in parallel, since they are implemented on dif-

ferent physical locations with no overlapping area. When all the

dfg

extractor

kernel.xo

hls_caller hls_caller

a.c

b.va.v

Stream_fifo

interface lib

kernel.v

b.c

kernel

generator

vitis_caller

vitis_caller

top.c host.c

kernel.xclbin host.exe

vitis_caller

dfg.ir

Figure 7: -O3 Compile Flow

xclbin compilations are performed in parallel, the compilation time

is determined by the longest individual one instead of the total

compilation time.

Fig. 5 and 6 show compiling all operators as -O0 or -O1 for

simplicity. The tool flow allows any combination of operators, each

independently mapped -O0 or -O1. The common linker (pld) will

pack together the binaries from the -O0 flow and the common

linking dataflow graph and load the appropriate combination of

-O1 mapped page L2 DFX xclbins and RISC-V page L2 DFX xclbins

for the -O0 mapped operators.

6.3 Monolithic (O3) Linking

The -O1 compilations are fast and suitable for incremental devel-

opment especially during debugging and design-space exploration

stage. However, the application’s performance may be constrained

by the limited bandwidth of the linking network. Moreover, the

pre-defined overlay infrastructure can also increase the area over-

head. To overcome the above limitations, PLD provides the users

with the -O3 compile option that can compile the same application

source monolithically as the normal Vitis flow.

With the same source code, PLD can launch the -O3 compile

flow (Fig. 7) when the -O3 target is selected. PLD generates the

Verilog files for all the operator by calling Vitis_HLS just as in the

-O1 flow. The same dfg extractor still generates a dataflow graph

intermediate file (dfg.ir). The -O3 flow adds a kernel generator

module that uses the dataflow intermediate graph specification to

connect all the operators back together with hardware FIFO streams

at the Verilog level according to the datawidth for each link. PLD

calls Vitis on the kernel Verilog files to package up a Xilinx object

file (kernel.xo) and perform synthesis, placement, and routing to

generate the kernel.xclbin bitstream. The host.c can be compiled

by the normal Vitis software flow. Finally, the users can run the

application by loading the kernel.xclbin and executing host.exe, just

as with the normal Xilinx Vitis flow. Since the design is mapped to

939

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Y. Xiao, E. Micallef, A. Butt, M. Hofmann, M. Alston, M. Goldsmith, A. Merczynski-Hait, and A. DeHon

Table 1: Resource Distribution

Page Type Type-1 Type-2 Type-3 Type-4

LUTs 21,240 17,464 18,880 18,560

FFs 43,200 35,520 38,400 37,440

BRAM18s 120 72 72 48

DSPs 168 120 144 144

Number 7 7 7 1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

3

3

3

3

3

3

3

4

5

6

7

1 Type-1 Page (L2 DFX)

2 Type-2 Page (L2 DFX)

3 Type-3 Page (L2 DFX)

4 Type-4 Page (L2 DFX)

5 Static Shell (Static Region)

6

High Bandwidth Memory

(Hard IP)

7

Linking Network

(L1 DFX)

7

S
L

R
 1

S
L

R
 0

Figure 8: Physical Layout Floorplan

the raw FPGA fabric, instead of our pre-defined overlay, the area

overhead and bandwidth limitations of the overlay are removed.

7 BENCHMARK EVALUATION

7.1 Methodology

We evaluated PLD by targeting a Xilinx Alveo U50 data center

card with a Virtex UltraScale+ XCU50 FPGA. As Xilinx has already

implemented its firmware shell as the static region for bitstream con-

figuration and host-fabric communications, the available resources

for the developer includes 751,793 LUTs, 2.300 18Kb BRAMs and

5,936 DSPs in two SLRs (Sec. 2.5). PLD uses Xilinx Vitis 2021.1

including the associated Vivado and Vitis_HLS as the backend

compiler. All experiments, both PLD decomposed compiles and Vi-

tis monolithic compiles, use the same, standard Vitis shell logic. All

the compilation experiments are conducted on the Google Cloud

Platform. Slurm [21] is deployed to construct the scheduler cluster,

where each compute node is equipped with 4 dual-thread, 2.8GHz

Intel Xeon Intel(R) Cascade Lake processors and 32GB RAM. For

monolithic compile, we use a compute node with 15 dual-thread,

3.1GHz Intel Xeon Intel(R) Cascade Lake processors and 128GB

RAM.

Fig. 8 shows the layout floorplan. We divide the chip into 22 user

logic pages and an interface module that combines a portion of

the packet-switch network with DMA (Fig. 3). The page resource

and types are listed in Tab. 1. PLD uses a Hoplite BFT [32] for

the packet-switched network, running at 200MHz with 32b data

payload. The interface leaf logic in each partial-reconfigurable page

allows configuration of the consumer address by packets on the

BFT network.

7.2 Benchmark Set

For evaluation, we use the Rosetta Benchmark suite [74] containing

a diverse range of graphics, image processing, and classification

tasks. The original Rosetta Benchmarks were written for monolithic

HLS synthesis. We decomposed the benchmarks into operators

and added dataflow stream links for communication among the

operators. We report results for both the original HLS synthesis

version and our automatically generated -O3 monolithic version

that compiles from our decomposed version in the following three

subsections.

rendering ś a simple triangle rendering pipeline that includes

projection to a 2D viewpoint, rasterization, and Z-buffering. We

decomposed by the pipeline stages, then decomposed large pipeline

stages by image region.

digit recognition ś a classification task for hand-written digits

0ś9 that uses matching to a training set to identify each candidate

digit. We refactored the computation as a systolic pipeline with

each pipe stage operating on a subset of the training set.

SPAM filtering ś a classification task that identifies the likelihood

of SPAM based on a set of feature vectors. We decomposed the

data-parallel feature vectors into separate dot product operators

and provided operators for decomposition and data reduce.

optical flow ś an image processing task that identifies the move-

ment of objects among a set of frames. The original computation

already had the shape of a dataflow task graph. We started with

each task as an operator. We decomposed large operators that did

not fit onto a single page by separable components (e.g., x, y, and z

computations).

face detection ś an image classification task that identifies faces

in images. We decomposed the two main stages of the computation

(strong and weak filtering), then decomposed the strong filtering

by image region and the weak filtering by filter sets.

bnn ś a binarized neural network performing image classification

of 10 images based on the CIFAR-10 dataset [39] that uses 6 convo-

lutional levels and 3 fully connected levels. The first convolutional

level operates on fixed-point inputs and produces binary outputs,

while the remaining levels operator on binary signals. We moved

the weight coefficients to on-chip memory and made each stage

and operation its own operator.

