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Abstract—ROTOROUTER addresses Denial-of-Service (DoS)
attacks on networks with a novel protocol and router imple-
mentation. Sets of ROTOROUTERs cooperate in detecting and
filtering out invalid network traffic before it reaches network
endpoints; a new router-enforceable connection protocol queries
destination endpoints to authorize traffic flows and uses per-
packet digital signatures to distinguish allowed from disallowed
connections. A ROTOROUTER prototype was implemented on
a four-port 1000BASE-T NetFPGA-10G platform and supports
1024 simultaneous active connections using 74 BRAMs (less than
one quarter of the available NetFPGA-10G BRAMs). It is able
to sustain 800 Mbps per port throughputs for 1500B packets
with less than 0.3µs latency, even during a DoS attack. With
additional logic and memory resources, the required validation
and switching operations scale to port speeds in excess of 10 Gbps
and links with more than 10,000 active flows.

Index Terms—Routing, Denial-of-Service, Software Defined
Networking, NetFPGA

I. INTRODUCTION

Network security is an urgent need as constant connectivity is
expected in both civilian and military contexts. Solutions exist
for securing networks against some security threats, e.g., IPsec
for guaranteeing confidentiality and integrity [20], firewalls [6]
for limiting exposure to malicious traffic and filtering out
known malicious attacks, and intrusion detection systems for
threat awareness [27]. Threats to network availability however,
such as denial-of-service (DoS) and distributed denial-of-
service (DDoS) attacks, remain very difficult to address. The
Internet’s blend [7] of anonymity, ability to connect to any
node, and best effort packet-forwarding work in favor of the
attacker and make DoS attacks very hard to prevent. As an
example, in September 2012, many large banks, including
Bank of America and Wells Fargo, were attacked by botnets,
making the websites unavailable for hours [32].

One potential solution is to allow communications only
between known parties. This can be enforced with IPsec [20]
by taking advantage of its built-in handshake. Unwanted
packets (e.g., packets from botnets, which are commonly
used for distributed DoS) can then be identified and filtered
accordingly. However, this does not fundamentally solve the
DoS problem: any machine connected to the Internet can
still send packets to any destination and therefore nothing
prevents an attacker from saturating a host’s or Internet Service
Provider’s network ports.

To mitigate attacks on network availability, the routers in
the network must assist with the filtering. In particular, if

the router can validate the packet source and distinguish
between wanted and unwanted traffic, then it can filter out
any bad packets before they reach the endpoint. Our ROUTE-
ORDERLY-TRAFFIC-ONLY ROUTER (ROTOROUTER) aims to
do exactly this. We add a public-key verifiable connection
header so that packets can be securely associated with a
particular connection and introduce a protocol to allow the
router to verify that the destination has agreed to participate in
the connection. This allows the router to filter out any packets
that are not associated with a connection that the destination
endpoint approves as desirable.

Our work establishes that the proposed router support is
feasible and inexpensive, and demonstrates that the new pro-
tocol is an effective and promising solution to DoS attacks.
Our contributions include:

1) A new router-enforceable protocol for DoS prevention
that extends IPsec.

2) A router design that supports connection enforcement
for IBR [14], including DoS prevention.

3) A hardware router architecture supporting the protocol.
4) An implementation on the NetFPGA-10G platform [4]

and evaluations of throughput, latency, and area.
5) Demonstration of dynamic behavior under DoS attack.
6) Assessment of the computational requirements of the

design and its scalability to higher link speeds.

II. BACKGROUND

This section reviews component technologies for RO-
TOROUTER, and discusses related work.

IPsec: We exploit the IPsec [20] protocol, which provides
confidentiality and integrity for IP traffic on a per-packet basis.
Specifically, we use the Encapsulating Security Payload (ESP)
packet format where the payload is AES-encrypted for privacy
and validity.

IBR: We also use Introduction Based Routing (IBR) [14],
a distributed and scalable IPsec key management tool lever-
aging on-node reputations for authenticating communicating
nodes. IBR allows hosts to establish secure IPsec connections
and provides a basis for hosts to decide when to accept connec-
tions and to share information about good and bad network
actors. IBR maintains a network of trust relations between
nodes and creates incentives for them to not misbehave. The
benefit of IBR is the reduced ability of repeatedly misbehaving
nodes to communicate with other nodes through feedback. IBR
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alone does not address DoS; without network cooperation, the
host network link can still be flooded with unwanted traffic.

