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Abstract
Optimized hardware for propagating and checking software-
programmable metadata tags can achieve low runtime over-
head. We generalize prior work on hardware tagging by
considering a generic architecture that supports software-
defined policies over metadata of arbitrary size and complex-
ity; we introduce several novel microarchitectural optimiza-
tions that keep the overhead of this rich processing low. Our
model thus achieves the efficiency of previous hardware-
based approaches with the flexibility of the software-based
ones. We demonstrate this by using it to enforce four diverse
safety and security policies—spatial and temporal memory
safety, taint tracking, control-flow integrity, and code and
data separation—plus a composite policy that enforces all
of them simultaneously. Experiments on SPEC CPU2006
benchmarks with a PUMP-enhanced RISC processor show
modest impact on runtime (typically under 10%) and power
ceiling (less than 10%), in return for some increase in energy
usage (typically under 60%) and area for on-chip memory
structures (110%).

Categories and Subject Descriptors C.1 [Processor Archi-
tecture]: Miscellaneous—security

Keywords security, metadata, tagged architecture, CFI,
Taint Tracking, Memory Safety

1. Introduction
Today’s computer systems are notoriously hard to secure,
and conventional processor architectures are partly to blame,
admitting behaviors (pointer forging, buffer overflows, . . . )
that blatantly violate higher-level abstractions. The burden
of closing the gap between programming language and hard-
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ware is left to software, where the cost of enforcing airtight
abstractions is often deemed too high.

Several recent efforts [2, 37, 53, 57] have demonstrated
the value of propagating metadata during execution to en-
force policies that catch safety violations and malicious at-
tacks as they occur. These policies can be enforced in soft-
ware [3, 8, 28, 48, 69], but typically with high overheads
that discourage their deployment or motivate coarse approx-
imations providing less protection [23, 31]. Hardware sup-
port for fixed policies can often reduce the overhead to ac-
ceptable levels and prevent a large fraction of today’s at-
tacks [19, 25, 40, 63]. Following this trend, Intel recently
announced hardware for bounds checking [36] and isolation
[42]. While these mitigate many of today’s attacks, fully se-
curing systems will require more than memory safety and
isolation. Some needs we can already identify (like control-
flow integrity and information flow control) but the complete
set remains unknown. Attacks rapidly evolve to exploit any
remaining forms of vulnerability. What is needed is a flexi-
ble security architecture that can be quickly adapted to this
ever-changing landscape. Some recent designs have made
the hardware metadata computation configurable [24, 66]
but have limited bits to represent metadata and only support
a limited class of policies. A natural question, then, is: Is it
possible to provide hardware to support extensible, software-
defined metadata processing with low overhead? In particu-
lar, in the spirit of the 0-1-∞ rule, can we efficiently support
fine-grained, software-defined metadata propagation without
placing a visible, hard bound on the number of bits allocated
to metadata or a bound on the number of policies simultane-
ously enforced?

To achieve this goal, we introduce a rich architectural
model, the Programmable Unit for Metadata Processing
(PUMP), that indivisibly associates a metadata tag with ev-
ery word in the system’s main memory, caches, and registers.
To support unbounded metadata, the tag is large enough to
indirect to a data structure in memory. On every instruction,
the tags of the inputs are used to determine if the operation
is allowed, and if so to determine the tags for the results. The
tag checking and propagation rules are defined in software;
however, to minimize performance impact, these rules are
cached in a hardware structure, the PUMP rule cache, that



operates in parallel with the ALU. A software miss handler
services cache misses based on the policy rule set currently
in effect.

We measure the performance impact of the PUMP using
a composition of four different policies (Tab. 1) that stress
the PUMP in different ways and illustrate a range of security
properties: (1) a Non-Executable Data and Non-Writable
Code (NXD+NWC) policy that uses tags to distinguish code
from data in memory and provides protection against sim-
ple code injection attacks; (2) a Memory Safety policy that
detects all spatial and temporal violations in heap-allocated
memory, extending [17] with an effectively unlimited (260)
number of colors (“taint marks” in [17]); (3) a Control-
Flow Integrity (CFI) [3] policy that restricts indirect control
transfers to only the allowed edges in a program’s control
flow graph, preventing return-oriented-programming-style
attacks [59] (we enforce fine-grained CFI [3, 50], not coarse-
grained approximations [20, 72] that are potentially vulner-
able to attack [23, 31]); and (4) a fine-grained Taint Tracking
policy (generalizing [49]) where each word can potentially
be tainted by multiple sources (libraries and IO streams) si-
multaneously. Since these are well-known policies whose
protection capabilities have been established in the litera-
ture, we focus only on measuring and reducing the perfor-
mance impact of enforcing them using the PUMP. Except
for NXD+NWC, each of these policies needs to distinguish
an essentially unlimited number of unique items; by con-
trast, solutions with a limited number of metadata bits can,
at best, support only grossly simplified approximations.

As might be expected, a simple, direct implementation of
the PUMP is rather expensive. Adding pointer-sized (64b)
tags to 64b words at least doubles the size and energy us-
age of all the memories in the system; rule caches add area
and energy on top of this. For this simple implementation,
we measured area overhead of 190% and geomean energy
overhead around 220%; moreover, runtime overhead is dis-
appointing (over 300%) on some applications (see §3). Such
high overheads would discourage adoption, if they were the
best we could do.

However, we find that most policies exhibit spatial and
temporal locality for both tags and the rules defined over
them. The number of unique rules can be significantly re-
duced by defining them over a group of identical instruc-
tions, reducing compulsory misses and increasing the effec-
tive capacity of the rule caches. Off-chip memory traffic can
be reduced by exploiting spatial locality in tags. On-chip
area and energy overhead can be minimized by using a small
number of bits to represent the subset of the pointer-sized
tags in use at a time. Runtime costs of composite policy miss
handlers can be decreased by providing hardware support for
caching component policies. These optimizations allow the
PUMP to achieve low overheads without compromising its
rich policy model.

The main contributions of this work are (a) a metadata
processing architecture supporting unbounded metadata and

fully software-defined policies (§2); (b) an empirical eval-
uation (§3) of the runtime, energy, power ceiling, and area
impacts of a simple implementation of the PUMP integrated
with an in-order Alpha microarchitecture (§2) on the SPEC
CPU2006 benchmark set under four diverse policies and
their combination; (c) a set of microarchitectural optimiza-
tions (§4); and (d) an assessment of their impact (§5), show-
ing typical runtime overhead under 10%, a power ceiling im-
pact of 10%, and typically energy overhead under 60% by
using 110% additional area for on-chip memory structures.
Tab. 2 summarizes related work, which is discussed in §6;
§7 concludes and highlights future work.

2. The PUMP
We illustrate the PUMP as an extension to a conventional
RISC processor (we use an Alpha [1], but the mechanisms
are not ISA-specific) and an in-order implementation with
a 5-stage pipeline suitable for energy-conscious applica-
tions [10]. In this section, we describe the ISA-level exten-
sions that constitute the PUMP’s hardware interface layer,
the basic microarchitectural changes, and the accompanying
low-level software.

Metadata Tags Every word in a PUMP system is associ-
ated with a pointer-sized tag. These tags are uninterpreted
in the hardware. At the software level, a tag may represent
metadata of unbounded size and complexity, as defined by
the policy. Simple policies that need only a few bits of meta-
data may store it directly in the tag; if more bits are needed,
indirection is used to store the metadata as a data structure
in memory, with the address of this structure used as the tag.
The basic addressable word is indivisibly extended with a
tag, making all value slots, including memory, caches, and
registers, suitably wider. The program counter is also tagged.
This notion of software-defined metadata and its represen-
tation as a pointer-sized tag extends previous tagging ap-
proaches, where only a few bits are used for tags and/or they
are hardwired to fixed interpretations (see Tab. 2).

All tag manipulation is defined and implemented with
PUMP rules. Metadata tags are not addressable by user pro-
grams, only by software policy handlers invoked on rule
cache misses as detailed below.