For the original benchmark, most of the kernels require more

than 1000 lines of code to describe.

7.3 Compile Time

We initially compile the original benchmarks with the standard

Vitis flow as our baseline. Then we use PLD to compile modified

source code with different optimization level by only changing the

pragmas and compiler options and summarize all compile times in

Tab. 2.

The original Vitis flow has compilation times of 1ś2 hours. We

further see that placement and routing (p&r) requires roughly half

of compilation time. When we compile our decomposed bench-

marks with -O3 option, our -O3 compiled decomposed designs take

about the same 1ś2 hours for compilation.

When all of the operators are mapped with our separate compila-

tion and linkage -O1 option, compile times reduce to 10ś20 minutes,

a factor of 4.2ś7.3 speedup. Pages have varying mapping times, so

the actual ⁀-O1 mapping downtime will vary based on the page

being recompiled. Fig. 9 shows the distribution of page mapping

times. The design with the worst-case 20 minute compile page also

940

PLD: Fast FPGA Compilation to Make Reconfigurable Acceleration Compatible with ... ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

600 800 1000

Time (s)

3D Rendering

Digit Recognition

Spam Filter

Optical Flow

BNN

Face Detection

Figure 9: Operators Mapping Time for PLD with -O1

has pages that compile in 10 minutes. Designers can deliberately

refactor into smaller operators to decrease compile time during

development.

Tab. 2 also includes the case where all of the operators are

mapped with our -O0 option. Compile times reduce below 4 sec-

onds, demonstrating that this option allows PLD to support nearly

instant compilation for rapid functional debugging.

7.4 Performance

Tab. 3 lists the performance comparison between Vitis and PLD.

Compiledwith the PLD -O3 option, our decomposed designs achieve

comparable performance to the original, undecomposed designs,

showing that decomposition for fast mapping does not degrade the

performance of the application. Some of our -O3 designs (Optical

flow and BNN) can run at higher clock rates because of the FIFOs

and pipelined interconnect between operators that isolate the oper-

ator delay and long interconnect between operators, whereas the

original monolithic designs may suffer from long wires and slow

SLR crossings (Sec. 2.5).

For PLD’s page-decomposed -O1 option, applications run 1.5ś

10× slower than the monolithic cases. Most slowdowns are due to

data bandwidth bottlenecks between the leaf pages and the linking

network. This is partly due to our general overlay that can map a

wide range of benchmarks and that has been tuned for mapping

speed over performance. This limitation can be easily overcome by

using -O3 optimization in PLD as shown above. Tab. 3 also shows

Xilinx Vitis Emulation time (Vitis Emu) and the native application

runtime on the X86 host, showing that the -O1 FPGA page com-

pilation is providing substantial speedups over host execution or

emulation.

As expected the processor-mapped -O0 designs run three to five

orders of magnitude slower than the monolithic, FPGA-mapped

cases (Tab. 3). While much slower, this allows developers to quickly

find interface and logic bugs introduced in revisions. While some

full frame times are long, many bugs can be identified after see-

ing the results of a few pixels or elements. During steady-state

debugging, a common practice will be to recompile only the single

operator being debugged with -O0. Fig. 10 shows the distribution

of speedups compared to the all -O0 case for cases where a single

operator is mapped with -O0. Here, we see a range of performances.

0 200 400 600 800

Normalized Throughput

3D Rendering

Digit Recognition

Spam Filter

Optical Flow

BNN

Face Detection

Figure 10: Speedup Distribution with One Softcore (-O0) and

Rest on FPGA Pages (-O1) Compared to All Softcore (-O0)

0 2000 4000 6000 8000

Compile Time (Seconds)

0.000001

0.0001

0.01

1

L
o

g
-s

ca
le

 N
o

rm
 P

er
f

Vitis

-O0

-O1

-O3

Figure 11: Performance vs. Compile Time

When the bottleneck operator is mapped with -O0, performance

can approach the all -O0 case, but many cases are faster, falling

between the all -O0 and all -O1 cases, highlighting the benefit of

being able to co-operate with portions of the design mapped na-

tively to FPGA pages. The PicoRV is a slow, unpipelined core, and

performance can easily be improved by replacing it with a higher

frequency, pipelined softcore processor.

Fig. 11 shows how the performance and compile-time compare

among these options. This clearly shows that PLD provides inter-

esting new points in the compile-time versus performance trade

space, providing developers with new control options to support

rapid edit-compile-debug loops, without giving up their single C

source or their access to high quality designs when they are ready

to invest in longer compile time.

7.5 Area Evaluation

Tab. 4 shows the resource breakdowns for Vitis and PLD implemen-

tation. For PLD -O1, we add up all the operators’ resource including

leaf interfaces. We can see -O1 and -O3 both have higher resource

utilization than the Vitis flow, since both use FIFOs to link opera-

tors together. This can consume a large number of BRAMs along

941

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Y. Xiao, E. Micallef, A. Butt, M. Hofmann, M. Alston, M. Goldsmith, A. Merczynski-Hait, and A. DeHon

Table 2: Rosetta Benchmark Compile Time (in seconds)

Vitis Flow Compile

with 30 Threads

PLD -O3 Compile

with 30 Threads

PLD -O1 Compile

with 8 Threads for each Operator

PLD -O0

Compile

hls syn p&r bit total hls syn p&r bit total hls syn p&r bitgen total riscv g++

3D-rendering 104 1190 2364 606 4264 36 1306 2359 662 4363 35 119 294 130 578 1.0

Digit Recognition 144 1627 2673 729 5173 30 1701 2827 654 5212 29 114 560 164 867 1.5

Spam Filter 69 1308 1867 698 3942 20 1397 2243 695 4355 12 139 597 177 925 3.1

Optical Flow 84 1293 2094 668 4139 19 1531 2854 693 5097 18 102 583 177 880 2.4

Face Detection 542 1738 3280 728 6288 20 1219 2115 668 4022 24 212 545 158 939 2.1

