
PUMP: A Programmable Unit for Metadata Processing

Udit Dhawan1 Nikos Vasilakis1 Raphael Rubin1 Silviu Chiricescu2

Jonathan M. Smith1 Thomas F. Knight, Jr.3 Benjamin C. Pierce1 André DeHon1

1 University of Pennsylvania
2 BAE Systems

3 Ginkgo Bioworks

ABSTRACT
We introduce the Programmable Unit for Metadata Process-
ing (PUMP), a novel software-hardware element that allows
flexible computation with uninterpreted metadata alongside
the main computation with modest impact on runtime per-
formance (typically 10–40% for single policies, compared to
metadata-free computation on 28 SPEC CPU2006 C, C++,
and Fortran programs). While a host of prior work has
illustrated the value of ad hoc metadata processing for spe-
cific policies, we introduce an architectural model for exten-
sible, programmable metadata processing that can handle
arbitrary metadata and arbitrary sets of software-defined
rules in the spirit of the time-honored 0-1-∞ rule. Our re-
sults show that we can match or exceed the performance
of dedicated hardware solutions that use metadata to en-
force a single policy, while adding the ability to enforce mul-
tiple policies simultaneously and achieving flexibility com-
parable to software solutions for metadata processing. We
demonstrate the PUMP by using it to support four diverse
safety and security policies—spatial and temporal memory
safety, code and data taint tracking, control-flow integrity
including return-oriented-programming protection, and in-
struction / data separation—and quantify the performance
they achieve, both singly and in combination.

Categories and Subject Descriptors
C.1 [Processor Architecture]: Miscellaneous—security

Keywords
security, metadata, tagged architecture, control-flow integrity,
taint tracking, memory safety

1. INTRODUCTION
Present-day processors are mindless bureaucrats, perform-

ing whatever operations are asked of them even when these
do not make sense (e.g., “run this pointer as an instruction”,
“return into the middle of this string”). A consequence of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HASP ‘14, June 15 2014, Minneapolis, MN, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2777-0/14/06…$15.00.
http://dx.doi.org/10.1145/2611765.2611773.

dumb hardware is that software bears the major burden for
security, leading to unfortunate security-performance trade-
offs [35]. Software can insert barriers between components,
introspect on computation, and maintain safety and security
invariants, but only at a cost (high runtime)—one that is
often deemed unacceptable, leading to systems built to min-
imize any such protections. Furthermore, when protection is
optional, programmers are left to decide for themselves how
to protect their own system components, leading to myriad
weak points in every large computer system.

There is an actively growing body of knowledge about run-
time policies that can reduce the vulnerability of computers
and software to malicious subversion (see, e.g., [17, 7] and
the references in §6). These policies provide sanity checks
that current hardware lacks (e.g., this piece of code should
never return to that point, data from the network should
not be treated as code without careful scrutiny, etc.). Many
of these invariants simply enforce language abstractions that
current software and hardware omit as part of the aforemen-
tioned security-performance trade-off (e.g., bounds checking
on objects, control-flow integrity); these policies can be auto-
matically applied to all code with no additional programmer
burden. Others are policies a system architect might like to
apply to code without auditing or rewriting every line of
code in a larger system (e.g., private data should be en-
crypted before flowing to I/O devices). A large class of such
policies can be supported by adding metadata to the data
being processed (e.g., this is an instruction, this is from the
network, this is private), propagating the metadata through
the computation, and checking that rules on the metadata
are enforced throughout the computation.

With transistors now cheap, it is reasonable to invest some
hardware in reducing the traditional security-performance
trade-off. Over the past few years, hardware has been pro-
posed that handles specific cases of limited metadata pro-
cessing and rule enforcement (surveyed in §6), establishing
that these policies can be enforced with little performance
penalty by data tagging and hardware checking. However,
these proposals typically support only a single policy.

In the spirit of the 0-1-∞ rule1 we introduce an architec-
tural model for extensible, programmable metadata process-
ing that can handle arbitrary metadata and arbitrary sets of
software-defined rules. A hardware rule cache allows these
rules to be executed entirely by the hardware in the common
case, in parallel with instruction execution. Our preliminary
results show that we can match or exceed the performance

1
http://www.catb.org/jargon/html/Z/

Zero-One-Infinity-Rule.html

http://www.catb.org/jargon/html/Z/Zero-One-Infinity-Rule.html
http://www.catb.org/jargon/html/Z/Zero-One-Infinity-Rule.html

of dedicated hardware that uses metadata to enforce a sin-
gle policy while enforcing multiple policies simultaneously
and achieving flexibility comparable to software solutions
for metadata processing. We illustrate the flexibility and
performance of our architecture by applying four security
and safety policies to the C, C++, and Fortran programs
in the SPEC CPU2006 benchmark suite: (i) instruction and
data separation, (ii) spatial and temporal memory safety on
the heap, (iii) control-flow integrity, and (iv) data and code
taint tracking.

We introduce our software/hardware architecture for sup-
porting generic, unbounded metadata rule processing in §2.
§3 describes the microarchitecture implementation including
estimates of key performance parameters. We present the
application of four diverse metadata propagation and check-
ing policies in §4 and evaluate their impact on runtime for
the SPEC CPU2006 benchmarks in §5. We discuss related
work in §6 and conclude in §7.

2. PUMP ARCHITECTURE
Our generalization over prior work on tagged hardware

processing (§6) starts by using a pointer-sized tag for meta-
data, allowing a rich range of arbitrarily structured meta-
data. Our basic addressable memory word is indivisibly ex-
tended with this metadata tag, making all value slots, in-
cluding memory, caches, and registers, suitably wider. The
metadata tag is not addressable by the user program. In-
stead, it is carried along with all values in the computation
and updated (if needed) on each instruction in parallel with
the associated values.