Tag-propagation rules We define metadata computations
in terms of rules of the form
opcode : (PC ,CI ,OP1 ,OP2 ,MR) ⇒ (PCnew,R),
which should be read: “If the current opcode is opcode,
the current tag on the program counter is PC , the tag on
the current instruction is CI , the tags on its input operands
(if any) are OP1 and OP2 , and the tag on the memory
location (in case of load/store) is MR, then the tag on the
program counter in the next machine state should be PC new

and the tag on the instruction’s result (a destination regis-
ter or a memory location, if any) should be R”. Instead of
(PCnew,R), the function can also fail, indicating that the
operation is not allowed. The PUMP can enforce any pol-



Policy Threat Metadata Max Unique Tags Tag Check (allow?) Tag Propagation Rules Ref.

NXD+NWC code injection DATA or CODE on memory locations 2 CI=CODE;
MR 6=CODE on write no

Memory Safety spatial/temporal memory
safety violation on heap

color on pointers; region color +
payload color on memory locations

(#mallocs)2 pointer color == refer-
enced region color

R← OPi on mov/add/sub;
R← payload(MR) on load

[17]

CFI control-flow hijacking
(JOP/ROP/code reuse)

unique id on each indirect control-
flow source and target

#sources+#targets (PC ,CI ) ∈ pro-
gram’s control-flow
graph

PC ← CI on indirect jumps
(including call, return)

[3]

Taint Tracking untrusted code,
low-integrity data from IO

source-taint-id on instructions and
IO; set of input taint-ids on words

2(#code+#IO ids) user-defined check R← CI ∪OP1 ∪OP2 ∪
MR

[49]

Composite all of the above structure with 4 elements product of above all of the above (Alg. 2 with N = 4) *this

Table 1: Summary of Investigated Policies (simplified for brevity; details not critical to understand architecture and optimizations)

Prop- Outputs Inputs
Tag Bits agate? allow? R (result) PC PC CI OP1 OP2 MR Usage (Example)

2 7 soft 7 7 7 7 7 7 3 memory protection (Mondrian [67])
word 7 limited prog. 7 7 7 7 7 7 3 memory hygiene, stack, isolation (SECTAG [5])

32 7 limited prog. 7 7 7 7 7 7 3 unforgeable data, isolation (Loki [71])
2 7 fixed fixed 7 7 7 7 7 3 fine-grained synchronization (HEP [61])
1 3 fixed 7 7 7 7 3 7 7 capabilities (IBM System/38 [34], Cheri [68])

2–8 3 fixed fixed 7 7 7 3 3 7 types (Burroughs B5000, B6500/7500 [51], LISP Machine [44], SPUR [64])
128 3 fixed copy 7 7 7 3 7 3 memory safety (HardBound [25], Watchdog [46, 47])
0 3 software defined 7 propagate only one invariant checking (LBA [14])
1 3 fixed fixed 7 7 7 3 3 3 taint (DIFT [63], [15], Minos [19])
4 3 limited programmability 7 7 7 3 3 7 taint, interposition, fault isolation (Raksha [22])
10 3 limited prog. fixed 7 7 7 3 3 3 taint, isolation (DataSafe [16])

unspec. 3 software defined 7 7 7 3 3 3 flexible taint (FlexiTaint [66])
32 3 software defined 7 7 7 3 3 3 programmable, taint, memory checking, reference counting (Harmoni [24])

0–64 3 software defined 3 3 3 3 3 information flow, types (Aries [11])
Unbounded 3 software defined 3 3 3 3 3 fully programmable, pointer-sized tags (PUMP)

Table 2: Taxonomy of Tagging Schemes (Propagate = tag propagates with data (3) or is a property of memory address (7); allow? = logic for allowing /
disallowing operations; R = policy impacts tag of result; PC = programmable tag on program counter; CI = is current instruction tag checked or propagated;
OP1 ,OP2 ,MR = is tag on these inputs checked or propagated)

icy that can be expressed as a function of this form. The
mapping should be “purely functional”; i.e., it should nei-
ther depend on nor modify any mutable state. The policy
function is defined and resolved entirely in software (see
App. A [27] for an example). This rule format, allowing two
output tags to be computed from up to five input tags, is
markedly more flexible than those considered in prior work
(see Tab. 2), which typically compute one output from up to
two inputs. It should also generalize easily across most RISC
architectures. Beyond previous solutions that only track data
tags (OP1 , OP2 , MR, R), we add a current instruction tag
(CI ) that can be used to track and enforce provenance, in-
tegrity, and usage of code blocks; as well as a PC tag that
can be used to record execution history [4], ambient author-
ity [43], and “control state” including implicit information
flows [39]. The CFI policy (Tab. 1) exploits the PC tag for
recording the sources of indirect jumps and the CI tag for
identifying jump targets, NXD+NWC leverages the CI to
enforce that data is not executable, and Taint Tracking uses
the CI to taint data based on the code that produced it.

Rule Cache The other main feature of the PUMP is hard-
ware support for single-cycle common-case computation on
metadata. To resolve the rules in a single cycle in the com-
mon case, we provide a hardware cache of the most recently
used rules; as long as we hit in this cache, we do not add any
extra cycles. Fig. 1 shows the microarchitecture of our cur-
rent rule cache implementation. Specifically, the rule cache

does nothing more than perform an associative mapping be-
tween the instruction opcode and the 5 input tags and the two
output tags. Since rules are purely functional, the rule cache
can directly map between pointer tag inputs and pointer tag
outputs without dereferencing the pointers or examining the
metadata structures they point to. Failure cases are never in-
serted into the PUMP rule cache since they must transfer
control to software cleanup.

While the PUMP can, in principle, implement any policy
function, the rule cache can only effectively accelerate pol-
icy functions that generate small working sets and hence can
be cached well, including: (i) policies that use only a lim-
ited number of distinct tags, and hence rules, and (ii) poli-
cies where the potential universe of tags is large but the set
of tags actually encountered is still modest (e.g., library and
file taint-tracking with up to 34 unique taints could see 234

distinct sets in principle, but only about 5–10,000 are seen
in practice). Good performance depends upon temporal lo-
cality, just as good performance in the instruction and data
caches also depend on temporal locality. As with data caches
and virtual memory, the PUMP allows the policy program-
mer to express the policy without being concerned with ar-
bitrary hard limits on the number of tags or rules. If the poli-
cies do have (or mostly do have) small tag and rule sets, the
policy will perform well. If the policies occasionally need to
use more tags or rules, performance degrades only in propor-
tion to the cases where many rules are required. If the policy
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Figure 1: PUMP Rule Cache Dataflow and Microarchitecture
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writer develops a policy with poor locality, the rule cache
will thrash, just as a program with poor locality will thrash
virtual memory and instruction and data caches. The exper-
imental data in this paper shows that the PUMP rule caches
can be engineered to efficiently support four quite different
example policies, and their composition.

Depending on the instruction and policy, one or more of
the input slots in a rule may be unused. For example, a
register-to-register add will never depend on the value of
the unused MR tag. To avoid polluting the cache with rules
for all possible values of the unused slots, the rule-cache
lookup logic refers to a bit vector containing a don’t-care
bit for each input slot–opcode pair (shown in the Execute
stage in Fig. 2), which determines whether the correspond-
ing tag is actually used in the rule cache lookup. To handle
these “don’t care” inputs efficiently, we mask them out be-
fore presenting the inputs to the PUMP rule cache (AND gates
in Fig. 1). The don’t-care bit vectors are set by a privileged
instruction as part of the miss handler installation. The im-
plementation details of the rule cache are presented in §3.

Pipeline Integration Fig. 2 shows how we revise the 5-
stage processor pipeline to incorporate the PUMP hardware.
We add the rule cache lookup as an additional stage and
bypass tag and data independently so that the PUMP stage
does not create additional stalls in the processor pipeline.

Placing the PUMP as a separate stage is motivated by
the need to provide the tag on the word read from mem-
ory (load), or to be overwritten in memory (store), as an
input to the PUMP. Since we allow rules that depend on
the existing tag of the memory location that is being writ-
ten, write operations become read-modify-write opera-
tions. The existing tag is read during the Memory stage like

Algorithm 1 Taint Tracking Miss Handler (Fragment)

1: switch (op)
2: case add, sub, or:
3: PCnew ← PC
4: R← canonicalize(CI ∪OP1 ∪OP2 )
5: (... cases for other instructions omitted ...)
6: default: trap to error handler

a read, the rule is checked in the PUMP stage, and the write
is performed during the Commit stage. As with any caching
scheme, we can use multiple levels of caches for the PUMP;
in this paper, we use two.