Binary NN 485 2946 2430 723 6584 225 2153 3292 820 6490 225 415 372 140 1152 3.4

Table 3: Rosetta Benchmark Performance

Vitis Flow PLD -O3 PLD -O1 PLD -O0 X86 g++ Vitis Emu

Fmax per input Fmax per input Fmax per input Fmax per input per input per input

Rendering 300MHz 1.6ms 300MHz 0.9ms 200MHz 1.4ms 200MHz 3 s 0.1 s 3 s

Digit Reg 300MHz 10.5ms 300MHz 3.9ms 200MHz 6.2ms 200MHz 137 s 824.0 s 7400 s

Spam 300MHz 18.6ms 300MHz 20.0ms 200MHz 68.7ms 200MHz 752 s 4.5 s 100 s

Optical 200MHz 13.6ms 300MHz 4.8ms 200MHz 48.4ms 200MHz 10 935 s 7.3 s 151 s

Face 300MHz 24.1ms 300MHz 31.0ms 200MHz 125.0ms 200MHz 527 s 17.5 s 352 s

BNN 150MHz 5.1ms 300MHz 4.7ms 200MHz 7.1ms 200MHz 983 s 135.0 s 7100 s

Table 4: Rosetta Benchmark Area Consumption

Vitis Flow PLD -O3 PLD -O1 PLD -O0

LUT B18 DSP LUT B18 DSP LUT B18 DSP PAGE# LUT B18 DSP PAGE#

3D-rendering 4225 64 13 17696 128 26 22823 106 18 6 119208 576 864 6

Digit Recognition 36070 382 1 50595 406 0 63923 441 0 20 393224 1680 2832 20

Spam Filter 9616 34 224 21011 126 256 50965 204 256 16 291480 1176 2088 16

Optical Flow 26974 136 158 27278 192 312 43231 211 312 16 313752 1296 2256 16

Face Detection 51549 156 97 127890 322 192 164385 296 145 20 393224 1680 2832 20

Binary NN 26724 46 5 44077 1130 5 64093 1197 4 22 437768 1920 3168 22

(B18: BRAM18)

with LUTs to support those BRAMs and their synchronization. One

promising solution is to use Relay Station [64] to connect operators

together, instead of stream FIFOs. However, this requires care to set

the buffer sizes appropriately to avoid introducing deadlock that

was not part of the original design. We leave this alternative and

optimization to future work. The -O0 cases use large total resources

because they use a single, one-size-fits-all processor and memory

organization with large memory capacity to handle the worst-case

memory requirements of any operator.

7.6 Discussion

The raw results in the previous section should give a flavor of how

faster compilation will impact development. If the compile time

did not impact the compiles the developer made, we could look

at ratios between monolithic compile times and PLD -O1 and -O0

compile times and estimate reductions in compile time between

one and three orders of magnitude. However, developer behavior is

not likely to be the same. Most developers will simply avoid FPGAs

given the daunting long compile times. Those that do, are likely to

perform less optimization and refinement since they do not have

the orders of magnitude more time to invest in development. As

such, we expect PLD provides a qualitatively different experience,

enabling more software engineers to access FPGA acceleration, and

allowing those that do to develop more highly optimized imple-

mentations.

8 RELATED WORK

Many designs use the idea of dividing the FPGA into separately

managed physical regions to allow independent logic to be mapped

to the FPGA [4, 9, 11, 35, 43, 44, 50, 72, 73]. However, these designs

do not address compile time reduction or support for high-level

compilation from C.

Cascade [52] and SYNERGY [41] also aim at improving the FPGA

programming experience, allowing applications to run immediately

in simulation and supporting unsynthesizable Verilog primitives

($printf or $finish). Subprograms can be replaced over time by

hardware engines when FPGA-target compilations finish, hiding

the compilation time along with software runtime. However, these

942

PLD: Fast FPGA Compilation to Make Reconfigurable Acceleration Compatible with ... ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

approaches demand code be rewritten in a lower-level language,

Verilog, rather than incrementally refined within a single source

language. Moreover, the compilation-hiding scheme still requires

monolithic compiles, each of which can take hours before the FPGA-

acceleration can be incorporated into the computation. Since the

Verilog simulation is slow compared to native C compiled to pro-

cessors, developers must maintain and synchronize two separate

version of the code if they wish to maintain flexibility on whether

a subprogram executes on the FPGA or a processor core. Our back-

end works from RTL, so can likely provide separate compilation

benefits for the Cascade/SYNERGY flow.

One path to faster compilation has been to pre-define overlay

architectures for the FPGA [3, 14, 19, 27, 36ś38, 42, 61, 73]. These

overlays provide a higher-level, typically more coarse-grained, ar-

chitecture than the FPGA that is an easier compile target. With

fewer, coarse-grained operators to map and many of the low-level

details already addressed in the low-level definition of the overlay

components, compilation can be faster. However, overlays typically

come at a large cost (3ś10×) in capacity since the computation isn’t

directly exploiting the FPGA resources. Many overlays are special-

ized to particular domains [19, 73], allowing them to achieve higher

capacity in the domain, but then they do not support applications

outside of the domain. The more specialized overlays must often be

programmed in their own domain-specific language or instruction

set, further meaning they cannot be programmed with the same

source code that can be compiled to processors and native FPGA

logic.

Implementing processors, including scalar [40, 54, 70], vector

[53, 71], and specialized VLIW [26, 33, 56, 60] processors, on top

of FPGAs can also be seen as a form of overlay that allows faster

compilation using standard compilation tools and techniques. We

build on this idea for our fastest compile option (Sec. 5), and PLD

could use a wider range of overlays with our general approach in

the future.

Our prior work [49, 65] hints at the promise of separate compila-

tion for FPGAs, but only runs on application-dedicated embedded

platforms (no operating system, not support OpenCL interface or

data-center cards). While that work accelerated compile times using

these smaller, decomposed mapping tasks, it still saw compiles that

took 5ś10 minutes. Significantly, the designs only run when the

operators have already been sized to fit into the pre-sized hardware

regions. This means that development may go through long periods

of time when the design cannot be tested directly on the hardware.

This also does not support incremental refinement and leaves the

developer without running code throughout refinement process.

9 FUTUREWORK

We have demonstrated the potential for fast, incremental compi-

lation using a specific page size and linking network architecture.

The streaming dataflow model gives us considerable freedom to

change the microarchitecture of the system without changing the

functional behavior of the application. Multiple infrastructure over-

lays with different resources can be pre-computed and stored as

alternate compile-time and quality targets available to the software

developer.