The core architectural feature proposed in this paper is
the PUMP—an architectural mechanism designed to enforce
runtime policies. The policies manifest themselves in terms
of rules that define an atomic operation for the PUMP. Since
the rules apply to each instruction, the PUMP must provide
a result per instruction. To avoid slowing down the compu-
tation, the PUMP should operate in parallel with the normal
ALU computation. To the hardware, the metadata tags are
uninterpreted. Accordingly, the hardware does not compute
rules. Rather, since rules are purely functional, hardware
can cache the mapping between the inputs and outputs of
rules. Therefore, we add PUMP caches to the processor. To
allow software interpretation and support software-hardware
trade-offs in the PUMP design, when a rule is not found in
the PUMP cache, it traps to a software handler that can
resolve the rule and insert it into the hardware cache.

The PUMP allows a programmer or a system designer to
create policies. A policy is defined as a functional mapping of
a set of tags to another set of tags resulting in a collection of
rules that implement some desired tracking and enforcement
mechanism and also manipulate the tags. Rules come in
two forms, depending on whether we are talking about the
software layer (symbolic rules) or hardware layer (concrete
rules) of the system.

Symbolic Rules. From the point of view of the policy pro-
grammer and the software parts of the PUMP, policy rules
are compactly described using symbolic tags and are writ-
ten in a tiny domain-specific language. These make up the
symbolic rules. Each symbolic rule has the form

opcode : (PC ,CI ,OP1 ,OP2 ,MR)
→ (PC new ,R, allow?)

which says that the rule matches on the given opcode to-
gether with the metadata tags on the program counter (PC),
on the current instruction (CI), on the two operands from
the register file (OP1 , OP2), if any, and on the value read
from memory (MR), if any; on a match, the right-hand side
of the rule determines if the operation is allowed (allow?)
and how to update the metadata tag on the PC (PC new)
and on the result of the operation (R, which may be a des-
tination register (OP3) or a value to be written to memory
(MW), depending on the instruction). We write “−” to in-
dicate ignored input fields and unused output fields. The
input set represents the subset of the architecturally visible
state that can affect an instruction, while the output set is
simply the state that can be affected as a result of the in-
struction. This extends the prior work where mostly a single
output is computed from two inputs (see §6).

An example problem that can be addressed by the PUMP
is return-oriented programming (ROP) [33, 9]. ROP attacks
work by identifying a set of “gadgets” in the binary exe-
cutable of the program under attack and using these to as-
semble complex malicious behaviors by constructing an ap-
propriate sequence of stack frames, each containing a return
address pointing to some gadget, and then using a buffer
overflow or other vulnerability to overwrite the top of the
stack with this sequence, causing the snippets to be exe-
cuted in order. We can limit return targets only to well-
defined program points using the PUMP by tagging instruc-
tions that are valid return points with a metadata tag tgt
and creating policy rules that behave as follows – each time
we execute a return instruction, we set the metadata tag
on the PC to check to indicate that a return has just oc-
curred. On the next instruction (i.e., whenever the PC tag
is check), we check that the tag on this instruction is tgt;
if it is not, we terminate the currently executing process.

For the simple ROP policy just sketched, the possible tag
values are empty, check, and tgt; by convention, the PC
will always be tagged either empty or check and each in-
struction will be tagged either empty or tgt. The symbolic
rules for this policy are:

return : (empty,−,−,−,−)→ (check,−, true) (1)

return : (check, tgt,−,−,−)→ (empty,−, true) (2)

return : (empty,−,−,−,−)→ (empty,−, true) (3)

return : (check, tgt,−,−,−)→ (check,−, true) (4)

Rule 1 says that, when we encounter a return instruction
(and the PC is not tagged check), we change the metadata
tag on the PC to check. When we run an instruction with
the PC metadata marked as check (Rule 2), we check if the
instruction metadata, CI, is tgt; if so, we clear the metadata
on the PC (“return” means “any opcode except return”).
If the operation is not a return and the PC metadata is
empty, we do nothing (Rule 3). Rule 4 handles the spe-
cial case where the target of a return instruction is itself a
return. If no rule applies, we disallow the operation.

The expressions describing tags and opcodes in these sym-
bolic rules are not limited to constant values: we can write
more general expressions that compactly describe large sets
of opcodes or tags. So far, we have used this flexibility only
in a simple way (the two instances of overbars denoting set
complement); for a more interesting example, let’s consider
a more precise variant of the return-matching policy. This
refinement makes sure not only that every return reaches

some valid return target, but also that each return targets
a code point from which it could actually have been called.
This policy works on compiled code, where the compiler has
full knowledge of return points and can analyze, for each one,
which call sites it might validly return to. Using this infor-
mation, we can attach unique metadata tags to each return

instruction and to each valid return target. Upon encoun-
tering a return instruction, the PUMP copies the specific
tag on the instruction (rather than the generic tag check)
onto the PC. On the next step, it can check that the actual
return point was among the expected ones by checking if a
rule with that particular PC / CI tag combination exists.
For instance, if the compiler knows that the return instruc-
tion tagged t1 can only return to the return sites tagged t2
and t3, the policy will contain the following rules for the
return instruction:

return : (empty, t1,−,−,−)→ (t1,−, true) (5)

return : (t1, t2,−,−,−)→ (empty,−, true) (6)

return : (t1, t3,−,−,−)→ (empty,−, true) (7)

Concrete Rules. Symbolic rules allow a programmer to ex-
press the policy rules by using abstract symbolic tags. At
the hardware level, however, we need a rule representation
that is tuned for efficient implementation to avoid slowing
down the primary computation. To this end, we introduce
a lower-level rule format, called concrete rules which makes
use of concrete tags (specific instances of symbolic tags). In-
tuitively, the symbolic rules for a given policy get converted
into concrete ones. However, since a single symbolic rule
might in general result in several concrete rules, we perform
this conversion lazily, generating only those concrete rules
that are actually needed as the system executes—likely a
much smaller number.