Programmable Routers, Software Defined Networking,
and OpenFlow: High-performance router architectures [29]
typically consist of a switch fabric interconnecting line cards
that carry out packet processing tasks such as address lookups
(in the forwarding information base, or FIB), checksum com-
putations and framing. Control plane processing (such as route
updates, reflected in the route information base, or RIB)) is
separated [38] from forwarding operations that are required
on a per-packet basis. OpenFlow [23] routers have used this
separation and a standardized interface to flow tables (which
contain per-connection information such as source and desti-
nation addresses and port numbers) to enable programmable
control planes.

While not OpenFlow compatible, ROTOROUTER’s architec-
ture is similar to that of an OpenFlow switch, i.e. a switching
plane and flow table(s) to route defined flows in hardware.
New flows are processed by a software control plane which
installs appropriate flow rules. OpenFlow switches typically
use centralized controllers and a single global policy, while
ROTOROUTER uses decentralized control, where the endpoint
hosts authorize flows. While we will describe how our solution
integrates with IBR (Sec. VI), the solution is orthogonal to the
specific policy the endpoints use to authoritze connections;
a ROTOROUTER simply implements the decisions that the
endpoints make.

NetFPGA: NetFPGA [15] is an FPGA board that sup-
ports prototyping and experimenting with network protocols
and network hardware. We use the NetFPGA-10G board that
supports four 10 Gbps network links [4]. The gross structure
of the NetFPGA OpenFlow router [25] is similar to ours, but
lacks the hardware packet verification.

Prior Work on DoS Defense: DoS and DDoS have been
ongoing concerns for more than a decade. This has motivated
several approaches [30] to limiting its effects. Ingress valida-
tion attempts to prevent source address spoofing by validating
the packets as they enter the network [21]; this, however,
depends on trust of the entire router infrastructure. Many
approaches attempt to statistically identify DoS traffic and
filter it out; these filtering schemes have non-zero false-positive
and false-negative rates. Traceback and marking approaches
attempt to identify the point of origin for packets once a flow
has been identified as bad. For example, StackPi [37] identifies
paths from the source so that packets can be attributed to their
point of origin independent of the packet’s labeled IP address
to provide a basis for filtering and pushback; this depends
on wide acceptance within the router infrastructure and is
also susceptible to imperfect classification and hence false
positives. Active defenses based on pushback [18] towards the
sources of aggregated traffic are intended to be implemented
in IP routers and depend on reliable identification of packet
flows associated with the DoS attack.

Traffic Validation Architecture (TVA) [39] is closely related
to ROTOROUTER; TVA also validates connections with the
destination. TVA relies on packets taking fixed route paths
through the network and an attacker ignorant of the creden-
tials; given this, TVA is able to avoid public key cryptography
and the need to provide credentials along with every packet,

but requires per-router secrets. TVA simulations have demon-
strated impressive scalability and used a kernel extension for
a software emulation of the required routing functionality.
ROTOROUTER is a concrete hardware implementation of the
required router with extensive support for cryptographic opera-
tions; while we report on support for IBR [14], ROTOROUTER
could accelerate TVA or similar schemes.

III. ROTOROUTER IDEA

The ROTOROUTER is a router, i.e., a network layer store-and-
forward packet switch. Many advantages of packet switching
stem from incorporating information in each packet adequate
to reach its destination, requiring routers to maintain very
little if any state to process the packet. In practice, the
addition of “soft” (not required but useful) state can increase
performance [26] in common cases such as that of TCP/IP
connections, where state created early in the connection’s life
can accelerate processing for later packets associated with that
same logical connection.

DoS/DDoS provides some especially interesting opportu-
nities for use of soft-states, since the important decision is
whether to drop or not drop packets belonging to a connection.
This decision can be made after a few packets have already
been forwarded, and will still be an effective protection against
a DoS attack.

To allow for efficient filtering and verification before the
packets reach an endpoint, we need to enable the router to
validate traffic going through it. We call the set of packets
associated with an end-to-end IP connection (same source
and destination IP and port) a flow. We give each flow a
unique connection ID (Sec. V-A) that allows the router to
differentiate flows without exposing additional information
about the connection.

To prevent spoofing of flows, we add a field called the
connection signature (Sec. V-B). The connection signature is
a public-key digital signature generated by the source using its
private key that allows anyone with the public key to verify
that (1) the packet originated from the source, and (2) the
packet has not been modified since its initial dispatch. The
router can use this signature to determine if the packet is
legitimate.