A natural extension would be to expand the potential overlays

available for fast mapping, including a range of pre-compiled proces-

sors with different specializations (e.g., floating-point, multipliers,

vectors), customized VLIW processors or coarse-grained arrays

with diverse resource mixes, and even more specialized, domain-

specific overlays that can be used when they match operator needs.

Decomposing and sizing operators to fit into pages is an added

developer burden. It would be useful to develop more automation

and high-level pragmas to allow the programmer to guide page

partitioning without restructuring code, the same way program-

mers can use pipelining and unrolling pragmas in HLS to guide

implementations without rewriting loops.

While our demonstration is with vendor tools with developer re-

fined C, our tools could serve as accelerated backends for emerging

compilation flows that create efficient, pipelined dataflow operators

but also suffer from long monolithic place-and-route times using

standard vendor tool flows [23, 28, 59].

10 CONCLUSIONS

PLD offers developers a new set of compile-time versus performance

points. To complement the hours-long, high quality compilation

provided by vendor tools, PLD offers fast, native-FPGA compile

options that compile in 10 minutes and near immediate compilation

of the same source to softcore processors that complete in seconds.

These speedups are enabled by extending an idea from processor

compilation of separate compilation and linkage of program op-

erators, allowing the compiler to work on smaller tasks that can

be completed quickly and abstracting the details of each compiled

operator so they can be composed. PLD uses a streaming dataflow

abstraction and a fast linking network to connect the separately

compiled operators back into a functional design. When combined

with program descriptions in C compiled by modern high-level syn-

thesis tools, this provides a more familiar development experience

for software engineers. They can refine C programs to run well on

FPGAs through a series of incremental modifications to the origi-

nal source. Fast compilation turns allow a fast edit-compile-debug

loop, providing rapid feedback on program functionality. The com-

piler can produce successively more performant implementations

over time, but the developer always has an executable version of

the evolving program available for testing. PLD tools work with

modern data-center FPGAs and interfaces to hide the low-level

of details of FPGA CAD flows, microarchitecture, and interfacing,

providing an interface closer to familiar compilation and linking

for processors and GPUs.

ACKNOWLEDGEMENTS

This work is funded in part by a Google Faculty Research Award

and the Office of Naval Research under grant N000141812557. Any

opinions, findings, conclusions, or recommendations expressed in

this material are those of the authors and do not necessarily reflect

the views of Google or the Office of Naval Research. Xilinx donated

Vivado and Vitis tools for use in this work.

REFERENCES
[1] Joshua Auerbach, David F Bacon, Perry Cheng, and Rodric Rabbah. 2010. Lime: a

java-compatible and synthesizable language for heterogeneous architectures. In
Proceedings of the ACM international conference on Object oriented programming

943

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Y. Xiao, E. Micallef, A. Butt, M. Hofmann, M. Alston, M. Goldsmith, A. Merczynski-Hait, and A. DeHon

systems languages and applications. 89ś108. https://doi.org/10.1145/1932682.
1869469

[2] Kent Beck and Cynthia Andres. 2004. Extreme Programming Explained. Addison-
Wesley.

[3] Alexander Brant and Guy GF Lemieux. 2012. ZUMA: An open FPGA overlay
architecture. In 2012 IEEE 20th international symposium on field-programmable
custom computing machines. IEEE, 93ś96. https://doi.org/10.1109/FCCM.2012.25

[4] Gordon Brebner. 1997. The Swappable Logic Unit: A Paradigm for Virtual Hard-
ware. In Proceedings of the IEEE Symposium on FPGAs for Custom Computing
Machines. 77ś86. https://doi.org/10.1109/FPGA.1997.624607

[5] Pietro Bressana, Noa Zilberman, and Robert Soulé. 2020. Finding hard-to-find
data plane bugs with a PTA. In Proceedings of the 16th International Conference
on emerging Networking EXperiments and Technologies. 218ś231. https://doi.org/
10.1145/3386367.3431313

[6] Frederick P. Brooks, Jr. 1995. The Mythical Man-Month: Essays on Software
Engineering (25th anniversary ed.). Addison Wesley Logman, Inc., Chapter 19.

[7] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. 2001. Theory
of latency-insensitive design. IEEE Transactions on Computed-Aided Design for
Integrated Circuits and Systems 20, 9 (2001), 1059ś1076. https://doi.org/10.1109/
43.945302

[8] Matthew Casias, Kevin Angstadt, Tommy Tracy II, Kevin Skadron, and Westley
Weimer. 2019. Debugging support for pattern-matching languages and accel-
erators. In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems. 1073ś1086.
https://doi.org/10.1145/3297858.3304066

[9] Eylon Caspi, Michael Chu, Randy Huang, Nicholas Weaver, Joseph Yeh, John
Wawrzynek, and André DeHon. 2000. Stream Computations Organized for
Reconfigurable Execution (SCORE): Extended Abstract. In Proceedings of the
International Conference on Field-Programmable Logic and Applications (LNCS).
Springer-Verlag, 605ś614. https://doi.org/10.1007/3-540-44614-1_65

[10] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy
Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-
Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael,
Lisa Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. 2016. A cloud-scale
acceleration architecture. In 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 1ś13. https://doi.org/10.1109/MICRO.2016.
7783710

[11] Fei Chen, Yi Shan, Yu Zhang, Yu Wang, Hubertus Franke, Xiaotao Chang, and
Kun Wang. 2014. Enabling FPGAs in the cloud. In Proceedings of the 11th ACM
Conference on Computing Frontiers. 1ś10. https://doi.org/10.1145/2597917.2597929

[12] Nitin Chugh, Vinay Vasista, Suresh Purini, and Uday Bondhugula. 2016. A DSL
compiler for accelerating image processing pipelines on FPGAs. In Proceedings
of the 2016 International Conference on Parallel Architectures and Compilation.
327ś338. https://doi.org/10.1145/2967938.2967969