When an instruction is issued, the PUMP needs to per-
form the metadata computation as defined by the policy,
which essentially means that the PUMP needs to check if
there is a rule that validates the current instruction. Con-
ceptually if all the policy rules are elaborated into a tabular
form, the PUMP operation boils down to aggregating the
tags from the current architectural state and performing an
associative match against all the rules in that table. If a
match is found, the PUMP cache returns the new tag for
the PC and, if needed, a tag for the instruction’s result. If
there is no match in the PUMP cache, the processor faults
to a PUMP miss handler. This consults the symbolic rules
for the policy and determines whether the faulting machine
state is actually allowed; if so, it generates an appropriate
concrete rule, installs it in the cache, and restarts the fault-
ing instruction. Or, if the miss handler determines that the
operation is not allowed, it invokes a suitable security fault
handler. What this fault handler does is up to the runtime
system and rule policy; typically, it would shut down the of-
fending process, but in some cases it might return a suitable
“safe value” instead [29, 22].

Composite Policies. As a security policy programmer, it
is easier to create multiple, mostly orthogonal policies that
maintain different invariants and perform distinct analyses.
As such, for full protection, we would like to run all of these
policies simultaneously and be able to add additional policies
as they are developed. One of the features of our general,
uninterpreted tag approach is that we can, in principle, en-
force any number of policies at the same time. This can be

IF Decode Execute Memory PUMP

RF
Tags

PCtag

L1-I$
Tags

L1-D$
Tags

Commit

PC

L1
PUMP

Figure 1: L1 PUMP cache in a processor pipeline

achieved by letting tags be pointers to tuples of tags taken
from several component policies. For example, to combine
the first ROP policy with a taint policy, we would let each
tag be a pointer to a representation of a tuple (r, t), where
r is an ROP-tag (empty, check, etc.) and t is a taint tag
(another pointer to a set of taints). The rule cache lookup is
exactly the same, but when a miss occurs, both sets of sym-
bolic rules are evaluated separately, the operation is allowed
only if both allow? expressions evaluate to true, and the
resulting tags are pairs of results from the two sub-policies.

3. MICROARCHITECTURE
The PUMP hardware cache is essentially a fixed-capacity

associative map. It is closer to a modern translation looka-
side buffer than a normal memory cache. The wide match
key makes it more challenging to implement lookups than for
a simple address-to-word translation. As with any caching
scheme, we can use multiple levels of caching to implement
the memory hierarchy for the PUMP. In this paper we specif-
ically consider a 2-level PUMP. L2-PUMP misses invoke the
software miss handler. In this section we take a deeper look
at how this hardware can be implemented.

In this paper, we are concerned primarily with establish-
ing achievable runtime performance. The simple implemen-
tation described here has fairly high area and energy costs,
but we believe these can be tamed with suitable microar-
chitectural optimizations; these are the focus of our ongoing
work. For concreteness, we use a simple in-order, single-
issue, 5-stage pipelined processor core with the 64-bit AL-
PHA ISA [2] as the baseline—this is representative of the
energy-efficient cores used in modern embedded devices [1].

Pipeline Integration. First we show how to add the PUMP
support to the baseline processor. For simplicity we consider
a coupled tagging scheme—any data that flows in to the pro-
cessor pipeline flows with its tag. Within the pipeline, we
split off the metadata from the payload and dispatch them
to their respective operation units.

A rule may take as input the value read from memory
(such as in the case of a load) that is not available until
a later pipe stage. To avoid introducing unnecessary stalls,
we place the PUMP lookups in a pipe stage after the result
from the memory read is available. We call this the PUMP

stage. To avoid stalls, we require that this stage return
the output tags in a single cycle; to identify PUMP cache
misses, the input tags can be matched in the next stage
before the instruction is committed. The resulting pipeline
has 6 stages, as shown in Fig. 1. All the PUMP inputs are
available at the end of the Memory stage, so the additional
pipeline stage does not introduce any new stalls. Fig. 1 also

shows that we bypass the tags from the Commit stage back to
the PUMP stage. Since we allow rules that depend on the tag
of the memory location that is being overwritten in memory,
write operations become read-modify-write operations. The
tag of the old value of the memory word is read during the
Memory stage like a read, the rule is checked in the PUMP

stage, and the write is performed during the Commit stage.

PUMP Service. For UNIX-style [30] operating systems, we
assume policies are applied per process, allowing each pro-
cess to get a different set of policies. It also allows us to
place the tags, symbolic rules, and miss handling support
into the address space of the process, avoiding the need for
an OS-level context switch. This does mean that rules in
the PUMP caches will be tagged by process id.

When an L2-PUMP-miss occurs we need to: (i) transfer
to a suitable miss handler, (ii) obtain the opcode and tags
for the instruction that missed in the PUMP, (iii) consult
the symbolic rules of the policy and generate an appropri-
ate concrete rule, (iv) install this rule into the PUMP, and
(v) restart the faulting instruction. To provide isolation be-
tween the (highly privileged!) miss handler and the rest of
the system software, we add a miss-handler mode to the pro-
cessor. To avoid the need to save and restore registers, we
expand the integer register file with 16 additional registers
that are available only to the miss handler. Additionally,
the PC of the faulting instruction, the rule inputs (opcode
and tags), and the rule outputs appear as registers while in
miss handler mode (cf. register windows [28]). We also add
a new miss-handler-return instruction to finish installing
the concrete rule into the PUMP and return to user code.

While the processor is in miss-handler mode, the PUMP
applies a single, hardwired rule: all instructions and data
touched by the miss handler must be tagged with a pre-
defined miss-handler tag. This tagging provides isolation
between the miss handler code, data, and user code in the
same address space. This prevents user code from directly
calling miss-handler code or manipulating miss-handler data
structures. Conversely, it prevents the miss handler from ac-
cidentally touching user data or code.