Finally, the router must understand allowed and disallowed
flows to filter malicious packets. The router by itself cannot
determine this since the endpoints make their own decisions
about which flows, and hence which packets, they wish to
allow. As such, we enable the endpoints to provide this
information to the router. When a router sees a flow for the first
time, it asks the destination endpoint if this flow is wanted,
and acts according to the answer. Therefore, any router can
learn about the connection, and routers do not need any global
coordination to setup new flows. If a path is rerouted during the
connection, the new routers seeing the flow can also validate
the flow with the destination.

IV. THREAT MODEL

Our threat model is an active, malicious attacker who can: (1)
launch a DoS attack on any node connected to the Internet, (2)
can sniff any packets in the network, (3) can insert any packets
into the network (including controlling the headers), and (4)
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Fig. 1: A typical packet for a router-enforceable connection
protocol. Fields included in the connection signature SHA
checksum are shaded grey. Added Connection ID and Sig-
nature fields are shown in red.

can modify or replace routers under his/her control (including
injecting, duplicating, modifying, removing, or misrouting
packets). The attacker cannot see the secrets that exist within a
good host (a compromised host is reclassified as an attacker).
We do not limit the attackers capabilities outside of the good
hosts and routers, but we do assume the majority of the routers
are not actively participating in the attack.

To prevent DoS in this setting, a ROTOROUTER must
identify and isolate the packets that come from the attacker
and filter them at line-rate. Also, we shouldn’t interfere
with legitimate activities by dropping benign packets. The
ROTOROUTER protocol must be resistant to attacks during
both setup and normal operation; the attacker may attempt to
create packets to either break or bypass the protocol, or slow
it down (thus DoSing the router). Finally, the router should
be able to identify misbehaving routers and limit damage they
might cause.

V. ROUTER-ENFORCEABLE CONNECTION PROTOCOL

We introduce a new router-enforceable connection protocol
that implements the idea described in Sec. III. We add two
fields to the conventional IPv4 header, the connection ID and
connection signature; the entire payload is IPsec encrypted.
The augmented packet format is shown in Fig. 1. We next
describe the protocol and the components in more detail.

A. Connection ID
The conventional Internet uses datagram (best effort) forward-
ing, and Internet routers can determine the next hop using
only the packet’s destination address. While this scheme eases
the task of routers, it also makes it easy for attackers to
send packets used for DoS. Attackers only need to know the
destination system’s IP address to attack it.

To address this issue, we use a connection ID that identifies
both the source and the destination. It is assigned when the
two endpoints agree to establish a connection. For IPv4 in
particular, IDs are a 128 bit number that includes the source
and destination IPs (64 bits) and a 64 bit random number.
The random number allows unique port-to-port flows without

exposing the port numbers to traffic snooping. By using
random bits with the source-destination pair, we make it more
difficult for attackers to obtain a valid ID. This also makes
flows directional; a packet coming from an attacker to a well
behaved node is different from the reverse path.

B. Signature

The connection ID by itself does not prevent spoofing attacks,
nor does it prevent a third party from modifying the packet.
To mitigate these issues, we add the connection signature. The
connection signature is a digital signature based on SHA. First,
using SHA-1, the endpoint computes the hash value of the
connection ID, the payload, and the IP Header except for the
IP checksum and time-to-live. The source then digitally signs
the result of SHA with RSA using its private key [34], and
the signature is appended to the IP header as the connection
signature. The connection signature is 1184 bits: 160 bits for
the SHA-1 hash, and 1024 bits for the RSA signature on the
hash.

This signature is checked by the router at every step: each
router can acquire the public key, compute the SHA based
on the packet, and verify the signature using the public key
and its SHA result. Any packet with a signature mismatch
is discarded. This guarantees two things: (1) integrity and (2)
authenticity of data. The SHA behaves as an integrity check on
the packet (no tampering). The signing of SHA using the RSA
private key guarantees that the packet indeed came from the
claimed source. Moreover, IPsec already includes a sequence
number that can be used in replay attack detection.