[13] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian
Caulfield, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Hasel-
man, Maleen Abeydeera, Logan Adams, Hari Angepat, Christian Boehn, Derek
Chiou, Oren Firestein, Alessandro Forin, Kang Su Gatlin, Mahdi Ghandi, Stephen
Heil, Kyle Holohan, Ahmad El Husseini, Tamas Juhasz, Kara Kagi, Ratna K.
Kovvuri, Sitaram Lanka, Friedel van Megen, Dima Mukhortov, Prerak Patel, Bran-
don Perez, Amanda Rapsang, Steven Reinhardt, Bita Rouhani, Adam Sapek, Raja
Seera, Sangeetha Shekar, Balaji Sridharan, Gabriel Weisz, Lisa Woods, Phillip
Yi Xiao, Dan Zhang, Ritchie Zhao, and Doug Burger. 2018. Serving DNNs in real
time at datacenter scale with project brainwave. IEEE Micro 38, 2 (2018), 8ś20.
https://doi.org/10.1109/MM.2018.022071131

[14] James Coole and Greg Stitt. 2010. Intermediate fabrics: Virtual architectures
for circuit portability and fast placement and routing. In 2010 IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS). 13ś22. https://doi.org/10.1145/1878961.1878966

[15] Philippe Coussy and AdamMorawiec. 2010. High-level synthesis. Vol. 1. Springer.
[16] André DeHon, Yury Markovsky, Eylon Caspi, Michael Chu, Randy Huang,

Stylianos Perissakis, Laura Pozzi, Joseph Yeh, and JohnWawrzynek. 2006. Stream
Computations Organized for Reconfigurable Execution. Journal of Microproces-
sors and Microsystems 30, 6 (September 2006), 334ś354. https://doi.org/10.1016/j.
micpro.2006.02.009

[17] Amazon EC2. 2017 (Accessed: 2020-11-16). Amazon EC2 F1 Instances. https:
//aws.amazon.com/ec2/instance-types/f1/

[18] Chris Fallin, Chris Craik, and Onur Mutlu. 2011. CHIPPER: A low-complexity
bufferless deflection router. In 2011 IEEE 17th International Symposium on High
Performance Computer Architecture. 144ś155. https://doi.org/10.1109/HPCA.2011.
5749724

[19] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming
Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi,
Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz, Lisa Woods, Sitaram
Lanka, Steven K. Reinhardt, Adrian M. Caulfield, Eric S. Chung, and Doug Burger.
2018. A Configurable Cloud-Scale DNN Processor for Real-Time AI. In Proceedings
of the International Symposium on Computer Architecture. IEEE Press, 1ś14. https:
//doi.org/10.1109/ISCA.2018.00012

[20] Maya Gokhale, William Holmes, Andrew Kopser, Sara Lucas, Ronald Minnich,
Douglas Sweely, and Daniel Lopresti. 1991. Building and Using a Highly Pro-
grammable Logic Array. IEEE Computer 24, 1 (January 1991), 81ś89. https:
//doi.org/10.1109/2.67197

[21] Google. 2021 (Accessed: 2021-08-10). Deploying a Slurm cluster on Compute En-
gine. https://cloud.google.com/architecture/deploying-slurm-cluster-compute-
engine

[22] Michael Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S. Meli,
Christopher Leger, Andrew A. Lamb, Jeremy Wong, Henry Hoffman, David Z.
Maze, and Saman Amarasinghe. 2002. A Stream Compiler for Communication-
Exposed Architectures. In International Conference on Architectural Support for
Programming Languages and Operating Systems. 291ś303. https://doi.org/10.1145/
635508.605428

[23] Licheng Guo, Yuze Chi, Jie Wang, Jason Lau, Weikang Qiao, Ecenur Ustun,
Zhiru Zhang, and Jason Cong. 2021. AutoBridge: Coupling Coarse-Grained
Floorplanning and Pipelining for High-Frequency HLS Design on Multi-Die
FPGAs. In Proceedings of the International Symposium on Field-Programmable
Gate Arrays. ACM, New York, NY, USA, 81ś92. https://doi.org/10.1145/3431920.
3439289

[24] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang
Xie, Hong Luo, Song Yao, Yu Wang, Huazhong Yang, and William (Bill) J. Dally.
2017. ESE: Efficient Speech Recognition Engine with Sparse LSTM on FPGA. In
Proceedings of the International Symposium on Field-Programmable Gate Arrays.
ACM, New York, NY, USA, 75ś84. https://doi.org/10.1145/3020078.3021745

[25] Intel 2018. AN 797: Partially Reconfiguring a Design on Intel Arria 10 GX
FPGA Development Board. Intel. https://www.altera.com/documentation/
ihj1482170009390.html

[26] Christian Iseli and Eduardo Sanchez. 1993. Spyder: A Reconfigurable VLIW
Processor using FPGAs. In Proceedings of the IEEE Workshop on FPGAs for Custom
Computing Machines. 17ś24. https://doi.org/10.1109/FPGA.1993.279483

[27] A. K. Jain, X. Li, P. Singhai, D. L. Maskell, and S. A. Fahmy. 2016. DeCO: A DSP
Block Based FPGA Accelerator Overlay with Low Overhead Interconnect. In
Proceedings of the IEEE Symposium on Field-Programmable Custom Computing
Machines. 1ś8. https://doi.org/10.1109/FCCM.2016.10

[28] Gangwon Jo, Heehoon Kim, Jeesoo Lee, and Jaejin Lee. 2020. SOFF: An OpenCL
High-Level Synthesis Framework for FPGAs. In Proceedings of the International
Symposium on Computer Architecture. IEEE Press, 295ś308. https://doi.org/10.
1109/ISCA45697.2020.00034

[29] Gilles Kahn. 1974. The Semantics of a Simple Language for Parallel Programming.
In Proceedings of the IFIP CONGRESS 74. North-Holland Publishing Company,
471ś475.

[30] Gilles Kahn and David B. MacQueen. 1977. Coroutines and Networks of Parallel
Processes. In Proceedings of the IFIP CONGRESS 77. North-Holland Publishing
Company, 993ś998.