Miss Handler When a last-level miss occurs in the rule
cache, it is handled as follows: (i) the current opcode and
tags are saved in a (new) set of processor registers used only
for this purpose and (ii) control is transferred to the policy
miss handler (described in more detail below), which (iii)
invokes the policy function to decide if the operation is al-
lowed and, if so, generates an appropriate rule. When the
miss handler returns, the hardware (iv) installs this rule into
the rule caches, and (v) re-issues the faulting instruction. To
provide isolation between the privileged miss handler and
the rest of the system software and user code, we add a miss-
handler operational mode to the processor, controlled by a
bit in the processor state that is set on a last-level rule cache
miss and reset when the miss handler returns. To avoid the
need to save and restore registers on every miss handler invo-
cation, we expand the integer register file with 16 additional
registers that are available only to the miss handler. Addi-
tionally, the rule inputs and outputs appear as registers while
in miss handler mode (cf. register windows [52]), allowing
the miss handler (but nothing else) to manipulate the tags as
ordinary values.

We add a new miss-handler-return instruction to fin-
ish installing the rule into the PUMP rule caches and return
to user code; this instruction can only be issued when in
miss-handler mode. While in miss-handler mode, the rule
cache is ignored and the PUMP instead applies a single,
hardwired rule: all instructions and data touched by the miss
handler must be tagged with a predefined MISSHANDLER
tag, and all instruction results are given the same tag. In this
way, the PUMP architecture prevents user code from under-
mining the protection provided by the policy. User code can-
not: (1) divide, address or replace tags; (2) touch metadata
data structures and miss handler code; and (3) directly insert
rules into the rule cache.

Alg. 1 illustrates the operation of the miss handler for our
Taint-Tracking policy. To minimize the number of distinct
tags (and hence rules), the miss handler takes care to use a
single tag for logically equivalent metadata by “canonical-
izing” any new data structures that it builds. While it would
be functionally correct to create a new data structure, with a
new metadata pointer, for the set resulting from the unions



Algorithm 2 N-Policy Miss Handler

1: for i=1 to N do
2: Mi ←{op, PC [i], CI [i], OP1 [i], OP2 [i], MR[i]}
3: {pci, resi}← policyi (Mi)
4: PCnew ← canonicalize([pc1, pc2, ..., pcN ])
5: R← canonicalize([res1, res2, ..., resN ])

in Line 4, it is important for performance to make sure that
equivalent sets are assigned the same tag—i.e., the same
canonical name—to increase reuse and sharing of rules in
the rule cache, thereby increasing its effectiveness.

Rather than forcing users to choose a single policy, we
want to enforce multiple policies simultaneously and add
new ones later. An advantage of our “unbounded” tags is
that we can in principle enforce any number of policies at the
same time. This can be achieved by letting tags be pointers to
tuples of tags from several component policies. For example,
to combine the NXD+NWC policy with the taint-tracking
policy, we can let each tag be a pointer to a tuple (s, t),
where s is a NXD+NWC tag (either DATA or CODE) and
t is a taint tag (a pointer to a set of taints). The rule cache
lookup is exactly the same, but when a miss occurs, both
component policies are evaluated separately: the operation
is allowed only if both policies allow it, and the resulting
tags are pairs of results from the two component policies.
Alg. 2 shows the general behavior of the composite miss
handler for any N policies. Depending on how correlated the
tags in the tuple are, this could result in a large increase in
the number of tags and hence rules. In order to demonstrate
the ability to support multiple policies simultaneously and
measure its effect on working set sizes, we implement the
composite policy (“Composite”) comprising all four policies
described in §1. The Composite policy represents the kind of
policy workloads we would like to support; hence we use it
for most of the experiments described later.

Most policies will dispatch on the opcode to select the
appropriate logic. Some, like NXD+NWC, will just check
whether the operation is allowed. Others may consult a
data structure (e.g., the CFI policy consults the graph of
allowed indirect call and return ids). Memory safety checks
equality between address and memory region colors. Taint
tracking computes fresh result tags by combining the in-
put tags (Alg. 1). Policies that must access large data struc-
tures (CFI) or canonicalize across large aggregates (Taint
Tracking, Composite) may make many memory accesses
that could miss in the on-chip caches and go to DRAM. On
average across all of our benchmarks, servicing misses for
NXD+NWC required 30 cycles, Memory Safety 60, CFI 85,
Taint Tracking 500, and Composite 800.

If the policy miss handler determines that the operation
is not allowed, it invokes a suitable security fault handler.
What this fault handler does is up to the runtime system and
the policy; typically, it would shut down the offending pro-

cess, but in some cases it might return a suitable “safe value”
instead [35, 54]. For incremental deployment with UNIX-
style [55] operating systems, we assume policies are applied
per process, allowing each process to get a different set of
policies. It also allows us to place the tags, rules, and miss
handling support into the address space of the process; to-
gether with the miss-handler operational-mode, this allows
fast transitions to and from the miss-handler software with-
out the software bookkeeping, data copying, or management
of address translation tables that would be necessary for an
OS-level context switch. Longer term, perhaps PUMP poli-
cies can be used to protect the OS as well.

3. Evaluation of a Simple Implementation
We next describe our evaluation methodology for measuring
runtime, energy, area, and power overheads and apply it on
a simple implementation of the PUMP hardware and soft-
ware, using 128b words (64b payload and 64b “integrated”
tag [38]) and the modified pipeline sketched in Fig. 2. Al-
though the optimized implementation of §4 is the one whose
overheads (relative to the baseline processor) we really care
about, it is useful to describe and measure the simple PUMP
implementation first, both because it gives us a chance to
show basic versions of the key mechanisms before getting
to more sophisticated versions and because it allows us to
confirm the natural intuition that the simple implementation
does not perform very well.

Resource Estimates To estimate the physical resource im-
pact of the PUMP, we focus on memory costs, since the
memories are the dominant area and energy consumers in
a simple RISC processor [21] and in the PUMP hardware
extensions. We consider a 32 nm Low Operating Power
(LOP) process for the L1 memories and Low Standby Power
(LSTP) for the L2 memories and use CACTI 6.5 [45] for
modeling the area, access time, energy per access, and static
(leakage) power of the main memory and the processor on-
chip memories.
Baseline Processor: Our (no-PUMP) baseline processor has
separate 64KB L1 caches for data and instructions and a
unified 512KB L2 cache. We use delay-optimized L1 caches
and an energy-optimized L2 cache. All caches use a write-
back discipline. The baseline L1 cache has a latency around
880 ps; we assume that it can return a result in one cycle
and set its clock to 1 ns, giving us a 1 GHz-cycle target—
comparable to modern embedded and cell phone processors.
Tab. 3 shows the parameters for this processor.
PUMP Implementation: The PUMP hardware implemen-
tation has two parts: extending all memories with integrated
tags, and adding PUMP rule caches to the processor. Extend-
ing each 64b word in the on-chip memories with a 64b tag
increases their area and energy per access and worsens their
access latency. This is potentially tolerable for the L2 cache,
which already has a multi-cycle access latency and is not
used every cycle. But adding an extra cycle of latency to ac-



Unit Design Organization Area Access Energy Static Power Latency Cyc
(mm2) Read/Write (pJ) (pJ/cyc) (ps)

Register File Baseline 64b, 2R1W, {32 Integer, 32 Floating} 0.002 0.3/0.5 0.080 264 1
(Int. and FP) 64b tag extended 128b, 2R1W, {48 Integer, 32 Floating} 0.007 1.0/1.4 0.23 295 1

L1-$ Baseline 64KB, 4-way, 64B/line 0.236 17/11 14.4 880 1
(I and D) 64b tag extended 64KB, 4-way, 128B/line (eff. 32KB, 64B/line) 0.244 19/14 14.5 880 1

L2-$ Baseline 512KB, 8-way, 64B/line 1.207 393/481 0.111 4000 5
(unified) 64b tag extended 1MB, 8-way, 128B/line (eff. 512KB, 64B/line) 2.350 758/1223 0.214 4930 5