The public-key signature does place a large signing burden
on the sender that will demand hardware support in the host
network interface card. A Xilinx Virtex6-LX240T (40nm) can
support RSA decryption at 23 Mbps [19]. Since we only need
to encrypt the signature portion of the packet, on a 1500 byte
packet (12,000 bits), 23 Mbps supports 23 M ×

(
12000
1024

)
≈

270 Mbps packet throughput.

C. Key Management

In our protocol, a private key for the source is required to sign
the packets, and the public key associated with the private
key is required for validation of the signature. We call this
key pair the connection key pair. A public/private key pair
is generated or supplied when a connection is established. To
avoid requiring any router state, we leave the key management
entirely to the endpoints (Sec. VI). That is, once the key pair is
generated, the source holds the private key, and the destination
holds the public key. When a router sees the flow for the first
time, the router requests the public key from the destination.
This allows us to have no private state in the router.

Note that the public key used for connection validation is
separate from the symmetric key used by IPsec for confiden-
tiality. The message contents remain opaque to the router.

VI. NEW CONNECTIONS

Here, we discuss how new connections are set up, and the
ROTOROUTER’s role in such an environment.



A. Introductions

For establishing new connections, we use the IBR protocol as
the baseline (Section II). IBR begins with a priori connections
between certain nodes that trust each other (e.g., through
exchange of keys via offline methods). Any connection there-
after will be bootstrapped from these a priori connections. To
illustrate how connections are established, consider a simple
network with three nodes A, B and C. A and B have a
pre-established connection as do B and C. If A wants to
establish a connection with C, A must request an introduction
from B. B communicates with C about the request, and
if C accepts the introduction, then a connection between
A and C is established. A connection between A and C
persists until either chooses to close it. At the end of the
connection, both will exchange feedback on whether they have
behaved positively or negatively during the connection, and
also forward the feedback to introducer B. In the event that
A has been misbehaving towards B, the reputation of A with
B is going to be negative. When A requests an introduction
from B to C, B can refuse the introduction (introduction
denied). Also if C has a negative reputation for A, C can
refuse the introduction (introduction declined). With IBR, each
node maintains discretion over authenticating nodes attempting
to connect. Over time, trusted relations between nodes are
established and the network will isolate misbehaving nodes.

One of the main features of IBR is its key management.
The protocol provides a secure way to exchange connection
keys used for IPsec through introductions. Taking advantage
of the end-to-end connections and key-management of IBR,
we extend IBR using the ideas of our router-enforceable con-
nection protocol. We associate the end-to-end connection with
two connection IDs (one for each direction), and distribute the
connection public key used for verifying packets through the
same channel used for the IPsec keys.

B. Connection Validation

Once the connection keys have been distributed, the router can
ask the destination for the public key associated with the flow
for signature validation. The validation request flows along an
established connection like all other traffic in the system. An
introduction may be needed if the router has not yet been in
contact with a specific destination; as a result the router will
have a connection ID and IPsec session ID key to communicate
securely with the destination endpoint. The router sends a
verification request packet that contains the connection ID of
the new flow as the payload, and the endpoint replies with a
packet that contains the allowed field and the public key of the
connection. Messages used for validation are also encrypted
IPsec packets using an ESP payload.

Since these connection verification requests and responses
occur over established connections, an attacker cannot exploit
them to mount an DoS attack. Section IX describes how we
deal with attackers sending excessive connections into the
router. If the router itself tries to send excessive traffic over
one of its connections, that connection will be shut down and
not allow reconnection. We also discuss more broadly how we
deal with rogue routers in Section IX.

VII. ROTOROUTER ARCHITECTURE

The basic architecture of ROTOROUTER derives from that
of traditional IP routers (e.g. [29], [35]), However, to allow
for efficient enforcement of the protocol described in Sec. V,
the ROTOROUTER incorporates several additional specialized
hardware components. Here, we highlight the key modules
that differentiate ROTOROUTER, and describe our prototyping
efforts. Fig. 2 shows the basic architecture.

A. On-chip Processor
When a flow is first seen, the router must ask the endpoints
to provide the necessary information about the flow. To set up
the new flow, we provide a processor on-chip, to which the
IPv4 header and the connection ID are passed. The on-chip
processor runs software to generate the request message to
the destination. The whole packet for the new flow is buffered
while servicing a miss, and all ports (including the input port
that received the packet that missed) still operate normally
without blocking for flows that are already in the flow table.
If the result from the destination disallows the packet from
moving forward, the router discards the packet. Otherwise,
it is routed normally. The processor also maintains a route
table which it consults to route the validation request to the
destination endpoint and to configure the flow table.