[31] Nachiket Kapre. 2015. Custom FPGA-based soft-processors for sparse graph
acceleration. In 2015 IEEE 26th International Conference on Application-specific
Systems, Architectures and Processors (ASAP). IEEE, 9ś16. https://doi.org/10.1109/
ASAP.2015.7245698

[32] Nachiket Kapre. 2017. Deflection-routed butterfly fat trees on FPGAs. In Proceed-
ings of the International Conference on Field-Programmable Logic and Applications.
1ś8. https://doi.org/10.23919/FPL.2017.8056804

[33] Nachiket Kapre and André DeHon. 2011. VLIW-SCORE: Beyond C for Sequential
Control of SPICE FPGA Acceleration. In Proceedings of the International Confer-
ence on Field-Programmable Technology. IEEE, 1ś9. https://doi.org/10.1109/FPT.
2011.6132678

[34] Nachiket Kapre and Tushar Krishna. 2018. FastTrack: Leveraging Heterogeneous
FPGA Wires to Design Low-Cost High-Performance Soft NoCs. In Proceedings of
the International Symposium on Computer Architecture. 739ś751. https://doi.org/
10.1109/ISCA.2018.00067

[35] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash, Michael Wei, Eric Schkufza,
and Christopher J. Rossbach. 2018. Sharing, Protection, and Compatibility for Re-
configurable Fabric with AmorphOS. In Proceedings of the 13th USENIX Conference
on Operating Systems Design and Implementation (OSDI’18). USENIX Association,
USA, 107ś127.

[36] Robert Kirchgessner, Alan D George, and Greg Stitt. 2015. Low-overhead FPGA
middleware for application portability and productivity. ACM Transactions on
Reconfigurable Technology and Systems (TRETS) 8, 4 (2015), 1ś22. https://doi.org/
10.1145/2746404

[37] Robert Kirchgessner, Greg Stitt, Alan George, and Herman Lam. 2012. VirtualRC:
a virtual FPGA platform for applications and tools portability. In Proceedings
of the ACM/SIGDA international symposium on Field Programmable Gate Arrays.
205ś208. https://doi.org/10.1145/2145694.2145728

[38] Dirk Koch, Christian Beckhoff, and Guy GF Lemieux. 2013. An efficient FPGA
overlay for portable custom instruction set extensions. In 2013 23rd international
conference on field programmable logic and applications. IEEE, 1ś8. https://doi.
org/10.1109/FPL.2013.6645517

[39] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.
Technical Report. University of Toronto.

944

https://doi.org/10.1145/1932682.1869469
https://doi.org/10.1145/1932682.1869469
https://doi.org/10.1109/FCCM.2012.25
https://doi.org/10.1109/FPGA.1997.624607
https://doi.org/10.1145/3386367.3431313
https://doi.org/10.1145/3386367.3431313
https://doi.org/10.1109/43.945302
https://doi.org/10.1109/43.945302
https://doi.org/10.1145/3297858.3304066
https://doi.org/10.1007/3-540-44614-1_65
https://doi.org/10.1109/MICRO.2016.7783710
https://doi.org/10.1109/MICRO.2016.7783710
https://doi.org/10.1145/2597917.2597929
https://doi.org/10.1145/2967938.2967969
https://doi.org/10.1109/MM.2018.022071131
https://doi.org/10.1145/1878961.1878966
https://doi.org/10.1016/j.micpro.2006.02.009
https://doi.org/10.1016/j.micpro.2006.02.009
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://doi.org/10.1109/HPCA.2011.5749724
https://doi.org/10.1109/HPCA.2011.5749724
https://doi.org/10.1109/ISCA.2018.00012
https://doi.org/10.1109/ISCA.2018.00012
https://doi.org/10.1109/2.67197
https://doi.org/10.1109/2.67197
https://cloud.google.com/architecture/deploying-slurm-cluster-compute-engine
https://cloud.google.com/architecture/deploying-slurm-cluster-compute-engine
https://doi.org/10.1145/635508.605428
https://doi.org/10.1145/635508.605428
https://doi.org/10.1145/3431920.3439289
https://doi.org/10.1145/3431920.3439289
https://doi.org/10.1145/3020078.3021745
https://www.altera.com/documentation/ihj1482170009390.html
https://www.altera.com/documentation/ihj1482170009390.html
https://doi.org/10.1109/FPGA.1993.279483
https://doi.org/10.1109/FCCM.2016.10
https://doi.org/10.1109/ISCA45697.2020.00034
https://doi.org/10.1109/ISCA45697.2020.00034
https://doi.org/10.1109/ASAP.2015.7245698
https://doi.org/10.1109/ASAP.2015.7245698
https://doi.org/10.23919/FPL.2017.8056804
https://doi.org/10.1109/FPT.2011.6132678
https://doi.org/10.1109/FPT.2011.6132678
https://doi.org/10.1109/ISCA.2018.00067
https://doi.org/10.1109/ISCA.2018.00067
https://doi.org/10.1145/2746404
https://doi.org/10.1145/2746404
https://doi.org/10.1145/2145694.2145728
https://doi.org/10.1109/FPL.2013.6645517
https://doi.org/10.1109/FPL.2013.6645517

PLD: Fast FPGA Compilation to Make Reconfigurable Acceleration Compatible with ... ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

[40] Charles Eric LaForest and Gregory Steffan. 2012. Octavo: an FPGA-Centric Proces-
sor Family. In Proceedings of the International Symposium on Field-Programmable
Gate Arrays. 97ś106. https://doi.org/10.1145/2145694.2145731

[41] Joshua Landgraf, Tiffany Yang, Will Lin, Christopher J. Rossbach, and Eric
Schkufza. 2021. Compiler-Driven FPGA Virtualization with SYNERGY. In Pro-
ceedings of the International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ACM, New York, NY, USA, 818ś831.
https://doi.org/10.1145/3445814.3446755

[42] C. Liu, H. C. Ng, and H. K. H. So. 2015. QuickDough: A rapid FPGA loop
accelerator design framework using soft CGRA overlay. In Proceedings of the
International Conference on Field-Programmable Technology. 56ś63. https://doi.
org/10.1109/FPT.2015.7393130

[43] Mateusz Majer, Jurgen Teich, Ali Ahmadinia, and Christophe Bobda. 2007. The
Erlangen Slot Machine: A Dynamically Reconfigurable FPGA-based Computer.
Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology
47, 1 (2007), 15ś31. https://doi.org/10.1007/s11265-006-0017-6

[44] Théodore Marescaux, Vincent Nollet, Jean-Yves Mignolet, Andrei Barticand W.
Moffat, Prabhat Avasare, Paul Coene, Diederik Verkest, Serge Vernalde, and
Rudy Lauwereins. 2004. Run-Time Support for Heterogeneous Multitasking on
Reconfigurable SoCs. INTEGRATION, The VLSI Journal 38, 1 (2004), 107ś130.
https://doi.org/10.1016/j.vlsi.2004.03.002