PUMP Cache Implementation. The PUMP requires a
long match key (5 address-sized tags plus an instruction op-
code) compared to a traditional memory address key (less
than the address width). Using a fully associative cache
would lead to a high access latency (several cycles). In-
stead, we use the dMHC scheme from [18]. This cache provides
performance close to that of a fully associative memory, at
much lower cost. We use a FIFO replacement policy when
the cache reaches capacity. The L1-PUMP cache is designed
to produce the result in a single cycle while checking for a
false hit in the second cycle using the Fast-Value dMHC. For
the L2-PUMP cache, we use the space-efficient Two-level

dMHC, taking multiple cycles to return a result.

Resource Estimates. For concreteness, we consider a 32 nm
Low Operating Power (LOP) process. We use CACTI 6.5 [25]
for evaluating our processor components. The baseline im-
plementation has a 64KB L1 D$ with a latency around
820 ps. We assume the L1 D$ in the baseline processor can
return a result in one cycle and set its clock to 1 ns, giving
us a 1 GHz-cycle target—comparable to modern embedded
and cell phone processors. Extending each 64b word with a
64b tag increases this latency to 1300 ps if we keep the effec-

Unit Design Organization Cyc

RF Baseline 64b, 2R1W, 1
{32 Integer, 32 Floating}

tagged 128b, 2R1W, 1
{48 Integer, 32 Floating}

L1 Cache Baseline 64KB, 4-way, 64B/line 1
(I or D) tagged 64KB, 4-way, 128B/line 1

(eff. 32KB, 64B/line)
L2 Cache Baseline 512KB, 8-way, 64B/line 3

tagged 1MB, 8-way, 128B/line 4
(eff. 512KB, 64B/line)

DRAM Baseline 1GB, access 64B line 100
(main tagged 1GB, access 128B line 130

memory) (eff. 64B line)

L1 PUMP tagged 1024-entry FV† dMHC(4,2) 1
328b match, 128b out

L2 PUMP tagged 4096-entry, TL‡ dMHC(4,2) 3
328b match, 128b out

Table 1: Cycle estimates for baseline and PUMP-
extended Processor at 32nm LP (CACTI 6.5)
(†=Fast-Value, ‡=Two-Level [18])

tive cache capacity the same, adding a stall cycle for each L1
access. We avoid these stalls by implementing a 64KB L1
cache with only 32KB effective capacity; tags occupy the re-
maining 32KB. Since the L2 cache access is already greater
than a single cycle, we implement a bigger L2 cache to give
us the same effective capacity. Consequently, the unified L2
cache accesses take 4 cycles instead of 3 cycles in the base-
line. The L1-PUMP cache, which we need to operate in a
single cycle to prevent it from pacing operation, can return
the result in 695 ps, while the L2-PUMP cache has a hit la-
tency of 3 cycles. Since we now fetch twice as many bits
from the DRAM, each DRAM access is 30% slower than in
the baseline case. The memory organization and cycle costs
for the baseline and the tagged architecture are summarized
in Tab. 1.

4. RUNTIME POLICY CASE STUDIES
In this section we sketch four different policies addressing

a range of useful program invariants can be implemented
using the PUMP. This exercise illustrates the flexibility of
the mechanism we are proposing and provides a diverse set
of examples for evaluating its performance.

Primitive Types. As a simple illustration of a policy, we
consider a set of primitive type tags for C—instruction (insn),
address (address), and data (data). Only instructions can
be executed, and they cannot be created at runtime. Only
addresses can be used for memory addressing. The data

type tag is used as a catch-all for words that are not in-
structions or data. This level of safety prevents accidental
misinterpretation of data as addresses or instructions, and
provides some protection against code injection.

Spatial and Temporal Memory Safety. We next use the
PUMP to implement a scheme due to Nagarakatte et al. [26]
that identifies all temporal and spatial violations in memory.
Intuitively, for each new allocation we make up a fresh block
id t and write t as the tag on each memory location in the
newly created memory block (á la memset). The pointer to

the new block is also tagged t. Later, when we dereference
through a pointer, we check that its tag is the same as the
tag on the memory cell to which it points. When a block
is freed, tags on all its cells are changed to a default value
representing non-referenceable memory. Our implementa-
tion also deals with address arithmetic and the fact that an
address in memory must be separately tagged with both the
block it is in and the block to which it points. Our current
implementation only guards heap data (where calls to mal-

loc and free tell us how to set up memory regions), not
stack frames.

Control-Flow Integrity. As discussed in §2, hijacking con-
trol flow is a common element of many attacks. Control-
Flow Integrity (CFI) [3] is a powerful technique that ana-
lyzes programs and limits run-time control flows to those
found in the source code. To address this set of attacks us-
ing the PUMP, we divide the notion of CFI into three parts:
CFI-ROP, which restricts returns; CFI-Call, which restricts
where procedures can be called from; and CFI-IntraProc,
which also restricts branch source-target pairs within a pro-
cedure. We combine the three components together into a
Complete Control-Flow Integrity (CCFI) policy. In compar-
ison to the low-overhead but limited ROP protection in [39]
and the ROP protection without CFI provided by DISE [13],
this solution provides complete and precise call-return align-
ment with low performance overhead. In fact, the PUMP
avoids the vulnerabilities in the weaker CCFI policy by al-
lowing us to implement the ideal CFI as described in [19].

Taint Tracking. Taint tracking techniques track the prove-
nance of data values, detecting situations where untrusted
data or data produced by untrusted code flows into sensitive
operations. Previous work has typically used a binary taint
model, where a single-bit taint t simply indicates whether or
not any data from an external source has been used in com-
puting a value tagged t. Using the PUMP we can do finer-
grained taint tracking, with an unlimited number of sources
and a separate taint element per source. The tags for this
policy are pointers to sets of source identifiers. We intro-
duce taint in two different ways, namely tainting program
inputs and tainting program code. Tainted inputs might
include data received from the network or a file. We taint
program code to protect against untrusted libraries and pos-
sibly buggy components. For the benchmarks that follow we
use a taint-by-library policy that gives each library and
input source a unique taint identifier.