As a latency optimization for setting up new flows, we allow
a small number of packets to pass through the router until the
destination responds to the public key request. This avoids a
large setup latency for new connections due to waiting for the
key. If too many packets are received before the public key
is returned, or the response from the sink disallows the flow,
then the router can cache the flow as malicious, and filter
accordingly. This is a tradeoff between the volume of DoS
traffic we allow through and the latency impact on valid traffic;
a modest number of packets from a previously behaving link
should not present an appreciable DoS load on the endpoint.

B. Flow Table
To avoid contacting the endpoint for each packet, we use a flow
table to cache the current working set of active flows through
the router. This flow table maps a connection ID to a set of
information about the flow. Every connection ID (and thus
flow) is associated with a tuple of: (i) a valid flow boolean,
(ii) an RSA public key, (iii) a suspicious flow boolean, (iv)
an output port, and (v) a non-validated-packet count. The
valid flow boolean value indicates if the connection should
be allowed, and the public key, associated with the private
key of the source, is used to validate the connection signature.

Upon receiving a new packet, the connection ID is used as
the key for the flow table. If the flow is found in the table,
then the router checks the validity of the packet and makes the
decision to route based on the allowed field. If the flow is not
found in the table, then software is invoked to resolve the miss
on the on-board processor described in Sec. VII-A. When a
flow is inserted into the flow table, the forwarding port is also
computed from the associated IP source and destination and
inserted with the flow.

Because the flow table is accessed for every packet, fast
table access is crucial to the overall performance of the router.
We therefore cannot keep all possible flows in our table. To
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Fig. 2: Overview of ROTOROUTER Architecture

resolve this, the flow table in the router acts as a cache of active
flows in our architecture. An effective table size is readily
achievable; e.g., [3] suggests that the number of active flows
in a datacenter rack is under 10,000. Furthermore, to avoid
unnecessary conflict misses, a content-addressable-memory
(CAM) should be used. We use the dynamic-multi-hash-cache
(dMHC) architecture, which gives us near associative cache-
miss rates while using fewer resources on the platform and
increasing throughput compared to a conventional CAM [10].

We note here that the flow table caches negative results as
well. That is, there are flows in the table that specify that a
connection is disallowed. This is especially useful for DoS
attack. Once the router sees packets the destination considers
as part of a DoS attack, it caches the connection as disallowed.
Thereafter, every packet associated with the connection will be
discarded quickly without placing a burden on the processor
or slowing the resolution of legimate packets.

In our current architecture, a single flow table with a first-
in-first-out (FIFO) queue has enough bandwidth to service all
ports. For higher throughput switches, it may be useful to have
a flow table per port or line card (Sec. X).

C. On-chip Cryptography
For verification of the connection signature, we dedicate two
hardware cores per input port in ROTOROUTER: (1) SHA-1
[11] and (2) modular-exponentiation (mod-exp). The SHA-1
core is used to compute the hash over the fields highlighted
in Fig. 1 and to verify the integrity of the packet. However,
computing the hash for every packet before routing could
result in an increase in the latency, because the router would
be forced to use store-and-forward, meaning the router latency
would be 12µs for a 1500 byte packet. We can avoid this
problem by initially allowing cut-through routing and verifying
the hash of the packet after routing. If the signature does not
match, then we mark it in our flow table as suspicious, and
we force future packets on the flow to be held for signature
verification. This way, no additional latency is added for packet
validation during the normal, non-attack, case. Allowing just
one packet through initially is insufficient to cause DoS, so
doing late verification does not undermine the strength of our
protection.

The connection signature also requires a modular expo-
nentiation to verify the authenticity. The verification of the
digital signature on the SHA-1 hash prevents spoofing and
tampering of packets. We perform the validation on every

packet, so the efficiency of the mod-exp module is crucial
for the performance of our router.

Unfortunately, a pure software implementation of mod-exp
cannot support the 1 Gbps line rate. In the ROTOROUTER
design, we dedicate significant hardware exclusively to doing
mod-exp operations. A naive hardware implementation of
mod-exp is also too slow. For faster mod-exp, we employ
Montgomery Multiplication [24]. Montgomery Multiplication
breaks the single, expensive step of a modular division into
multiple fast steps of bitshift and addition. Despite the extra
steps, the resulting latency for a single Montgomery Multipli-
cation operation is lower than that of a naive implmentation.
Furthermore, we pipelined our design between the multipliers
to increase our throughput. Each multiplier is currently a
sequential set of add and Montgomery reduce steps.