[45] Microsoft. 2021 (Accessed: 2021-8-1). Microsoft Azure Goes Back To Rack Servers
With Project Olympus. https://azure.microsoft.com/en-us/

[46] Thomas Moscibroda and Onur Mutlu. 2009. A Case for Bufferless Routing in
On-Chip Networks. In Proceedings of the 36th Annual International Symposium
on Computer Architecture (ISCA ’09). 196ś207. https://doi.org/10.1145/1555754.
1555781

[47] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankar-
alingam. 2017. Stream-Dataflow Acceleration. In Proceedings of the Interna-
tional Symposium on Computer Architecture. ACM, New York, NY, USA, 416ś429.
https://doi.org/10.1145/3140659.3080255

[48] Mark Oskin, Frederic T. Chong, and Timothy Sherwood. 1998. Active Pages: a
Model of Computation for Intelligent Memory. In Proceedings of the International
Symposium on Computer Architecture. https://doi.org/10.1109/ISCA.1998.694774

[49] Dongjoon Park, Yuanlong Xiao, Nevo Magnezi, and André DeHon. 2018. Case
for Fast FPGA Compilation using Partial Reconfiguration. In Proceedings of the
International Conference on Field-Programmable Logic and Applications. https:
//doi.org/10.1109/FPL.2018.00047

[50] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao,
Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. 2017.
Plasticine: A reconfigurable architecture for parallel patterns. In 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA). IEEE,
389ś402. https://doi.org/10.1145/3079856.3080256

[51] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati,
Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron
Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. 2014. A Reconfigurable
Fabric for Accelerating Large-Scale Datacenter Services. In Proceedings of the
International Symposium on Computer Architecture. ACM, New York, NY, USA,
13ś24. https://doi.org/10.1145/2678373.2665678

[52] Eric Schkufza, Michael Wei, and Christopher J. Rossbach. 2019. Just-In-Time
Compilation for Verilog: A NewTechnique for Improving the FPGA Programming
Experience. In Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, 271ś286. https://doi.
org/10.1145/3297858.3304010

[53] Aaron Severance, Joe Edwards, Hossein Omidian, and Guy Lemieux. 2014. Soft
Vector Processors with Streaming Pipelines. In Proceedings of the International
Symposium on Field-Programmable Gate Arrays. 117ś126. https://doi.org/10.1145/
2554688.2554774

[54] D. Sheldon, F. Vahid, and S. Lonardi. 2007. Soft-core Processor Customization
using the Design of Experiments Paradigm. In Proceedings of the Conference and
Exhibition on Design, Automation and Test in Europe. 1ś6. https://doi.org/10.1109/
DATE.2007.364392

[55] James Thomas, Pat Hanrahan, and Matei Zaharia. 2020. Fleet: A Framework
for Massively Parallel Streaming on FPGAs. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating
Systems. 639ś651. https://doi.org/10.1145/3373376.3378495

[56] Ilian Tili, Kalin Ovtcharov, and J. Gregory Steffan. 2017. Reducing the Perfor-
mance Gap Between Soft Scalar CPUs and Custom Hardware with TILT. ACM
Transactions on Reconfigurable Technology and Systems 10, 3, Article 22 (June
2017), 23 pages. https://doi.org/10.1145/3079757

[57] Ramshankar Venkatakrishnan, Ashish Misra, and Volodymyr Kindratenko. 2020.
High-Level Synthesis-Based Approach for Accelerating Scientific Codes on

FPGAs. Computing in Science & Engineering 22, 4 (2020), 104ś109. https:
//doi.org/10.1109/MCSE.2020.2996072

[58] Jean E. Vuillemin, Patrice Bertin, Didier Roncin, Mark Shand, Hervé Touati,
and Philippe Boucard. 1996. Programmable Active Memories: Reconfigurable
Systems Come of Age. IEEE Transactions on VLSI Systems 4, 1 (March 1996),
56ś69. https://doi.org/10.1109/92.486081

[59] JieWang, Licheng Guo, and Jason Cong. 2021. AutoSA: A Polyhedral Compiler for
High-Performance Systolic Arrays on FPGA. In Proceedings of the International
Symposium on Field-Programmable Gate Arrays. ACM, New York, NY, USA, 93ś
104. https://doi.org/10.1145/3431920.3439292

[60] Qiang Wang and David Lewis. 1997. Automated Field-Programmable Compute
Accelerator Design using Partial Evaluation. In Proceedings of the IEEE Symposium
on FPGAs for Custom Computing Machines. 145ś154. https://doi.org/10.1109/
FPGA.1997.624614

[61] Tobias Wiersema, Ame Bockhorn, and Marco Platzner. 2014. Embedding FPGA
overlays into configurable systems-on-chip: ReconOS meets ZUMA. In 2014
International Conference on ReConFigurable Computing and FPGAs (ReConFig14).
IEEE, 1ś6. https://doi.org/10.1109/ReConFig.2014.7032514

[62] Claire Wolf. 2021 (Accessed: 2021-08-10). PicoRV32 - A Size-Optimized RISC-V
CPU. https://github.com/cliffordwolf/picorv32

[63] Lisa Wu, David Bruns-Smith, Frank A. Nothaft, Qijing Huang, Sagar Karandikar,
Johnny Le, Andrew Lin, HowardMao, Brendan Sweeney, Krste Asanović, David A.
Patterson, and Anthony D. Joseph. 2019. FPGA Accelerated INDEL Realignment
in the Cloud. In Proceedings of the International Symposium on High-Performance
Computer Architecture. 277ś290. https://doi.org/10.1109/HPCA.2019.00044

[64] Yuanlong Xiao, Syed Tousif Ahmed, and André DeHon. 2020. Fast Linking
of Separately-Compiled FPGA Blocks without a NoC. In 2020 International
Conference on Field-Programmable Technology (ICFPT). IEEE, 196ś205. https:
//doi.org/10.1109/ICFPT51103.2020.00035

[65] Yuanlong Xiao, Dongjoon Park, Andrew Butt, Hans Giesen, Zhaoyang Han,
Rui Ding, Nevo Magnezi, and André DeHon. 2019. Reducing FPGA Compile
Time with Separate Compilation for FPGA Building Blocks. In Proceedings of
the International Conference on Field-Programmable Technology. 153ś161. https:
//doi.org/10.1109/ICFPT47387.2019.00026