TLB Either 1KB, 2-way set-assoc. 0.040 3.6/4.5 2.0 800 1
(I and D)
DRAM Baseline 1GB, access 64B line per transfer - 15,000 - - 100

64b tag extended 1GB, access 128B line (eff. 64B line per transfer) - 31,000 - - 130
L1 PUMP-$ 64b tag fully associative 1024 entry, 328b match, 128b out 1.500 750/900 3000 4

(not used; shown only for reference)
1024 entry, 328b match, 128b out Fast-Value dMHC(4,2) 0.683 51/62 32.0 500 1

L2 PUMP-$ 64b tag 4096 entry, 328b match, 128b out 2-level dMHC(4,2) 0.994 173/444 0.085 3300 4
Total Baseline Area 1.485mm2

Total 64b-tagged Area 4.318mm2 (+190% over baseline)

Table 3: Memory Resource Estimates for the Baseline and Simple PUMP-extended Processors at 32nm node

cess the L1 caches can lead to stalls in the pipeline. To avoid
this, in this simple implementation we reduce the effective
capacity of our L1 caches to half of those in the baseline
design and then add tags; this gives the same single-cycle
access to the L1 caches, but can degrade performance due to
increased misses.

The PUMP rule caches require a long match key (5
pointer-sized tags plus an instruction opcode, or 328b) com-
pared to a traditional cache address key (less than the address
width), and they return a 128b result. Using a fully asso-
ciative L1 rule cache would lead to high energy and delay
(Tab. 3). Instead, we use a four-hash-function instance of a
dynamic Multi-Hash Cache (dMHC) [26], a near-associative
multi-hash cache scheme. The L1 rule cache, illustrated con-
cretely with a two-hash function instance in Fig. 1, is de-
signed to produce a result in a single cycle, checking for a
false hit (MR Mem lookup and comparison) in the second
cycle, while the L2 rule cache is designed for low energy,
giving a multi-cycle access latency. Entries are added to the
dMHC in such a way that the XOR of the values stored in the
hashed memory locations (G1 and G2 in Fig. 1) produce the
desired output. As long as one of the hashed table entries is
empty, a new rule mapping can be added without evicting
or displacing existing rule mappings. Tab. 3 shows the pa-
rameters for 1024-entry L1 and 4096-entry L2 rule caches
used in the simple implementation. When these caches reach
capacity, we use a simple FIFO replacement policy, which
appears to work well in practice for our current workloads
(FIFO is within 6% of LRU here).

Evaluation Methodology To estimate the performance im-
pact of the PUMP, we use a combination of ISA, PUMP,
and address-trace simulators (Fig. 3). We use the gem5
simulator [9] to generate instruction traces for the SPEC
CPU2006 [33] programs on a 64-bit Alpha baseline ISA
(omitting xalancbmk and tonto, on which gem5 fails). We
simulate each program for each of the four policies listed
in §1 and the Composite policy for a warm-up period of 1B
instructions and then evaluate the next 500M instructions.
In gem5, each benchmark is run on the baseline processor

Program
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Figure 3: PUMP Evaluation Framework
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Figure 4: Single Policies with Simple Implementation

with no tags or policies. The resulting instruction trace is
then run through a PUMP simulator that performs meta-
data computation for each instruction. This “phased” sim-
ulation strategy is accurate for fail-stop policies (the only
ones we consider), where the PUMP’s results cannot cause
a program’s control flow to diverge from its baseline execu-
tion. While address-trace simulations can be inaccurate for
highly pipelined and out-of-order processors, they are quite
accurate for our simple, in-order, 5- and 6-stage pipeline.
On the baseline configuration, the gem5 instruction simula-
tion and address trace generation followed by our custom
address-trace simulations and accounting were within 1.2%
of gem5’s cycle-accurate simulations.

We provide the PUMP simulator with miss-handler code
(written in C) to implement each policy, and we assign meta-
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Figure 5: Overhead of Simple Implementation with 64b Tags Compared to Baseline

data tags on the initial memory depending on the policy. Our
PUMP simulator allows us to capture the access patterns in
the PUMP rule caches and estimate the associated runtime
and energy costs, accounting for the longer wait cycles re-
quired to access the L2 rule cache. Since the PUMP miss
handler code also runs on the processor, we separately sim-
ulate our miss handler on gem5 to capture its dynamic be-
havior. Since the miss-handler code potentially impacts the
data and instruction caches, we create a merged address trace
that includes properly interleaved memory accesses from
both user and miss-handler code, which we use for the final
address-trace simulation to estimate the performance impact
of the memory system.

Tag and Rule Usage One of the contributions of the
PUMP model is support for unbounded metadata. The Com-
posite policy applied to the benchmark set exercises this
support. The Composite policy uses from 400 (specrand)
to 2M (GemsFDTD) tags, requiring 1700 (specrand) to 14M
(GemsFDTD) rules. (The large number of tags and rules in
GemsFDTD are driven largerly by the memory safety pol-
icy, which itself uses 640K memory component tags.) The
composite tags are pointers that point to metadata structures
for the component policies. The Taint Tracking policy tag
component is itself a set represented as an ordered list. The
largest single metadata structure is 176B. The total metadata
structure memory ranges from 1KB (specrand) to 56MB
(GemsFDTD). As a fraction of the maximum heap allocated
memory, this represents only 1–10%.

Simple Implementation We evaluate the simple PUMP
implementation, comparing it to the no-PUMP baseline.
Area Overhead: The overall area overhead of the PUMP on
top of the baseline processor is 190% (Tab. 3). The dominant
portion of this area overhead (110%) comes from the PUMP
rule caches. The unified L2 cache contributes most of the
remaining area overhead. The L1 D/I caches stay roughly
the same, since we halved their effective capacity. This high
memory area overhead roughly triples the static power, con-
tributing to 24% of the energy overhead.
Runtime Overhead: For all single policies on most bench-
marks, the average runtime overhead of even this simple im-
plementation is only 10% (see Fig. 4; to read boxplots [12]:
bar is the median, box covers one quartile above and below
(middle 50% of cases), dots represent each individual data
point, whiskers denote full range except for outliers (more

than 1.5× respective quartile)), with the dominant overhead
coming from the additional DRAM traffic required to trans-
fer tag bits to and from the processor. For the Memory Safety
policy, we see a few benchmarks that exhibit high miss han-
dler overhead, pushing their total overhead up to 40-50% due
to compulsory misses on newly allocated memory blocks.
For the Composite policy, five of the benchmarks suffer from
very high overheads in the miss handler (Fig. 5a), with the
worst case close to 780% and the geomean reaching 50%.
Two factors contribute to this overhead: (1) the large num-
ber of cycles required to resolve a last-level rule cache miss
(since every component miss handler must be consulted),
and (2) an explosion in the number of rules, which expands
the working set size and increases the rule cache miss rate. In
the worst case, the number of unique composite tags could
be the product of the unique tags in each component policy.
However, we do not see this worst case—rather, total rules
increase by a factor of 3–5 over the largest single policy,
Memory Safety.

Energy Overhead: Moving more bits, due to wider words,
and executing more instructions, due to miss handler code,
both contribute to energy overheads, impacting both the
single and composite policies (Figs. 4 and 5b). The CFI
and Memory Safety policies—and hence also the Compos-
ite policy—access large data structures that often require
energy-expensive DRAM accesses. The worst-case energy
overhead is close to 400% for single policies, and about
1600% for the Composite policy, with geomean overhead
around 220%.