Even with Montgomery Multiplication, a large public expo-
nent would still result in a large, slow mod-exp computation.
We mitigate this issue by requiring a small public key exponent
(such as 17). Since we are only using the keys for signing
(not data encryption), the usage of such small public keys is
acceptable [12].

VIII. RESULTS

In this section, we highlight our implementation results, sum-
marizing the resources required and the performance achieved
both in a normal setting and when under a DoS attack.

A. NetFPGA Prototype

To evaluate the hardware impact of the security features of
ROTOROUTER, we implemented the design on the NetFPGA-
10G platform [4]. The platform contains a Xilinx Virtex
5 (65 nm) FPGA (xc5vtx240tffg1759-2) [36] for hardware
prototyping and four SFP+ modules that support 1 and 10 Gbps
connections. The core of ROTOROUTER was developed using
Bluespec System Verilog [5] including the processor, crossbar,
mod-exp, and flow-table. Many of the infrastructure elements
necessary for exterior communication (such as gigabit Ethernet
and PCIe) and interior communication (between different
modules) were provided by the NetFPGA open source library
[2]. For our prototype, we are using 1 Gbps connections to
work with our commodity workstation ethernet 1000Base-T
NICs.

The resource utilization is shown in Tab. I. ROTOROUTER
uses approximately 5 times the resources of an open source



TABLE I: FPGA Resource Utilization

Area Clock
Module LUTs BRAMs (MHz)

Crossbar w/ Buffers 8249 16 300
Flow Table 38 74 350
Processor 26985 52 200

SHA-1 Module [17] 4×1005 0 125
Mod-Exp 73591 0 200

ROTOROUTER 112883 142 125
IPv4 Router [1] 22523 35 150
Total available 149760 324 -

TABLE II: Module Throughput

Crossbar Flow Table SHA-1 Mod-Exp
Clock Speed (MHz) 300 350 125 200

Individual 19.2 515 4×0.8 4×1.2
Throughput (Gbps)

Effective Throughput 8 184 3.2 4.8
@ 125 MHz (Gbps)

IPv4 router implementation [1]. The security modules (proces-
sor, SHA-1, and mod-exp) that are uncommon to conventional
router add most of the hardware overhead, with the mod-exp
modules consuming considerable hardware resources due to
the signature size.

For the basic design, we have two BRAMs FIFOs on each
input and output port. Each 36Kb BRAM on the Virtex 5
FPGA can hold three 8×1500 byte=12,000b packets. These
can easily be enlarged by using additional BRAMs.

B. Throughput of Modules
Based on the clock rates shown in Tab. I, we can compute the
theoretical limits of the throughput of the individual modules.
The current implementation of crossbar runs at 300 MHz
and routes 64 bits per cycle. The throughput is therefore
350 · 64 = 19.2Gbps. The flow table runs at 350 MHz, and
with minimal packets size of 184 bytes, the total throughput
is greater than 350 · 184 · 8 = 515Gbps. The SHA-1 core
runs at 125 MHz and has 81 rounds/block with 512 bits/block,
so it has a throughput of (125 · 512)/81 = 790Mbps.
Finally, rated at a clock speed of 200 MHz and processing
1024 bits/2048 cycles, the Montgomery Multiplication module
has a throughput of 100Mbps. This throughput is still suffi-
cient to handle 1 Gbps connections since it is applied to only
1024b of every packet. As a result, the 100 Mbps is effectively
8× 1500/1024 · 100Mbps = 1.2 Gbps for 1500 byte packets.

C. Router Throughput
The throughput of ROTOROUTER is limited by the slowest
module needed for packet verification. With our current im-
plementation, the SHA-1 core limits the port throughput to
800 Mbps. The integrated design runs at 125 MHz and moves
packets in 64-bit blocks, giving us 125 · 64 = 8Gbps of
throughput. We run the mod-exp unit on a separate clock
at 200 MHz to prevent it from becoming a bottleneck. The
throughput of different modules is summarized in Tab. II.