[66] Xilinx, Inc. 2020. UG1145: Xilinx Vitis Unified Software Platform User
Guide. Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. https:
//www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1145-
sdk-system-performance.pdf

[67] Xilinx, Inc. 2021. UG1120: Alveo Data Center Accelerator Card Plat-
forms. Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. https:
//www.xilinx.com/support/documentation/boards_and_kits/accelerator-
cards/ug1120-alveo-platforms.pdf

[68] Xilinx, Inc. 2021. UG909: Vivado Design Suite User Guide: Dynamic
Function eXchange. Xilinx, Inc., 2100 Logic Drive, San Jose, CA
95124. https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_
1/ug909-vivado-partial-reconfiguration.pdf

[69] Xilinx, Inc. 2021. UG947: Vivado Design Suite Tutorial: Dynamic Func-
tion eXchange. Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. https:
//www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug947-
vivado-partial-reconfiguration-tutorial.pdf

[70] Peter Yiannacouras, J. Gregory Steffan, and Jonathan Rose. 2007. Exploration and
Customization of FPGA-Based Soft Processors. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 26, 2 (2007 2007), 266ś277. https:
//doi.org/10.1109/TCAD.2006.887921

[71] Peter Yiannacouras, J. Gregory Steffan, and Jonathan Rose. 2012. Portable, Flexible,
and Scalable Soft Vector Processors. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 20, 8 (2012), 1429ś1442. https://doi.org/10.1109/TVLSI.
2011.2160463

[72] Yue Zha and Jing Li. 2020. Virtualizing FPGAs in the cloud. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. 845ś858. https://doi.org/10.1145/3373376.
3378491

[73] Yue Zha and Jing Li. 2021. When application-specific ISA meets FPGAs: a multi-
layer virtualization framework for heterogeneous cloud FPGAs. In Proceedings of
the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. 123ś134. https://doi.org/10.1145/3445814.
3446699

[74] Yuan Zhou, Udit Gupta, Steve Dai, Ritchie Zhao, Nitish Srivastava, Hanchen
Jin, Joseph Featherston, Yi-Hsiang Lai, Gai Liu, Gustavo Angarita Velasquez,
Wenping Wang, and Zhiru Zhang. 2018. Rosetta: A Realistic High-Level Syn-
thesis Benchmark Suite for Software Programmable FPGAs. In Proceedings
of the International Symposium on Field-Programmable Gate Arrays. 269ś278.
https://doi.org/10.1145/3174243.3174255

945

https://doi.org/10.1145/2145694.2145731
https://doi.org/10.1145/3445814.3446755
https://doi.org/10.1109/FPT.2015.7393130
https://doi.org/10.1109/FPT.2015.7393130
https://doi.org/10.1007/s11265-006-0017-6
https://doi.org/10.1016/j.vlsi.2004.03.002
https://azure.microsoft.com/en-us/
https://doi.org/10.1145/1555754.1555781
https://doi.org/10.1145/1555754.1555781
https://doi.org/10.1145/3140659.3080255
https://doi.org/10.1109/ISCA.1998.694774
https://doi.org/10.1109/FPL.2018.00047
https://doi.org/10.1109/FPL.2018.00047
https://doi.org/10.1145/3079856.3080256
https://doi.org/10.1145/2678373.2665678
https://doi.org/10.1145/3297858.3304010
https://doi.org/10.1145/3297858.3304010
https://doi.org/10.1145/2554688.2554774
https://doi.org/10.1145/2554688.2554774
https://doi.org/10.1109/DATE.2007.364392
https://doi.org/10.1109/DATE.2007.364392
https://doi.org/10.1145/3373376.3378495
https://doi.org/10.1145/3079757
https://doi.org/10.1109/MCSE.2020.2996072
https://doi.org/10.1109/MCSE.2020.2996072
https://doi.org/10.1109/92.486081
https://doi.org/10.1145/3431920.3439292
https://doi.org/10.1109/FPGA.1997.624614
https://doi.org/10.1109/FPGA.1997.624614
https://doi.org/10.1109/ReConFig.2014.7032514
https://github.com/cliffordwolf/picorv32
https://doi.org/10.1109/HPCA.2019.00044
https://doi.org/10.1109/ICFPT51103.2020.00035
https://doi.org/10.1109/ICFPT51103.2020.00035
https://doi.org/10.1109/ICFPT47387.2019.00026
https://doi.org/10.1109/ICFPT47387.2019.00026
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1145-sdk-system-performance.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1145-sdk-system-performance.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1145-sdk-system-performance.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/accelerator-cards/ug1120-alveo-platforms.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/accelerator-cards/ug1120-alveo-platforms.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/accelerator-cards/ug1120-alveo-platforms.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug947-vivado-partial-reconfiguration-tutorial.pdf
https://doi.org/10.1109/TCAD.2006.887921
https://doi.org/10.1109/TCAD.2006.887921
https://doi.org/10.1109/TVLSI.2011.2160463
https://doi.org/10.1109/TVLSI.2011.2160463
https://doi.org/10.1145/3373376.3378491
https://doi.org/10.1145/3373376.3378491
https://doi.org/10.1145/3445814.3446699
https://doi.org/10.1145/3445814.3446699
https://doi.org/10.1145/3174243.3174255

	Abstract
	1 Introduction
	2 Background
	2.1 Processor Compilation
	2.2 FPGA Compilation
	2.3 Partial Reconfiguration and Dynamic Function Exchange
	2.4 Vitis OpenCL
	2.5 Data-Center FPGAs

	3 Compute Model
	3.1 Dataflow Composition Model
	3.2 Communication Abstraction: Latency Insensitive Links
	3.3 Application Description
	3.4 Operator Discipline

	4 Page Decomposition
	4.1 FPGA-Mapped Pages
	4.2 Data-Center FPGAs and Cards Abstraction
	4.3 Linking Network

	5 Softcore Integration
	5.1 Processor Prototype Implementation
	5.2 Streams Support and Compatibility Libraries

	6 PLD Tool Flow
	6.1 -O0: Fast Mapping to RISC-V
	6.2 -O1: Incremental Mapping to FPGA Fabrics
	6.3 Monolithic (O3) Linking

	7 Benchmark Evaluation
	7.1 Methodology
	7.2 Benchmark Set
	7.3 Compile Time
	7.4 Performance
	7.5 Area Evaluation
	7.6 Discussion

	8 Related Work
	9 Future Work
	10 Conclusions
	References