Power Ceiling: For many platform designs the worst-case
power, or equivalently, energy per cycle, is the limiter. This
power ceiling may be driven by the maximum current they
can draw from a battery or the maximum sustained operat-
ing temperature either in a mobile or in a wired device with
ambient cooling. Fig. 5c shows that the simple implemen-
tation raises the maximum power ceiling by 76% with lbm
driving the maximum power in both the baseline and sim-
ple PUMP implementations. Note that this power ceiling in-
crease is lower than the worst-case energy overhead in part
because some benchmarks slow down more than the extra
energy they consume and in part because the benchmarks
with high energy overhead are the ones consuming the least
absolute energy per cycle in the baseline design. Typically
the data working set of these energy-efficient programs fits



Unit Parameter Range Final
L1 PUMP-$ Capacity 512–4096 1024

Tag Bits 8–12 10
L2 PUMP-$ Capacity 1024–8192 4096

Tag Bits 13–16 14
UCP-$ Capacity 512–4096 2048

CTAG-$ Capacity 128–1024 512

Table 4: PUMP Parameter Range Table
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Figure 6: Impact of Opgroup Optimization

into the on-chip caches, so they seldom pay the higher cost
of DRAM accesses.

4. Optimizing the PUMP
Though the simple implementation described above achieves
reasonable performance on most benchmarks, the runtime
overhead for the Composite policy on some of them and the
energy and power overheads on all policies and benchmarks
seem unacceptably high. To address these overheads, we in-
troduce a series of targeted microarchitecture optimizations
and examine the impact of the architectural parameters as-
sociated with the PUMP components (Tab. 4) on the overall
costs. We use groupings of opcodes with identical rules to
increase the effective capacity of the rule caches, tag com-
pression to reduce the delay and energy of DRAM transfers,
short tags to reduce the area and energy in on-chip memo-
ries, and Unified Component Policy and Composition Tag
caches to decrease the overheads in the miss handlers.

Opgroups In practical policies, it is common to define sim-
ilar rules for several opcodes. For example, in the Taint
Tracking policy, the rules for the add and sub instructions
are identical (Alg. 1). However, in the simple implementa-
tion, these rules occupy separate entries in the rule caches.
Consequently, we group instruction opcodes with the same
rules into “opgroups”, reducing the number of rules needed.
Which opcodes can be grouped together depends on the
policy; we therefore expand the don’t-care SRAM in the
Execute stage (Fig. 2, also shown as “Mem” in Fig. 1)
to also translate opcodes to opgroups before the rule cache
lookup. For the Composite policy, we can reduce 300+ Al-
pha opcodes to 14 opgroups and the total number of rules
by a factor of 1.1×–6×, with an average of 1.5× (Fig. 6a
measures this effect across all the benchmarks). This effec-
tively increases the rule cache capacity for a given invest-
ment in silicon area. Opgroups also reduce the number of

compulsory misses, since a miss on a single instruction in
the group installs the rule that applies to every instruction
opcode in the group. Fig. 6b summarizes the miss-rate across
all the benchmarks for different L1 rule cache sizes for the
Composite policy with and without opgrouping. This figure
shows that both the range and the mean of the miss-rates
are reduced by opgrouping. With opgroup optimization, a
1024-entry rule cache has a lower miss rate than a 4096-
entry rule cache without it. A lower miss-rate naturally re-
duces the time and energy spent in miss handlers (Fig. 14),
and smaller rule caches directly reduce area and energy.

Main Memory Tag Compression Using 64b tags on 64b
words doubles the off-chip memory traffic and hence roughly
doubles the associated energy. Typically, though, tags ex-
hibit spatial locality—many adjacent words have the same
tag. For example, Fig. 7a plots the distribution of unique tags
for each DRAM transfer for the gcc benchmark with the
Composite policy, showing that most words have the same
tag: on average we see only 1.14 unique tags per DRAM
transfer of an 8-word cache line. We exploit this spatial lo-
cality to compress the tag bits that must be transferred to
and from the off-chip memory. Since we are already trans-
ferring data in cache lines, we use cache lines as the basis
for this compression. We allocate 128B per cache line in the
main memory, to keep addressing simple. However, rather
than storing 128b tagged words directly, we store eight 64b
words (payloads) followed by eight 4b indexes and then up
to eight 60b tags (see Fig. 7b). The index identifies which of
the 60b tags goes with the associated word. We trim the tag
to 60b to accommodate the indexes, but this does not com-
promise the use of tags as pointers: assuming byte address-
ing and 16B (two 64b words) aligned metadata structures,
the low 4b of the 64b pointer can be filled in as zeros. As a
result, after transferring the 4B of indexes, we only need to
transfer the unique 7.5B tags in the cache line. For instance,
if the same tag is used by all the words in the cache line, we
transfer 64B+4B=68B in a first read, then 8B in a second
read for a total of 76B instead of 128B. The second read
is to the same DRAM page, needing only CAS cycles and
not the full random-access cycle time. The 4b index can be
either a direct index or a special value. We define a special
index value to represent a default tag, so that there is no need
to transfer any tag in this case. By compressing tags in this
manner we are able to reduce the average energy overhead
per DRAM transfer from 110% to 15%.

We chose this compression scheme for its combination
of simplicity and effectiveness at reducing off-chip mem-
ory energy. Many clever schemes for fine-grained memory
tagging exist—including multi-level tag page tables [60],
variable-grained TLB-like structures [67, 71], and range
caches [65]—and these could also be used to reduce the
DRAM footprint.

Tag Translation The simple PUMP rule caches are large
(adding 110% area) since each cached rule is 456b wide.
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Figure 7: Main Memory Tag Compression

Supporting the PUMP also required extending the baseline
on-chip memories (RFs and L1/L2 caches) with 64b tags.
Using a full 64b (or 60b) tag for each 64b word here incurs
heavy area and energy overheads, as we saw in §3. However,
a 64KB L1 D-$ holds only 8192 words and hence at most
8192 unique tags. Along with a 64KB L1 I-$, we can have
at most 16384 unique tags in the L1 memory subsystem;
these can be represented with just 14b tags, reducing the
delay, area, energy, and power in the system. Caches exist to
exploit temporal locality, and this observation suggests we
can leverage that locality to reduce area and energy. If we
reduce the tag bits to 14b, the PUMP rule cache match key
is reduced from 328b to 78b.

To get these savings without losing the flexibility of full,
pointer-sized tags, we use different-width tags for different
on-chip memory subsystems and translate between these as
needed. For example, one might use 12b tags in the L1
memories and 16b tags in the L2 memories. Fig. 8 shows
how we manage tag translation between L1 and L2 memory
subsystems. Moving a word from L2 cache to L1 cache
requires translating its 16b tag to the corresponding 12b
tag, creating a new association if needed. We use a simple
SRAM for the L2-tag-to-L1-tag translation, with an extra bit
indicating whether or not there is an L1 mapping for the L2
tag. Translating an L1 tag to L2 tag (on a write-back or an L2
lookup) is again performed with an SRAM lookup using the
L1 tag as the address. A similar translation occurs between
the 60b main memory tags and 16b L2 tags.

When a long tag is not in the long-to-short translation ta-
ble, we must allocate a new short tag, potentially reclaim-
ing a previously allocated short tag that is no longer in use.
There is a rich design space to explore for determining when
a short tag can be reclaimed, including garbage collection
and tag-usage counting. For simplicity, we allocate short tags
sequentially and flush all caches above a given level (instruc-
tion, data, PUMP) when the short tag space is exhausted,
avoiding the need to track when a specific short tag is avail-
able for reclamation. We assume all caches are designed with
a lightweight gang clear [41], making flushes inexpensive.

Compared to Tab. 3, where each L1 rule cache access costs
51pJ, we get down to 10pJ with 8b L1 tags or 18pJ with 16b
L1 tags, with the energy scaling linearly with tag length be-
tween these points. The energy impact on the L1 instruction
and data caches is small. Similarly, with 16b L2 tags, L2 rule
cache access costs 120pJ, down from 173pJ with 64b tags.

L2.CacheLine

16b

L2tag → L1tag
SRAM

Invalid
new L1tag flush?

L1tag → L2tag
SRAM

Valid
12b

L1D.CacheLine
(a) L1 miss, L2 hit

L2.CacheLine
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L1tag → L2tag
SRAM
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L1D.CacheLine
(b) L1 to L2 writeback

Figure 8: Translation Between 12b L1 Tags and 16b L2 Tags
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Figure 9: Impact of L1 Tag Length on L1 PUMP Miss-Rates

Slimming L1 tags also allows us to restore the capacity of the
L1 D/I caches. With 12b tags, the full-capacity (76KB, effec-
tive 64KB) L1 cache will meet single-cycle timing require-
ments, reducing the performance penalty the simple imple-
mentation incurred from the reduced cache capacity. As a
result, we limit L1 tag length exploration to 12 bits or less.
While even shorter tags reduce energy, they also increase the
frequency of flushes. Fig. 9 shows how flushes decrease with
increasing L1 tag length, as well as the impact on the L1 rule
cache miss-rate.