D. Impact of Attack
To demonstrate the effectiveness of our protection, we set
up an isolated network testing environment using commodity
workstations and a sample attack workload against a video

Attacker

C2

C1

(a) Experimental Setup (b) Goodput across the ROTOROUTER and
attacker traffic

Fig. 3: Experimental Result

chat application (See Fig. 3a). We have two Debian Sid
Linux machines with Asus P8C motherboard with Gigabit
Ethernet ports (labeled C1 and C2) communicating through
our ROTOROUTER prototype and an attacker who performs a
DoS attack by flooding the network with junk messages. We
measure the throughput first with the router security features
disabled (thus a typical IPv4 router) and then with the features
enabled. In the goodput (throughput of legitimate data) graph
shown in Fig. 3b, the attacker starts the attack at 50s. We can
see that the goodput across the router without the security
features drop immediately once the attack starts. However,
with the security features enabled, we see no drop in the
goodput across the router.

E. Latency Impact
In Sec. VII-C, we stated that using store-and-forward routing,
the latency is at least 12µs. Verification using the mod-exp
would also require 2112×4 5 ns cycles or 42µs total over the
mod-exp’s 4 stages. However, using cut-through routing, we
reduce this greatly. The Ethernet MAC core takes 12 cycles to
convert incoming raw frames to data the router can understand,
and the same is true for outgoing data. The flow table has a
two cycle pipelined lookup, and the crossbar takes two cycles.
This gives us approximately 28 cycle latency, which is 224 ns
at 125 MHz. We see no difference in latency under attack
compared with normal conditions.

IX. ATTACK DEFENSES

ROTOROUTER’s protocol and hardware are designed to pre-
vent traditional Denial-of-Service attacks, but they open up
potential attack surfaces. This section describes two possible
attacks on ROTOROUTER and how we address them.

Connection Attack: Because establishing new connec-
tions is costly for our router, it could be vulnerable to a
new kind of DoS attack where the attacker repeatedly sends
packets for bogus new connections. To prevent such an attack,
ROTOROUTER keeps a counter for invalid connection requests
arriving through an input port per unit time. When this exceeds
a set threshold, the router notes that it is under attack and
shuts down the port to prevent further attacks. Since neither



a proper endpoint nor a proper upstream ROTOROUTER will
forward any bogus connection requests, the receipt of a large
number of bogus connection requests is a definite indication
of misbehavior. The network then treats this disabled port
as a down link and reconfigures around it, using the path
vector routing protocol [33]. This can be seen as the logical
equivalent of TCP SYN flooding. More primitive attempts at
TCP SYN flooding are not possible since all traffic in IBR
must flow over established connections.

Rogue Routers: Our dependence on the router to protect
the network poses an additional question: what should we do
when one of our routers turns rogue?

We have identified three potential problems that could arise
from rogue routers: (1) copying flows, (2) generating or for-
warding bad traffic, and (3) misrouting the flows. The first is a
non-problem as any information the router possesses is public
information since the content of the flows are encrypted using
IPsec. Rogue routers thus cannot leak any new information.

The second threat would be detected when a flow goes
through another router. A good ROTOROUTER will detect that
it is receiving flows that do not validate, and consequently will
drop the packets. Furthermore, when the ROTOROUTER takes
part in the IBR network, the reputation of the rogue router
will be marked down as well.

The final problem, misrouting of flows, will be detected
by failed end-to-end acknowledgments. If we can localize the
misbehaving router (e.g. with a secure traceroute [28]), we can
update the reachability graph using the path vector protocol to
avoid it for future traffic. Another approach would be protocols
robust to arbitrary (Byzantine) faults [31].

X. SCALING REQUIREMENTS

Although the tested hardware uses 1 Gbps connections, the
design is scalable to higher connection speeds, greater number
of active flows, and routers with more ports. We sketch the
feasibility and impact of scaling in this section. Since we
use a standard control processor, line-card, and switch-fabric
architecture, this separates port-scaling issues from line-card
rate scaling, and we address each in turn.

Switching Fabric: Modern FPGAs easily support high
speed switching fabrics in excess of 100 Gbps, e.g.,, the
Grouped Crosspoint Queued switches provides switching
throughput of 160 Gbps [8] when implemented on a Xilinx
Virtex-6 (40 nm) FPGA. Newer generation FPGAs have even
more I/O and switching capacity.

Line Cards: Aside from switching, logic and handling
can be performed on a per port basis. The line card modules
that must scale with the bandwidth are the flow table, the
SHA-1 hash unit, and the mod-exp signature verifier. Each of
these modules is used for verification of every packet, and
thus scalability of the module is a necessary and sufficient
condition for the line-card rate scalability. As we have shown
(Sec. VIII-B), many modules can already run much faster than
needed to support 1 Gbps.