Combinations. The PUMP architecture allows us to simul-
taneously enforce multiple policies. In order to demonstrate
this and measure its effect on working set sizes, we imple-
mented a Composite policy, where each composite tag is a
tuple of tags from the individual policies discussed above.

5. PERFORMANCE EVALUATION
PUMP performance is a function of the tag and rule work-

loads created by policies such as those of §4. Our evaluation
methodology is described in §5.1 and its results in §5.2.

5.1 Methodology
Processor Parameters. The parameters for the baseline
and the experimental tagged processor are shown in Tab. 1.
For the tag-extended processor, we implement 1024-entry

●

●
●
●

●
●

●
●
●

●●

types taint cfi memsafety composite

1
e

+
0

1
1

e
+

0
3

1
e

+
0

5
1

e
+

0
7

#
 c

o
n

c
re

te
 r

u
le

s
 (

lo
g

−
s
c
a

le
)

Figure 2: Concrete rules for SPEC CPU2006

L1 and 4096-entry L2 PUMP caches. We account for the
longer wait cycles required for the tag-extended unified L2
cache and the main memory as well as L2 PUMP cache while
calculating the runtime on the tag-extended processor.

Benchmarks. We estimate the performance impact of the
PUMP architecture using 28 benchmarks from the SPEC
CPU2006 Suite [20] (omitting xalancbmk and tonto, on
which the gem5 simulator fails) with reference inputs. We
use the gem5 simulation framework [6] to generate instruc-
tion traces for these programs for the baseline ALPHA ISA.
Each benchmark is first run on an unmodified processor,
with no tags or policies. Then we run the resulting trace
through a PUMP simulator, which performs metadata com-
putation for each instruction.2 This approach is in the spirit
of simulating various cache memory organizations against
address traces generated by simulating programs [21]. The
PUMP simulator also takes as input the policy to simu-
late on the application, and we assign initial metadata tags
in the memory depending on the policy. We simulate each
benchmark for a warm-up period of 1B instructions and then
evaluate the next 500M instructions.

PUMP Miss-Handler Cost. As part of our evaluation, we
account for the time required to service L2 PUMP misses in
software. This time varies with the complexity of the pol-
icy being enforced, with the simplest taking a few hundred
cycles and the most complex taking over a thousand cycles.
We developed a model for the miss handler time based on
parameters we collect from our trace simulator (e.g. number
of used rule inputs, size of tag data structure, memory ref-
erences needed to canonicalize a tag, whether or not a new
tag must be allocated). The most complex single policy is
taint tracking with large numbers of taint sources. The case
where we taint each library in the source code requires on
average 900 cycles to handle a miss. The composite case for
all four policies takes close to 1100 cycles on average.

5.2 Runtime Performance
We evaluate the impact of our PUMP architecture on the

runtime over a baseline execution to identify the architec-
tural and microarchitectural impact due to our mechanism.
At the architectural level, we want to identify the working
set sizes and time spent in metadata computations in soft-
ware and hardware, while at the microarchitectural level we
want to observe the impact of smaller L1 caches, a wider L2
cache and the PUMP caches.

2In our experiments we simulate tag propagation throughout
the execution, but do not enforce checking of rule violations.

%
 C

P
I

o
ve

rh
e

a
d

0
1

0
2

0
3

0
4

0

on−chip D/I−$

DRAM

on−chip PUMP−$

PUMP s/w

G
em

sF
D

T
D

as
ta

r
bw

av
es

bz
ip

2

ca
ct

us
A

D
M

ca
lc

ul
ix

de
al

II
ga

m
es

s
gc

c
go

bm
k

gr
om

ac
s

h2
64

re
f

hm
m

er
lb

m
le

sl
ie

3d

lib
qu

an
tu

m m
cf

m
ilc

na
m

d
om

ne
tp

p
pe

rlb
en

ch
po

vr
ay

sj
en

g
so

pl
ex

sp
ec

ra
nd

sp
hi

nx
3 w
rf

ze
us

m
p

ge
o.

m
ea

n
G

em
sF

D
T
D

as
ta

r
bw

av
es

bz
ip

2

ca
ct

us
A

D
M

ca
lc

ul
ix

de
al

II
ga

m
es

s
gc

c
go

bm
k

gr
om

ac
s

h2
64

re
f

hm
m

er
lb

m
le

sl
ie

3d

lib
qu

an
tu

m m
cf

m
ilc

na
m

d
om

ne
tp

p
pe

rlb
en

ch
po

vr
ay

sj
en

g
so

pl
ex

sp
ec

ra
nd

sp
hi

nx
3 w
rf

ze
us

m
p

ge
o.

m
ea

n
G

em
sF

D
T
D

as
ta

r
bw

av
es

bz
ip

2

ca
ct

us
A

D
M

ca
lc

ul
ix

de
al

II
ga

m
es

s
gc

c
go

bm
k

gr
om

ac
s

h2
64

re
f

hm
m

er
lb

m
le

sl
ie

3d

lib
qu

an
tu

m m
cf

m
ilc

na
m

d
om

ne
tp

p
pe

rlb
en

ch
po

vr
ay

sj
en

g
so

pl
ex

sp
ec

ra
nd

sp
hi

nx
3 w
rf

ze
us

m
p

ge
o.

m
ea

n
G

em
sF

D
T
D

as
ta

r
bw

av
es

bz
ip

2

ca
ct

us
A

D
M

ca
lc

ul
ix

de
al

II
ga

m
es

s
gc

c
go

bm
k

gr
om

ac
s

h2
64

re
f

hm
m

er
lb

m
le

sl
ie

3d

lib
qu

an
tu

m m
cf

m
ilc

na
m

d
om

ne
tp

p
pe

rlb
en

ch
po

vr
ay

sj
en

g
so

pl
ex

sp
ec

ra
nd

sp
hi

nx
3 w
rf

ze
us

m
p

ge
o.

m
ea

n

Types Taint Tracking CFI Memory Safety

Figure 3: Runtime overhead for the policies in §4

Microarchitectural Impact. To keep the L1 D/I cache ac-
cesses within a single cycle in our tag-extended processor,
we implement these with half the capacity of the baseline
untagged design (leaving the other half for tag bits), poten-
tially increasing the number of misses. The unified L2 cache
has the same capacity but is twice as wide due to the tag bits,
adding an extra cycle of latency. However, this has a small
effect on the runtime—only 1.9% on average. In the tagged
design, we also fetch twice as many bits from the main mem-
ory. This adds another 9.3% on average to the runtime over
the baseline execution. Consequently, there is an average
slowdown of about 11.2% due to our tag-extended, on-chip
caches and main memory that impacts all programs before
any policy is applied.