Miss-Handler Acceleration Enforcing large policies ob-
tained by the orthogonal combination of smaller policies is,
not surprisingly, expensive. We illustrated this by combin-
ing four policies into a single Composite policy. As shown in
Alg. 2, each invocation of a N -policy miss handler must take
apart a tuple of tags, compute result tags for each component
policy, reassemble them into tuples, and canonicalize these
tuples to prevent duplication. Moreover, the greater number
of tags and rules needed for the Composite policy increases
the rule cache miss rates—in Fig. 10a, even though the Taint
Tracking and CFI policies individually have a low miss-rate,
a higher miss-rate from the Memory Safety policy drives the
miss-rate for the Composite policy high as well. The lower
miss rates of the individual policies suggest that their results
may be cacheable even when the composite rules are not.
Microarchitecture: We introduce two hardware structures
to optimize composite policy miss handlers. First we add a
Unified Component Policy (UCP) cache where we simply
cache the most recent component policy results. The general
miss-handler for composite policies is modified to perform
lookups in this cache while resolving component policies
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Figure 10: Optimizing Composite Policy Miss Handler

Algorithm 3 N-Policy Miss Handler with HW support

1: for i=1 to N do
2: Mi ←{op, PC [i], CI [i], OP1 [i], OP2 [i], MR[i]}
3: {hit, pci, resi}← UCP-$ (i,Mi)
4: if !hit then
5: {pci, resi}← policyi (Mi)
6: insert {i, pci, resi} into UCP-$
7: pc[1..N ]← {pc1, pc2, ..., pcN}
8: {hit, PCnew} ← CTAG-$ (pc[1..N ])
9: if !hit then

10: PCnew ← canonicalize(pc[1..N ])
11: insert {pc[1..N ], PCnew} into CTAG-$
12: res[1..N ]← {res1, res2, ..., resN}
13: {hit, R} ← CTAG-$ (res[1..N ])
14: if !hit then
15: R← canonicalize(res[1..N ])
16: insert {res[1..N ], R} into CTAG-$

(Alg. 3, line 3). When this cache misses for a component
policy we perform its policy computation in software (and
insert the result in this cache). We implement the UCP cache
with the same hardware organization as the regular PUMP
rule cache, with an additional policy identifier field. For
simplicity we use a FIFO replacement policy for this cache,
but it may be possible to achieve better results by prioritizing
space using a metric such as the re-computation cost for the
component policies. With modest capacity, this cache filters
out most policy recomputations (Fig. 10b; the low hit rate for
memory safety is driven by compulsory misses associated
with new memory allocations). As a result, we are able to
reduce the average number of miss handler cycles by a factor
of 5 for our most challenging benchmarks (Fig. 10e). It is
possible for every policy to hit in the UCP cache when there
is a miss in the L2 PUMP since the composite rules needed
could be a product of a small number of component policy
rules. For GemsFDTD, we hit in 3 or more component policies
about 96% of the time.

Second, we add a cache that translates a tuple of result
tags into its canonical composite result tag (Alg. 2, Line 4).
This identifies the single pointer tag that points to the com-
ponent result tag tuple, when such a pointer already exists;
it is canonicalized so there is a single, unique tag for any

distinct combination of components in order to maximize
the effectiveness of the rule caches. This Composition Tag
(CTAG) cache is implemented by hashing together all the tu-
ple components to get an index into a small CTAG memory.
Multiple hashes and memories are used to minimize con-
flicts as in the PUMP rule cache (Fig. 1). Once the CTAG
cache returns a candidate composite tag, the hardware deref-
erences the pointer result to check that the hashed result is
a valid hit. This CTAG cache is effective (Fig. 10d) because
it is common for several component policy rules to return
the same tuple of result tags. For example, in many cases the
PCtag will be the same, even though the result tag is differ-
ent. Furthermore, many different rule inputs can lead to the
same output. For example, in Taint Tracking we perform set
unions, and many different unions will have the same result;
e.g., (Blue, {A,B,C}) is the composite answer for writing
the result of both {A}∪{B,C} and {A,B}∪{B,C} (Taint
Tracking) into a Blue slot (Memory Safety). We also use a
FIFO replacement policy for this cache. The CTAG cache
reduces the average miss handler cycles by another factor of
2 (Fig. 10e). Taken together, a 2048-entry UCP cache and
a 512-entry CTAG cache reduce the average time spent on
each L2 rule cache miss from 800 cycles to 80 cycles.

Rule Prefetch: Another way to reduce the compulsory miss
rate is to pre-compute rules that might be needed in the near
future. A full treatment of prefetching is beyond the scope
of this paper. However, one easy case has high value for
the Memory Safety rules. When we allocate a new memory
tag, we will likely need the 7 rules (initialize (1), add offset
to pointer and move (3), scalar load (1), scalar store (2))
for that tag in the near future. Consequently, we add all of
these rules to the UCP cache at once. For the single-policy
Memory Safety case, we add the rules directly into the rule
caches. This reduces the number of Memory Safety miss-
handler invocations by 2×.

Fig. 11 shows how the optimizations discussed in this
section extend the PUMP-microarchitecture.

5. Overall Evaluation
Design-Point Selection For the most part, the architecture
parameters (Tab. 4) monotonically impact a particular cost,
providing tradeoffs among energy, delay, and area, but not
defining a minimum within a single cost criteria. There is



Unit Design Organization Area Access Energy Static Power Latency Cyc
(mm2) Read/Write (pJ) (pJ/cyc) (ps)

Register File Extended 10b 74b, 2R1W, {48 Integer, 32 Floating} 0.005 0.4/0.5 0.13 360 1
L1 Cache 10b-tag 74KB, 4-way, 74B/line (eff. 64KB, 64B/line) 0.272 19/13 16.4 975 1
L2 Cache 14b-tag 592KB, 8-way, 78B/line (eff. 512KB, 64B/line) 1.247 343/640 0.133 4600 5

TLB – 1KB, 2-way set-assoc. 0.040 3.6/4.5 2.0 800 1
DRAM 64b-tag 1GB, access 128B line (move 76B) 17,500 112

L1 PUMP Cache 10b L1 tag 1024-entry, 58b match, 20b out Fast-Value dMHC(4,2) 0.095 15/43.2 2.22 520 1
L2 PUMP Cache 14b L2 tag 4096-entry, 78b match, 28b out 2-level dMHC(4,2) 0.287 99.4/267 0.032 2800 3

full→L2-tag 64b→14b 8196-entry, 64b match, 14b out dMHC(4,2) 0.432 166/436 0.052 3400 4
L2-tag→full 14b→64b 16K×64 SRAM 0.216 55.5/31.5 0.027 1700 2

L2-tag→L1-tag 14b→10b 16K×11 SRAM 0.038 8.8/4.7 0.0040 1420 2
L1-tag→L2-tag 10b→14b 1K×14 SRAM 0.004 0.8/1 0.0004 780 1

UCP Cache 64b tags 2048-entry, 328b match, 128b out 2-level dMHC(4,2) 0.377 196/479 0.035 2730 3
CTAG Cache 64b tags 512-entry 2-level dMHC(4,2) 0.107 56/139 0.009 1700 2

Total area 3.120mm2 (+110% over baseline)

Table 5: Memory Resource Estimates for the PUMP-optimized Processor at 32nm node
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Figure 12: Overhead of Optimized Implementation as Shown in Tab. 5 (Composite Policy)
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Figure 11: PUMP Microarchitecture

the threshold effect that, once the tag bits are small enough,
the L1 D/I caches can be restored to the capacity of the base-
line, so we adopt that as our upper bound to explore for L1
tag length, but beyond that point, decreasing tag length re-
duces energy with small impact on performance. Fig. 13b
shows that reducing tag length is the dominant energy effect
for most benchmark programs (e.g., leslie3d, mcf), with
a few programs showing equal or larger benefits from in-
creasing UCP cache capacity (e.g., GemsFDTD, gcc). Ignor-
ing other cost concerns, to reduce energy, we would select
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Figure 13: Impact of Tag Bits and UCP-$ Capacity

large miss handler caches and few tag bits. Runtime over-
head (Fig. 13a) is also minimized with larger miss handler
caches, but benefits from more rather than fewer tag bits
(e.g., GemsFDTD, gcc). The magnitude of the benefits vary
across benchmarks and policies. Across all benchmarks, the
benefit beyond 10b L1 tags is small for the SPEC CPU2006
benchmarks, so we use 10b as the compromise between en-
ergy and delay and use a 2048-entry UCP cache and a 512-
entry CTAG cache to reduce area overhead while coming
close to the minimum energy level within the space of the
architecture parameters explored.