The flow table is used once per packet to determine autho-
rization and acquire the public key associated with the flow.
With one flow table, we can easily service four 10 Gbps ports
and perhaps four 100 Gbps ports. To scale up even further,
we can replicate the flow table to one table per port. The flow

table per port also has the advantage of supporting more active
flows. To scale to even more active flows, each additional
1024 flows require 74 BRAMs. Supporting the 10,000 flows
suggested by [3] will require 740 BRAMs, which modern
FPGAs can accommodate.

We also require the hash computation to run at line rate
since we need to compute SHA-1 for every packet. The simple
SHA-1 core we currently use provides about 800 Mbps of
throughput per core, allowing us to handle almost a gigabit
throughput when replicated one per port. More complicated
but faster implementation of SHA could support 10 Gbps
connections per port [22]. For 100 Gbps and beyond, we can
add multiple SHA-1 modules per port such that we can service
multiple packets simultaneously. We used an SHA-1 hash for
the prototype, but this can and should be replaced with a SHA-
256 hash. A naive implementation of SHA-256 on FPGA has
approximately 60% area overhead compared to SHA-1

The modular exponentiation (mod-exp) module is the one
that requires the most work in order to scale to higher speeds.
In order to get the mod-exp module to scale up to 10 Gbps
or even 100 Gbps, there are two improvements that can be
made. First, the design can be more heavily pipelined in order
to increase the throughput. Second, multiple modules can be
dedicated to each port in order to keep up with the rate
at which packets arrive. Both throughput optimizations will
require additional hardware resources.

Alternatively, it may make sense to use a different, less
expensive public-key encryption scheme. Prior work shows
that MQQ [16] can be decrypted at 400 Mbps in a Virtex 5
FPGA using only 7,000 LUTs [13]. Considering the need to
only verify 160b of the packet, this will handle over 30 Gbps
of traffic. The MQQ scheme also suggests lighter weight
encryption for either a processor or FPGA, which would also
address the host burden. Nonetheless, MQQ does not have the
history of attention, analysis, and scrutiny of RSA.

Processors: For large systems, the flow setup load from
the line cards may exceed the capabilities of a single processor.
Multiple processors can be added, each serving a set of line
cards. The processors may also serve as a shared L2 cache on
connections for the flow tables.

XI. FUTURE WORK

We have characterized the throughput, resources, and goodput
attack response, but additional development and analysis re-
mains. For example, it is necessary to characterize the dynamic
behavior of new flow setup, including latency, throughput
impact, and rate limits. This will allow measurement and
tuning of new protocol parameters such as the number of
packets forwarded before receiving a validation and the rate
of invalid packets allowed over a link. Further measurements
of ROTOROUTER behavior in larger network settings will
be valuable, particularly to understand the impact of the
connection validation traffic.

We have shown that it is possible to realize an endpoint-
authorized, decentralized traffic filtering router based around
technologies readily available today. In this first existence
proof of such a router, we integrate concrete technologies to
use for the components (i.e. RSA signatures, SHA hashes, ESP



packet encryption, IBR key management) and demonstrate rea-
sonable performance for the integrated solution. Many of these
components, such as ESP, are reusable in an IPv6 [9] imple-
mentation of ROTOROUTER. We also see several directions for
improved ROTOROUTERs by replacing individual components
within the architecture with current or future technologies
(e.g., a lighter-weight, public-key signing scheme, replacing
SHA-1 with a more secure hash, etc.).

XII. CONCLUSIONS

Today’s Internet remains vulnerable to DoS and DDoS attacks.
Since DDoS attacks can choke off critical link bandwidths
anywhere in the network, the problem cannot be solved by
the endpoints alone. We show how routers can assist with
DoS filtering inside the network while leaving the endpoint
hosts in charge of the decisions about which traffic to accept
and filter. As a result, we present a filtering scheme that is
amenable to decentralized control of network packet filter-
ing. While the ROTOROUTER requires more logic area and
state than a minimal IPv4 router, our proof-of-concept router
implementation shows that the area cost is not prohibitive,
reasonable throughput is achievable, and the router is effective
at mitigating DoS attacks. We were able to demonstrate a 4-
port, 1000Base-T router in a 65 nm generation FPGA platform,
the NetFPGA-10G, and we sketch a path to scale to higher
ports, throughput, and flows on newer generation FPGAs.
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