Policy Impact. Fig. 2 shows the range of concrete rules
generated for the SPEC CPU2006 benchmark programs for
all the policies from §4. There are two key observations to
be made here: (1) different policies induce widely varying
concrete rule sets based on the metadata computations, giv-
ing us enough variation across benchmarks to evaluate our
mechanism, and (2) the number of concrete rules needed by
the composite policy is close to the worst-case component
policy. The size of rulesets, along with the temporal locality
of these rules, determine the impact on runtime. We show
the overall runtime overhead for the four individual policies
in Fig. 3.

Primitive Types. For this simple policy there is no
runtime overhead due to the PUMPs—the working set for
this policy is small enough to fill the caches during the warm-
up period and incur no cost in the evaluation period. The
entire runtime overhead comes from the microarchitectural
changes to the existing on-chip caches and the main memory.

Taint Tracking. For these experiments, we tainted each
library in glibc and each input file descriptor with a unique
taint label. The number of initial code taint sources varies
from 33 to 35 across all benchmarks. While code executes,
existing taints get aggregated, creating new taint values. We
only see 159 unique taint tags in the worst case, omnettpp;
cactusADM requires the largest number of concrete rules, at
7960, while libquantum uses the least, at 1752. On average
(geometric mean) the runtime overhead from on-chip PUMP
caches and the PUMP software handler is less than 1%.

CFI. With this policy we begin to see the effects of larger
working sets for the PUMP. The gobmk and gcc benchmarks
incur the highest overheads, 28% and 25%. For gcc, we gen-
erate 71003 concrete rules, and for gobmk, 16333 concrete
rules, while the average number of concrete rules across all
the benchmarks is 10371; gobmk spends relatively more time
in the L1 PUMP cache misses that hit in the L2 PUMP

%
 C

P
I

o
ve

rh
e

a
d

0
2

0
4

0
6

0 4
1

5
%

1
3

9
%

2
1

3
%

1
1

5
%

3
9

5
%

1
0

1
%

on−chip D/I−$

DRAM

on−chip PUMP−$

PUMP s/w

G
em

sF
D

T
D

as
ta

r
bw

av
es

bz
ip

2

ca
ct

us
A

D
M

ca
lc

ul
ix

de
al

II
ga

m
es

s
gc

c
go

bm
k

gr
om

ac
s

h2
64

re
f

hm
m

er
lb

m
le

sl
ie

3d
lib

qu
an

tu
m m
cf

m
ilc

na
m

d
om

ne
tp

p
pe

rlb
en

ch
sj

en
g

sp
ec

ra
nd

sp
hi

nx
3 w
rf

ze
us

m
p

ge
o.

m
ea

n

Figure 4: Composite Policy Runtime Overhead

cache, compared to gcc. The smallest number of rules is
1376 (for specrand, which incurs no runtime overhead due
to the PUMP after the warmup period). On average there is
an overhead of 1.6% and 1% from PUMP caches and the soft-
ware miss handler, respectively, across all the benchmarks.
Overall slowdown for the CFI policy due to the PUMP is
close to 2.6% on average.

Memory Safety. With this policy, we see a large range
for the number of concrete rules (Fig. 2). In general, each
new allocation generates a fresh tag resulting in a new set
of related concrete rules for the instructions that use the
newly tagged data. There are some benchmarks that re-
quire no dynamic memory allocation (such as specrand);
Our worst-case applications, GemsFDTD, performs more than
550K allocations. Nonetheless, for each new tag the set of
rules is usually a small number and exhibits a high degree of
temporal locality. Consequently, there is a small overhead
due to the on-chip PUMP caches—about 0.1% on average,
while the PUMP software contributes close to 2.3% on av-
erage. In the worst case for GemsFDTD we see roughly 1.5%
overhead in the on-chip PUMP caches and close to 35% over-
head from the PUMP software.

Composite. Fig. 4 shows the impact on runtime due
to the Composite policy described in §4. We see that in
the worst case the overhead is close to 415% for GemsFDTD

where almost 390% comes from the PUMP software. On
average the overhead from on-chip PUMP caches is 2.7%
and PUMP software is 21%, bringing the overall runtime
overhead to about 35% on average. The maximum PUMP
cache overhead is 25%, again for GemsFDTD.

Two effects make composite policies slower than individ-
ual policies: (1) they require more rules, creating greater
cache pressure (i.e., more misses), and (2) the miss han-
dler takes more time to service them. As Fig. 2 shows, the
total number of rules is not much greater than for the mem-
ory safety policy. For our worst-behaved composite policy
(GemsFDTD), the maximum number of rules generated for the

0
.0

0
0

0
.0

1
0

0
.0

2
0

PUMP cache size (#entries)

m
is

s
 r

a
te

 (
g

e
o
.m

e
a

n
)

512 1024 2048 4096

Figure 5: Impact of cache size on miss rate for the
composite policy

composite policy is 4.9M, while the same benchmark requires
about 3.75M rules when using memory-safety policy alone;
so, even here, the total ruleset growth is modest. The big ef-
fect comes from (2), since the miss handler for the composite
policy requires 1100 cycles, whereas the memory-safety miss
handler requires only 150 cycles. As a result, the 11× over-
head increase for the PUMP software (from 35% to 390%)
for GemsFDTD is due to the 1100/150≈8× increase in miss
handler service time and a 1.4× increase in the number of
PUMP misses. Given the rate of compulsory misses due to
new memory tags, the 8× increase due to miss-handler ser-
vice time becomes the clear performance-limiting effect. We
expect this cost can be reduced significantly with additional
software tuning and microarchitectural support.

