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Abstract—Can time-multiplexing save energy? Recent theoret-
ical work suggests that time multiplexed architectures might use
less energy than fully spatial FPGAs. Spatial FPGAs conserve
energy by avoiding instruction fetch, exploiting locality, and
exploiting low activity on wires. However, since they dedicate
physical switches and wires to a single signal, they can be larger
than designs that time multiplex these physical resources. Can
the area savings from time multiplexing reduce wire lengths sig-
nificantly enough to provide a net win against increased switching
activity and the addition of instruction energy? Mapping designs
from the VTR 7 no memory benchmarks and spatial FFTs,
we show that spatial FPGAs remain the most energy efficient
architecture at least up to half a million 4-LUTs. We explain why
this is and explore how sensitive our results are to technology
and usage assumptions.

I. INTRODUCTION

Trimberger [1] reports that time-multiplexed FPGAs—
FPGAs that store multiple configurations on chip and change
among them during execution—required higher power than
normal, non-time-multiplexed FPGAs. Nonetheless, tradeoffs
may change with Moore’s Law scaling, and there is a large
design space for time-multiplexed architectures to explore. De-
Hon suggests that time multiplexing can reduce energy under
certain circumstances [2]. However, he does not fully articulate
a design or map specific benchmarks. As such, he leaves open
many issues, including a characterization of typical values
for switching activity and interconnect requirements that may
determine whether or not there is an advantage for real designs.

Most of the energy in FPGAs goes into switching long wires
[3], [4]. There are three main competing energy forces in play
as we explore spatial and time-multiplexed FPGAs: (1) long
wires are highly capacitive, making them consume significant
energy each time they switch, (2) dedicated wires switch less
often than time-multiplexed wires, exploiting the inherent tem-
poral correlation in the datapath, (3) time multiplexing adds
energy to read instructions from memories. Time-multiplexed
designs can be smaller than spatial designs [5], so the key
question will be whether or not the time-multiplexed design
can sufficiently reduce the wire length to cover the cost of
increased switching activity and added instruction energy.

We systematically elaborate and explore a design space for
time-multiplexed designs. We identify key design parameters
including the number of LUTs to sequentialize on a processing
element (S), the level of sequentialization for the interconnect,
and the physical interconnect richness (pt). We develop tools
to map designs to these different points in the design space
(Sec. IV), circuits for the key structures, and a 45 nm energy,
delay, and area model for assessing and comparing the costs
of the mapped designs. We also explore the different microar-
chitectures for managing and controlling the time-multiplexed
resources that range from a simple, flat design where all

resources are controlled with a single wide instruction, to
a data-driven design that fully embraces sparse activation,
only activating any instruction or data memory reads when a
resource is actually used (Sec. V). We find that this fully data-
driven extreme uses the least energy of the time-multiplexed
designs on standard benchmarks. Nonetheless, the best time-
multiplexed design uses more energy than the fully spatial
design. We detail the key phenomena in play that prevent the
time-multiplexed designs from achieving a net win and use
these to examine the sensitivity of our conclusions to changes
in application, use, and technology parameters (Sec. IX).

Our novel contributions include:
• A detailed microarchitecture and circuit-level design for

a time-multiplexed FPGA (Sec. II-B, V)
• Microarchitecture optimized for sparse activation (Sec. V)
• Mapping tools for this design space (Sec. IV)
• Quantified energy costs for mapped designs (VTR7 no

memory benchmarks [6], spatial FFTs) (Sec. VI) includ-
ing fixed, one-size-fits-all architectures (Sec. VIII)

• Sensitivity analysis on technology and model assumptions
(Sec. IX)

II. BACKGROUND

A. Prior Work
Time-multiplexed FPGAs were initially of interest as a way

to pack more logic onto limited die area [5], [7], [1], [8].
By storing multiple configurations on the die, it is possible
to rapidly switch among different behaviors during a compu-
tation. A configuration context can be small compared to the
active logic, making computations more compact. The recent
multicontext offering from Tabula was able to achieve about
3× the logic density of spatial FPGAs and ran at a fixed
context clock of 1.6 GHz [9]. To our knowledge, only [1]
reported the energy or power of time-multiplexed designs.

B. Energy Components
In a spatial design, the main energy components are logic,

interconnect wires and switches, clocking, and leakage. Time-
multiplexed designs also spend energy on memory reads, both
from data memory and instruction memory. Tab. I shows the
basic technology parameters we assume throughout this paper.