Runtime and Energy Impact of Optimizations Fig. 14
shows the overall impact on runtime and energy overheads
of applying the optimizations from §4 in sequence. Every
optimization is dominant for some benchmark (e.g., op-
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groups for astar, DRAM tag compression for lbm, short
tags for h264ref, miss handler acceleration for GemsFDTD),
and some benchmarks see benefits from all optimizations
(e.g., gcc), with each optimization successively removing
one bottleneck and exposing the next. The different behavior
from the benchmarks follows their baseline characteristics
as detailed below.

Applications with low locality have baseline energy and
performance driven by DRAM due to high main memory
traffic. The overhead in such benchmarks (e.g., lbm) trends
to the DRAM overhead, so reductions in DRAM overhead
directly impact runtime and energy overhead. Applications
with more locality are faster in the baseline configuration,
consume less energy, and suffer less from DRAM overheads;
as a result, these are more heavily impacted by the reduced
L1 capacity and the tag energy in the L1 D/I and rule caches.
DRAM optimization has less effect on these applications,
but using short tags has a large effect on energy and removes
the L1 D/I cache capacity penalty (e.g., h264ref).

The benchmarks with heavy dynamic memory alloca-
tion have higher L2 rule cache miss rates due to compul-
sory misses as newly created tags must be installed in the
cache. This drove the high overheads for several benchmarks
(GemsFDTD, omnetpp) in the simple implementation. The
miss handler optimizations reduce the common-case cost of
such misses, and the opgroup optimization reduces the ca-
pacity miss rate. For the simple implementation, GemsFDTD
took an L2 rule cache miss every 200 instructions and took
800 cycles to service each miss driving a large part of its
780% runtime overhead. With the optimizations, it services
an L2 rule cache miss every 400 instructions and takes only
140 cycles on average per miss, reducing its runtime over-
head to 80%.

Overall, these optimizations bring runtime overhead be-
low 10% for all benchmarks except GemsFDTD and omnetpp
(Fig. 12a), which are high on memory allocation. The mean
energy overhead is close to 60%, with only 4 benchmarks
exceeding 80% (Fig. 12b).

Power Ceiling The optimizations reduce the impact on
power ceiling to 10% (Fig. 12c), suggesting the optimized
PUMP will have little impact on the operating envelope of

the platform. The programs that still have the worst energy
overhead (GemsFDTD, h264ref) are well below the base-
line absolute power ceiling set by lbm. DRAM compression
reduces the energy overhead for lbm to 20%; since it also
slows down by 9%, its power requirement increases by 10%.

Area The area overhead of the optimized design is around
110% (Tab. 5), compared to the 190% of the simple design
(Tab. 3). On the one hand, short tags significantly reduce the
area of the L1 and L2 caches (now adding only 5% over the
baseline) and of the rule caches (adding only 26%). On the
other hand, the optimized design spends some area to reduce
runtime and energy overhead. The UCP and CTAG caches
add 33% area overhead, while the translation memories for
short tags (both L1 and L2) add another 46%. While these
additional hardware structures add area, they provide a net
reduction in energy, since they are accessed infrequently
and the UCP and CTAG caches also substantially reduce the
miss-handler cycles.

Policy Scaling A key goal of our model (and optimiza-
tions) is to make it relatively painless to add additional poli-
cies that are simultaneously enforced. The Composite policy
on the simple PUMP design incurred more than incremen-
tal costs for several benchmarks due to the large increase
in miss handler runtime, but we reduced these with the
miss handler optimizations. For most benchmarks, one pol-
icy (typically Memory Safety) dominates the performance
of the composition. Adding more policies to this dominant
one incurs little further performance degradation—the run-
time overhead is increased by less than 1% per policy. This
is shown in Fig. 15 where we first show the overhead of each
single policy, then show composites that incrementally add
one policy at a time to Memory Safety, our most complex
single policy. Between the Memory-Safety-only case and the
full composite, the average runtime overhead grows from
5% to 8% and the average energy overhead grows from 50%
to 60%. The progression makes it clearer what overhead
comes simply from adding any policy as opposed to adding
a higher-overhead policy. These results show that the caches
are effective for these benchmarks: the working set does not
grow substantially, and the time spent in miss-handlers re-
solving all the policies is effectively contained such that it
does not degrade performance.

To provide a sense of scaling beyond the four policies
measured here, we have decomposed the CFI policy into re-
turns (CFI1) and indirect jumps (CFI2) and the Taint Track-
ing policy into code tainting and I/O tainting. This does not
increase the main PUMP cache working set, as it requires the
same number of distinct composite rules, but it does increase
the miss-handler complexity and pressure in the UCP and
CTAG caches. The fact that we do not see overhead jumps
between code and I/O tainting and between CFI1 and CFI2
suggests the working set remains small enough that the addi-
tional miss-handler complexity has only incremental impact
on overall overhead.
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Figure 15: Impact Per Policy in Composition
Two outliers (GemsFDTD and omnetpp) have a larger

increase in runtime overhead (20–40%), with only one
(GemsFDTD) showing a larger increase in energy. The in-
creases occur only when we add the first taint and first CFI
policy, due mostly to higher memory safety compulsory miss
rates for these benchmarks coupled with the increased miss-
handler resolution complexity.

6. Related Work
The idea of using metadata for safety and security has been
around since the 1960s [29]. During the past decade [63],
it has been greatly refined and expanded (see Tab. 2). Our
proposal extends previous work by offering a unified archi-
tecture for metadata tags and making it fully programmable.

The earliest uses of tags were for types, capabilities, and
synchronization [34, 51, 61]. More recent uses include taint
tracking [15, 19, 63] and bounds checking [17, 46]. Rak-
sha [22] and DataSafe [16] generalize from the 1-bit taints
and hardwired policies of earlier systems to larger taint
fields (4b and 10b, respectively) and taint-specific config-
urable propagation rules. Our proposal further generalizes
these systems by offering pointer-sized tags and fully pro-
grammable, software-defined rules for metadata validation
and propagation.

Metadata has long been used for page-size units; later
work has associated metadata at finer granularities, down
to individual words or bytes [5, 67]. These systems can
also trap to software for handling, though the tags do not
propagate with the data and no tag results are computed.

DISE [18], Log-Based Architecture (LBA) [13, 14], and
FADE [30] provide software-defined checking by inserting
instructions in the processor’s instruction stream (DISE) or
running software on a processor core dedicated to check-
ing (LBA, FADE). Aside from performance gains from code
compactness, the performance and energy of DISE are com-
parable to software-only solutions. LBA adds hardware ac-
celerators for checking and simple propagation (but not com-
putation) of metadata, and FADE adds the the ability to per-
form programmable AND or OR computations. Some of the
innovations in these accelerators (e.g., the restriction of taint
propagation to unary inheritance tracking, excluding taint
combining in LBA or the programmable AND or OR in the
FADE Event Table) give up generality that our solution re-
tains. LBA and FADE were demonstrated on simpler poli-
cies than our single policies, but have ∼50% (LBA) and 20–

80% (FADE) runtime overhead compared to our 6% single-
policy overhead (Fig. 15). The PUMP can cache any rule
for single-cycle PUMP resolution, even rules involving com-
posite tags, while FADE can only capture a subset of opera-
tions in a single cycle (“single-shot”), with others requiring
multi-cycle resolution. Using a second processor for log pro-
cessing incurs roughly 100% energy overhead—higher than
our worst-case single-policy energy overhead of 60%. Con-
versely, FADE is designed to work with superscalar, out-of-
order cores, while the PUMP design presented here is only
for in-order cores.