Fig. 5 shows how the miss-rate varies in relation to the
capacity in a PUMP cache for the composite policy. We see
that miss-rate falls with cache capacity, providing evidence
that there is a high degree of locality in the concrete rules.

6. PRIOR HARDWARE-METADATA WORK
Due to space limitations, we cannot do proper justice to all

work related to the specific policies we support in §4. Here,
we discuss work specifically related to hardware tag checking
and propagation. With a few exceptions noted below, most
of the prior work uses a small set of tag bits with hardwired
or highly restricted policies (See Tab. 2). The first wave of
taint hardware supported a single taint bit attached to each
word, with hardwired taint propagation logic. Later systems
added the ability to handle multiple, independent taint tags
[15], multiple bit tags [36], and more flexible policies [16].
None of these schemes attempt to address the flow of taint
data through the PC (implicit flows [24]). The only design
to support more than one policy at a time, Raksha, sup-
ported at most four policies [15], not an unbounded number
as suggested by the 0-1-∞ design principle.

The prior systems closest to ours are Aries [8], Flexitaint
[36], Log-Based Architecture (LBA) [11], and Harmoni [17],
all of which propose programmable rule caches backed by
software handlers. Only Flexitaint and LBA detail specific
example security policies that use the programmable rule
cache. In all cases except LBA, the rule cache is based on
two inputs for the two operands of an operation and pro-
duce a single output, while the PUMP potentially takes up
to five inputs and produces two outputs: Tab. 3 summarizes
how these tag sources and destinations are used in our secu-
rity policies. LBA potentially takes multiple inputs, but it
does not handle production of metadata in hardware. Some
of the innovations in [11] (restriction of general propagation

HW/ Tag Security
Ref. SW Size IO Policy

[12, 14, 27] H 1b 2/1 hardwired taint
[34] H+S 1b 2/1 hardwired taint
[10] H+S 1b 2/1 limited prog.

[15, 23] H+S 4b 2/1 four 1b policies;
limited SW prog.

[36] H+S 4b 2/1 limited prog.
[4] H+S 1–8b 1/– no propagation,

mostly memory
[16] H var 2/1 FPGA reconfig-

urable
[17] H+S var 2/1 limited program.

plus table
[11] H+S 64b 5/- SW on separate,

augmented core

PUMP H+S 64b 5/2 fine-grained, SW-
defined policies

Table 2: Overview of Hardware Tagging Approaches

Policy pc ci op1 op2 mr pc op3mw

Taint Tainting 3 3 3 3 3 3 3

Memory Safety 3 3 3 3

Control Flow 3 3 3

Primitive Types 3 3 3 3

Table 3: Tag Usage by Policy

tracking to unary inheritance tracking including giving up
on taint combining) that made it fast specifically give up
generality that our solution provides. Even with these re-
stricted policies, LBA has 50% runtime overhead compared
to our average single-policy runtime overheads of 10–20%.
The policies we show here are richer than the ones supported
by FlexiTaint, due both to the extra tag inputs and outputs
and to the richer tag metadata. The policies we have shown
are also richer than those illustrated for LBA, while achiev-
ing lower runtime and energy overheads.

7. CONCLUSIONS AND FUTURE WORK
We have introduced a flexible and extensible policy model

and a programmable unit for metadata processing (PUMP)
and illustrated the new hardware’s uses on a series of in-
creasingly complex safety and security policies. Our bench-
mark simulations show that a PUMP-augmented conven-
tional RISC processor architecture can support these poli-
cies with low typical runtime overhead.

However, while the initial evidence is promising, it also
raises many questions that merit further attention. We be-
lieve the metadata policy model will be applicable to a large
range of policies beyond those illustrated here, including
sound information-flow control (e.g., [31]), fine-grained ac-
cess control (e.g., [37]), integrity, synchronization (e.g. [5]),
race detection (e.g., [32]), debugging, application-specific
policies (e.g., [38]), and controlled dynamic code generation.
We need to properly model area and energy costs and op-
timize the implementation to keep their overheads down to
acceptable levels. Optimization of PUMP structures should
also further reduce runtime overheads. In particular, with
additional hardware support, we believe we can reduce the

http://ic.ese.upenn.edu/abstracts/pump_hasp2014.html

miss-handler overheads that play a significant role in the
performance of composite policies for some benchmarks.

8. ACKNOWLEDGMENTS
This material is based upon work supported by the DARPA

CRASH program through the United States Air Force Re-
search Laboratory (AFRL) under Contract No. FA8650-10-
C-7090. The views expressed are those of the authors and do
not reflect the official policy or position of the Department
of Defense or the U.S. Government.

9. REFERENCES
[1] ARM Cortex-A5 Processor,

http://www.arm.com/products/processors/cortex-
a/cortex-a5.php.

[2] Alpha Architecture Handbook. Digital Equipment
Corporation, 1992.

[3] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti.
Control-flow integrity. In Proc. ACM CCS, pages 340–353,
2005.

[4] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha.
Architectural support for run-time validation of program
data properties. IEEE Trans. VLSI Sys., 15(5):546–559,
May 2007.

[5] Arvind, R. S. Nikhil, and K. K. Pingali. I-structures: Data
structures for parallel computing. In Proc. Wkshp on
Graph Reduction (Springer-Verlag LNCS 279), Sept. 1986.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. The gem5 simulator. SIGARCH
Comput. Archit. News, 39(2):1–7, Aug. 2011.

[7] E. Bosman, A. Slowinska, and H. Bos. Minemu: The
World’s Fastest Taint Tracker. In Proc. RAID, volume 6961
of LNCS, pages 1–20. Springer, 2011.