1) Wire Energy: Wire energy is the dominant energy com-
ponent in spatial FPGA designs [3], [4]. This is driven by
charging and discharging the capacitance on wires when they
switch. Wire capacitance is linear in the length of the wire,
making it important to determine wire lengths to model FPGA
wire energy. As a result, our basic wire energy model is

Ewire =
(α
2

)
LCuV

2 (1)

where α is the activity rate and L is the wire length.
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TABLE I
45 NM LSTP TECHNOLOGY TABLE

Symbol Description Value
F Minimum feature size 45 nm
FP Full pitch 90 nm
Vdd Supply voltage 1 V
Ileak Leakage current, per minimum sized transistor 9 pA
Cg Gate capacitance of a transistor 38 aF
Cu Wire capacitance per meter 167 pF
Ru Resistance of the wire per meter 2600 kΩ
R0 Drain-to-source resistance of a min. sized trans. 39 kΩ
Ab Area of one SRAM cell 147.5 F 2

Mlayers Number of metal layers for interconnect routing 8

TABLE II
ENERGY FOR LUT TOPOLOGIES

Dynamic Energy Leakage Energy
Pass Transistor (LP) 11.8 fJ 30 aJ/ns
Transmission Gate (LSTP) 13.6 fJ 0.6 aJ/ns

2) Leakage: In CMOS all active devices—logic, switches,
and memories—leak and must spend some energy maintain-
ing their output logic levels. We simulate key components
in SPICE using models from the NCSU FreePDK45 [10]
to get the leakage energy for each component. From early
simulations, we quickly determined that leakage would be a
dominant factor if we used a high-performance (HP) or low-
power (LP) process, but could mostly be curtailed with a low-
standby-power (LSTP) process. The LSTP process operates
with a higher Vth so that devices can be strongly turned off,
reducing subthreshold current. Since our focus is low energy,
we use the LSTP process for this work.

3) Logic Energy: Logic energy comes from switching
devices. We built key circuits, including LUTs, registers,
and switches, and simulated them in SPICE. We revisited
the design of the K-input LUT (a 2K :1 multiplexer) in the
context of low supply voltage and high threshold voltage. The
conventional NMOS pass transistor design [11] cannot restore
the voltage level for logical ones without level restorers;
subsequent stages see reduced voltage and increased leakage
in all processes and fail to switch in low leakage (high Vth)
processes (LSTP). The transmission gate always restores the
voltage to the full value, reducing leakage (Tab. II), and is
more tolerant to low supply voltage and high threshold voltage,
both of which are consistent with prior work [12] [13].

4) Data Memory: Each of the LUT inputs in the Processing
Element (PE) needs a one-bit wide data memory (Fig. 4).
These memories are generally small (Sec. VI), and we use
a standard random access memory (RAM) design with a row
decoder to select the appropriate row and multiplexers to select
the output from the selected row.

5) Instruction Memory: Since time-multiplexed instruction
memories (imem) are accessed sequentially, we can save
decoding energy by using shift-registers for row and column
addressing. Furthermore, when the width of the instruction
memory is smaller than the square root of the memory capacity
(memory row), we store the entire memory row in a shift
register at the output stage. We shift out the bits needed in each
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cycle, only accessing the memory core once all the stored bits
in the shift register have been used. In contrast, a standard
RAM would spend energy to fetch the entire row for each
word read, wasting the energy to charge the bit lines for the
unused portion of the row. This instruction memory is used
in the architecture to control the switches in the interconnect
and the narrow instruction memories in the PE (Sec. V-A).

Fig. 1 shows how energy grows with capacity and word
width in these models. As we expect, the instruction mem-
ories (imem) are lower energy than the RAMs used for data
memories (dmem). We also include CACTI memory estimates
[14]. These are only included for large capacities since CACTI
does not provide models for memories below 1024 bits. This
shows, roughly, that the data memories are consistent with
the CACTI RAM. CACTI achieves lower energy at higher
capacities by banking, an optimization omitted for our data
memories since we did not require large RAMs.

III. ARCHITECTURE OVERVIEW

Since prior work has shown that 4-input LookUp Tables
(4-LUTs) minimize energy [15], our basic architecture uses a
compute block containing a 4-LUT with optional output flip-
flop. These compute blocks are organized in a hierarchical
interconnection network with wiring provisioned based on
Rent’s Rule [16]. We limit our designs to 4-LUTs and flip-
flops, leaving coarse-grained embedded blocks (e.g., multi-
pliers) and embedded memories for future work. The simple
architecture allows us to focus on the key issues of logic and
interconnect size and the impact of time-multiplexed resource
sharing using data and instruction memories.