Other work aims to support software-defined metadata
processing with hardware acceleration, similar to our ap-
proach. Aries sketches a vision for cached metadata propa-
gation rules [11], and more recently Harmoni shows where a
rule cache would fit in a programmable tag processing archi-
tecture [24], though neither shows how to map policies into
rule tables or evaluates the runtime characteristics of rule-
cache-supported policies. FlexiTaint [66] is closest to our de-
sign; it demonstrates support for two taint propagation poli-
cies and their combination. The policies we show here are
richer than the ones supported by FlexiTaint, due both to the
extra tag inputs and outputs and to the richer tag metadata.
FlexiTaint could in principle be scaled to wide metadata; it
would then suffer performance and energy problems similar
to our simple design (§3) and would likely benefit from our
optimizations.

7. Conclusions and Future Work
With evidence mounting for the value of metadata-based
policy enforcement, the time is ripe to define an architec-
ture for software-defined metadata processing and identify
accelerators to remove most of the runtime overhead. The
PUMP architecture neither bounds the number of metadata
bits nor the number of policies simultaneously supported; its
microarchitectural optimizations (opgroups, tag compres-
sion, tag translation, and miss handler acceleration—see
§4) achieve performance comparable to dedicated, hard-
ware metadata propagation solutions (§5). We believe the
software-defined metadata policy model and its accelera-
tion will be applicable to a large range of policies beyond
those illustrated here, including sound information-flow con-
trol [7, 8, 32, 56, 62], fine-grained access control [67, 71],
integrity, synchronization [6, 61], race detection [58, 73],
debugging, application-specific policies [70], and controlled
generation and execution of dynamic code.
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protection. In 10th International Conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS X, pages 304–316, New York, NY, USA, 2002.
ACM.

[68] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. An-
derson, B. Davis, B. Laurie, P. G. Neumann, R. Norton, and
M. Roe. The CHERI capability model: Revisiting RISC in
an age of risk. In Proc. of the International Symposium on
Computer Architecture (ISCA), pages 457–468, June 2014.

[69] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native Client: a sand-
box for portable, untrusted x86 native code. Communications
of the ACM, 53(1):91–99, 2010.

[70] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek. Improv-
ing application security with data flow assertions. In Proceed-
ings of the Symposium on Operating Systems Principles, Big
Sky, MT, USA, October 2009.

[71] N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis.
Hardware enforcement of application security policies using
tagged memory. In Proceedings of the 8th USENIX Con-
ference on Operating Systems Design and Implementation,
OSDI, pages 225–240. USENIX Association, 2008.

[72] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCa-
mant, D. Song, and W. Zou. Practical Control Flow Integrity
& Randomization for Binary Executables. In IEEE Sympo-
sium on Security and Privacy, 2013.

[73] P. Zhou, R. Teodorescu, and Y. Zhou. HARD: Hardware-
assisted lockset-based race recording. In Proc. HPCA, 2007.



A. Policy Example: Memory Safety
Description We implement a scheme (based on [17])
that identifies all temporal and spatial violations in heap-
allocated memory. Intuitively, for each new allocation we
make up a fresh color-id, c, and write c as the tag on each
memory location in the newly created memory block (à la
memset). The pointer to the new block is also tagged c.
Later, when we dereference a pointer, we check that its tag
is the same as the tag on the memory cell to which it points.
When a block is freed, the tags on all its cells are changed to
a constant F representing free memory. The heap is initially
all tagged F . We use a special tag ⊥ for non-pointers, and
we write t for a tag that is either a color c or ⊥.

Because memory cells may contain pointers, in general
each word in memory has to be associated with two tags.
We handle this by making the tag on each memory cell be a
pointer to a pair (c, t), where c is the id of the memory block
in which this cell was allocated and t is the tag on the word
stored in the cell. We use a domain-specific language based
on the rule function described in §2 for specifying a policy
in terms of symbolic rules. The rules for load and store
take care of packing and unpacking these pairs, along with
checking that each memory access is valid (i.e., the accessed
cell is within the block pointed to by this pointer):

load : (−,−, c1,−, (c2, t2))
→ (−, t2) if c1 = c2

(1)

store : (−,−, t1, c2, (c3, t3))
→ (−, (c3, t1)) if c2 = c3

(2)

The checking shows up as conditions under which the sym-
bolic rule is valid (e.g., c2 = c3 above). The “–” symbol
indicates the don’t care fields in the rule.

Address arithmetic operations preserve the pointer tag:

add : (−,−, c,⊥,−)→ (−, c) (3)

To maintain the invariant that tags on pointers can only
originate from allocation, operations that create data from
scratch (like loading constants) set its tag to ⊥.

We augment malloc and free to tag memory regions
using the tagged instructions and ephemeral rules (which are
deleted from the rule cache once they are used). In malloc
we generate a fresh tag for the pointer to the new region via
an ephemeral rule.

move : (−, tmalloc , t,−,−)
1−→ (−, tnewtag) (4)

The arrow annotated with the 1 denotes an ephemeral rule.
We then use the newly tagged pointer to write a zero to every
word in the allocated region using a special store rule

store : (−, tmallocinit , t1, c2, F )→ (−, (c2, t1)) (5)

before returning the tagged pointer. Later, free uses a mod-
ified store instruction to retag the region as unallocated

store : (−, tfreeinit , t1, c2, (c3, t4))→ (−, F ) (6)

before returning the memory region to the free list.

Complete Symbolic Rule Set We use opgroups to com-
pactly describe the ruleset:

nop, cbranch, ubranch, ijump, return :
(−,−,−,−,−)→ (−,−) (1)

ar2s1d : (−,−,⊥,⊥,−)→ (−,⊥) (2)
ar2s1d : (−,−, c,⊥,−)→ (−, c) (3)
ar2s1d : (−,−,⊥, c,−)→ (−, c) (4)
ar2s1d : (−,−, c, c,−)→ (−,⊥) (5)
ar1s1d : (−,−, t,−,−)→ (−, t) (6)
ar1d, dcall, icall, flags :

(−,−,−,−,−)→ (−,⊥) (7)
load : (−,−, c1,−, (c2, t2))

→ (−, t2) if c1 = c2

(8)

store : (−, ci, t1, c2, (c3, t3))
→ (−, (c3, t1)) if c2 = c3 ∧ ci 6∈ {tmallocinit , tfreeinit}

(9)

store : (−, tmallocinit , t1, c2, F )→ (−, (c2, t1)) (10)
store : (−, tfreeinit , t1, c2, (c3, t4))→ (−, F ) (11)

move : (−, tmalloc , t,−,−)
1−→ (−, tnewtag) (12)

move : (−, tmalloc , t,−,−)→ (−, t) (13)

Concrete Rules The symbolic rules used above for policy
specification are written using variables, allowing a few
symbolic rules to describe the policy over an unbounded
universe of distinct values. The concrete rules stored in the
rule cache, however, must refer to specific, concrete tag
values. For example, if 23 and 24 are valid memory block
colors, we will need concrete instances of Rule 3 in the
PUMP rule cache for c = 23 and c = 24. Assuming we
encode ⊥ as 0 and mark don’t care fields as 0, the concrete
rules are:

ar2s1d : (0, 0, 23, 0, 0)→ (0, 23)

ar2s1d : (0, 0, 24, 0, 0)→ (0, 24)

The miss handler gets the concrete input tags and runs code
compiled from the symbolic rules to produce the associated
concrete output tags in order to insert rules into the PUMP
rule cache. When the symbolic rule identifies a violation,
control transfers to an error handler and no new concrete
rules are inserted into the PUMP rule cache.

Tag and Rule Statistics In the first 1.5B instructions, the
GemsFDTD benchmark generates 580K memory block col-
ors. 3.3M concrete rules are generated from the 13 symbolic
rules above. Since not all combinations of memory block and
pointer tags actually occur, symbolic rules like Rule 8 do not
generate the theoretical maximum number of concrete rules
((580K)2=330B>>3.3M).