[8] J. Brown and T. F. Knight, Jr. A minimally trusted
computing base for dynamically ensuring secure
information flow. Technical Report 5, MIT CSAIL,
November 2001. Aries Memo No. 15.

[9] E. Buchanan, R. Roemer, H. Shacham, and S. Savage.
When Good Instructions Go Bad: Generalizing
Return-Oriented Programming to RISC. In Proc. ACM
CCS, pages 27–38, Oct. 2008.

[10] H. Chen, X. Wu, L. Yuan, B. Zang, P.-c. Yew, and F. T.
Chong. From Speculation to Security: Practical and
Efficient Information Flow Tracking Using Speculative
Hardware. In Proc. ISCA, pages 401–412, 2008.

[11] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons,
T. C. Mowry, V. Ramachandran, O. Ruwase, M. P. Ryan,
and E. Vlachos. Flexible Hardware Acceleration for
Instruction-Grain Program Monitoring. In Proc. ISCA,
pages 377–388, 2008.

[12] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and R. Iyer.
Defeating memory corruption attacks via pointer
taintedness detection. In Proc. IEEE DSN, pages 378–387,
2005.

[13] M. L. Corliss, E. C. Lewis, and A. Roth. Using DISE to
protect return addresses from attack. SIGARCH Comput.
Archit. News, 33(1):65–72, Mar. 2005.

[14] J. R. Crandall, F. T. Chong, and S. F. Wu. Minos:
Architectural support for protecting control data. ACM
Trans. Archit. and Code Opt., 5:359–389, December 2006.

[15] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: a
flexible information flow architecture for software security.
In Proc. ISCA, pages 482–493, 2007.

[16] D. Y. Deng, D. Lo, G. Malysa, S. Schneider, and G. E.
Suh. Flexible and Efficient Instruction-Grained Run-Time
Monitoring Using On-Chip Reconfigurable Fabric. In Proc.
IEEE MICRO, pages 137–148, 2010.

[17] D. Y. Deng and G. E. Suh. High-performance parallel
accelerator for flexible and efficient run-time monitoring. In
Proc. IEEE DSN, pages 1–12, 2012.

[18] U. Dhawan and A. DeHon. Area-efficient near-associative
memories on FPGAs. In Proc. ACM TRETS, 2014.

[19] E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis.
Out of control: Overcoming control-flow integrity. In Proc.
IEEE S&P, 2014.

[20] J. L. Henning. SPEC CPU2006 benchmark descriptions.
SIGARCH Comput. Archit. News, 34(4):1–17, Sept. 2006.

[21] M. A. Holliday. Techniques for cache and memory
simulation using address reference traces. Int. J. Comput.
Simul, 1:129–151, 1990.

[22] C. Hriţcu, M. Greenberg, B. Karel, B. C. Pierce, and
G. Morrisett. All your IFCException are belong to us. In
Proc. IEEE S&P, 2013.

[23] H. Kannan, M. Dalton, and C. Kozyrakis. Decoupling
Dynamic Information Flow Tracking with a Dedicated
Coprocessor. In Proc. IEEE DSN, pages 105–114, 2009.

[24] D. King, B. Hicks, M. Hicks, and T. Jaeger. Implicit flows:
Can’t live with ’em, can’t live without ’em. In Proc. ICISS,
pages 56–70, 2008.

[25] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi.
CACTI 6.0: A tool to model large caches. HPL 2009-85,
HP Labs, Palo Alto, CA, April 2009. Latest code release for
CACTI 6 is 6.5.

[26] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic.
Hardware-Enforced Comprehensive Memory Safety. IEEE
Micro, 33(3):38–47, May-June 2013.

[27] M. Ozsoy, D. Ponomarev, N. B. Abu-Ghazaleh, and
T. Suri. SIFT: a low-overhead dynamic information flow
tracking architecture for SMT processors. In Conf.
Computing Frontiers, page 37, 2011.

[28] D. A. Patterson and C. H. Sequin. RISC I: A Reduced
Instruction Set VLSI Computer. In Proc. ISCA, pages
443–457, 1981.

[29] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu,
and J. William S. Beebee. Enhancing server availability and
security through failure-oblivious computing. In Proc.
OSDI, December 2004.

[30] D. Ritchie and K. Thompson. The UNIX Time-Sharing
System. BSTJ, 57(6):1905–1930, 1978.

[31] A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive
security analysis. In Proc. CSF, pages 186–199, 2010.

[32] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic race detector for
multi-threaded programs. ACM Trans. Comp. Sys., 15(4),
1997.

[33] H. Shacham. The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the x86). In
Proc. ACM CCS, pages 552–561, Oct. 2007.

[34] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure
Program Execution via Dynamic Information Flow
Tracking. In Proc. ASPLOS, pages 85–96, 2004.

[35] L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eternal
war in memory. In Proc. IEEE S&P, pages 48–62, 2013.

[36] G. Venkataramani, I. Doudalis, Y. Solihin, and
M. Prvulovic. FlexiTaint: A programmable accelerator for
dynamic taint propagation. In Proc. HPCA, pages 173–184,
Feb. 2008.

[37] E. Witchel, J. Cates, and K. Asanović. Mondrian memory
protection. In Proc. ASPLOS, pages 304–316, New York,
NY, USA, 2002. ACM.

[38] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek.
Improving application security with data flow assertions. In
Proc. SOSP, October 2009.

[39] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres,
S. McCamant, D. Song, and W. Zou. Practical Control
Flow Integrity & Randomization for Binary Executables. In
Proc. IEEE S&P, 2013.

http://ic.ese.upenn.edu/abstracts/pump_hasp2014.html

	Introduction
	PUMP Architecture
	Microarchitecture
	Runtime Policy Case Studies
	Performance Evaluation
	Methodology
	Runtime Performance

	Prior Hardware-Metadata Work
	Conclusions and Future Work
	Acknowledgments
	References