A. Spatial
The spatial design is organized like the HSRA [17], except

that we use a more modern directional-drive architecture [18]
(Fig. 2). Rent’s Rule suggests, when we partition for locality,
the I/O required for a collection of N gates grows as cNp,
where the Rent Exponent, p, characterizes the locality in the
design. Consequently, in the HSRA, channel width in the 2-
ary tree network increases discretely towards the root (ch ∝(
2h

)p
) [16]. At each height, h, in the tree, the parent channel

width either conserves the total child channel width using a
2:1 switch, or the parent channel width is the same as the child
channel width, effectively reducing total channel width by a
factor of two, using a 1:1 switch. The schedule of channel
width reduction at each tree height can be selected to just



PE

2:1

1:1

2:1

1:1

Fig. 2. Spatial Design: HSRA-Style Interconnect with Directional Drive

PE
imem

2:1

1:1

Fig. 3. Time-Multiplexed Design

match the requirements of the application in a matched design,
or can be fixed to accommodate a large range of designs. For
simplicity we can talk about this schedule in terms of the
particular Rent exponent, p, that it approximates. Switchboxes
are linearly populated as shown in Fig. 2. Wires are buffered
to minimize total energy. I/O pads are placed at the leaves of
the tree as well, assuming they will be supported by area I/O.

B. Multicontext

The multicontext design derives from the spatial design and
the heterogeneous multicontext design in [2] (Fig. 3). First, we
time-multiplex the physical LUTs. Rather than assigning one
logical 4-LUT to each physical 4-LUT at the leaf processing
element (PE), we allow a number of logical LUTs, S, to share
a single leaf 4-LUT. This reduces the number of leaf PEs in
the network by a factor of S compared to the spatial design.
These leaf PEs will be larger since they must hold instruction
and data memory to control the time-multiplexing.

Once we sequentialize the leaves, it is natural to sequential-
ize the physical network as well. In particular, if only one of
S 4-LUTs can produce a value in a timestep, there is only one
S-th as much traffic to route over the network on a timestep.
Conceptually, at least, we think of performing the route of
one set of data from the outputs produced at the active PE
sources to their consumers as a wave. Computation proceeds
by evaluating a set of 4-LUTs in parallel and performing a
routing wave that sends the LUT outputs through the network.
In the simplest case, there is one wave per LUT evalua-
tion (sequentialization, S), and the switches in the network
need an instruction per wave to control their configuration.
However, since we do not cascade 4-LUT evaluations within
a wave, precedence constraints in the logical netlist may
demand more than S waves, with the 4-LUT depth of the
critical path (Tab. III) also serving as a lower bound on the

number of waves needed to evaluate the design. Detailed time-
multiplexed routing determines the exact number of waves
needed (Sec. IV).

We can separately control the size of the physical network,
rather than simply designing it to have the same growth
schedule as the spatial network except divided by the leaf
serialization, S. At one extreme, we might build a binary
tree network, which would be composed physically of only
1:1 switches. In general, we can select the Rent exponent
for the physical network, pt, to be any value, and it may
be smaller than the logical p required for a routing wave.
When pt < p, it becomes necessary to further time multiplex
the interconnection network within a single routing wave. For
example, if we did use binary tree (pt = 0), and a particular
routing wave required 4 signals to cross the root of the tree,
it would be necessary to sequentialize communication across
the root of the tree over 4 cycles within a routing wave. More
generally, if a routing wave requires some (2h/S)p signals
to cross over a subtree root at height h of a pt tree that has
only (2h/S)pt wires in the channels at height h, it will require
the communications be sequentialized by (2h/S)p−pt . When
pt < p, the ratio of logical bandwidth to physical bandwidth
changes as we go from the root to the leaves, so the level of
time multiplexing, and hence the depth of the time-multiplexed
memories associated with the switches, varies with the height
of the switch. A key source of the asymptotic area, and hence
energy, benefit in [2] comes from the ability to keep the wires
asymptotically shorter using a pt < 0.5 design when p > 0.5.

C. Multiplexing and Wire Activity
Sharing wires, while good for reducing area, can increase

the activity factor on a wire and hence increase energy. The
simplest case to consider is one where two signals share a
single wire driven by a multiplexer. On each logical cycle,
the multiplexer first drives one signal, then the other. If both
signals are low activity, α, they will typically hold the same
value across multiple clock cycles. In the extreme case, if
one signal is almost always high and the other almost always
low, we take a design with almost no switching and force
each signal to switch on each cycle, increasing the effective
switching activity to 100%.

IV. METHODOLOGY

To compare architectures, we perform complete mapping of
benchmark circuits and estimate the energy required to run the
benchmarks on the various architectures.

The lack of embedded memories limits us to the VTR 7 no
memory benchmarks [6]. We add 16-bit spatial FFTs of size
4, 8, 16, 32, and 64 (Tab. III) to increase the benchmark set
size and diversity and to illustrate size scaling for a task. We
used VTR 7 (ABC [19]) to map all the designs to 4-LUTs and
used the same netlists across all architecture variants within
the study. To estimate wire energy for the spatial designs,
we performed gate-level simulations with random inputs and
captured the signal activity (toggle rates).

For placement on the hierarchical network, we developed
a custom, recursive partitioner based on KLFM-style biparti-
tioning [20] that we use for both spatial and time-multiplexed
designs. In the time-multiplexed designs, the recursive parti-
tioning stops when the cluster size reaches S. We place each



TABLE III
BENCHMARK STATISTICS

Logic Weighted
Benchmark LUTs Depth Activity p

stereovision3 378 18 0.164 0.34
sha 3214 54 0.226 0.50

diffeq2 4768 128 0.072 0.43
diffeq1 5144 126 0.075 0.43

fft4 10246 86 0.206 0.43
blob merge 10351 49 0.026 0.50

stereovision0 16675 22 0.103 0.38
fft8 37468 85 0.185 0.45

stereovision1 37580 32 0.066 0.50
bgm 66193 120 0.262 0.67

stereovision2 67830 55 0.218 0.50
fft16 108634 85 0.182 0.50
fft32 285264 95 0.175 0.55
fft64 549331 129 0.204 0.59

design on the tree with the smallest height that accommodates
it—i.e., we round up to the closest power-of-two network size.
The partitioner allows imbalanced cuts as long as they fit
within the allocated network capacity. The partitioner deter-
mines the required wire growth schedule to support routing.

For routing, we use a custom, list-scheduling-based, greedy
time-multiplexed router. Nets are routed in precedence order
in the earliest time-slot available using a Longest-Processing
Time (LPT) heuristic [21], [22]. The partitioner determines
the logical wiring schedule required, and routing attempts to
minimize the number of waves required to perform routing.
To support the data-driven architecture, the router can also
enforce a bound on the maximum number of waves on which
a particular switch is used that is lower than the number of
waves. The router reports the statistics on the used wires at
each tree height so that we can calculate wire energy. In the
case of the spatial design, these are weighted by the simulated
wire switching statistics. The tools also report usage statistics
on LUTs and PE data memories as needed by the energy
models. Based on the statistics from the partitioner and router,
we compute the design area, memory sizes, wire lengths,
delays, and energies.

V. MICROARCHITECTURE

In this section, we start from the most straightforward
time-multiplexed microarchitecture, illustrate the energy con-
sequences, and successively refine the microarchitecture to
reduce energy consumption.

A. Processing Element
The PE of the Time-Multiplexed (TM) architecture consists

of one 4-input LUT, 4 data memories for each of the 4
inputs to the 4-LUT, instruction memories to control the PE,
multiplexers to select the write input to the data memories,
and flip-flops at the input and the output of the PE (Fig. 4).

The most simplistic PE design is the Flat PE design
in which a single instruction memory controls all the PE
components. The instruction memory for the S = 8 design
with one input per cycle will be 49 bits wide, including 16b
to control the 4-LUT, 1b for data memory read enables, and 8b
for each data memory (1b multiplexer select, 1b write enable,
3b read and 3b write address).

Fig. 6 breaks down the energy composition of the flat de-
signs for the stereovision2 benchmark. The LUT Active
energy includes the LUT evaluation energy, data memory read
energy, instruction memory read energy, and the output flip-
flop energy. The Data Write Active energy is the PE dynamic
energy consumption during the data memory writes, including
instruction memory read energy, input multiplexing energy,
input flip flop energy, and the associated wire energies. The
LUT Inactive energy is the PE dynamic energy consumption
when no LUT evaluation takes place, including instruction
memory read energy and the associated wire energies. Data
Write Inactive energy is the PE dynamic energy consumption
when no data write activity occurs including reading from the
instruction memories and the associated wire energy.

The flat design breakdown shows that the LUT Inactive en-
ergy forms the major part. The flat design reads the instruction
memory on every cycle, even when the LUT, which contributes
half the configuration bits, is not in use. To reduce this energy
waste, we explored a series of optimizations that successively
separated the LUT (Sparse LUT design) and data input control
bits (Sparse Input design) so that they are only read when
needed, reducing inactive energy waste (Figs. 4, 6).

However, we still have inactive energy present since we
must read the main memory every cycle to determine when to
activate the LUT and data input stores. For example, the S = 8
stereovision2 requires 69 waves, but has fewer than 32
inputs per PE, so most waves will require no instructions in
the PE. We should avoid spending any energy reading from
memories when there is nothing to do in the PE. We can do
this by including information in each configuration on when
the next activity will occur. This allows a counter to keep
track of the idle periods between PE uses, avoiding the need
to read PE instruction memory on most cycles. This makes up
the PE Active design (Fig. 6), which has negligible inactive
energy. For the benchmark set, we see that this PE Active
design comes out to be the most energy efficient (Fig. 6).

B. Interconnect

Without buffering the interconnect, the clock speed is slow
and all transistors leak for the longer duration (See PE Active
design in Fig. 6). To minimize the leakage energy, we buffer
the longest wire at the top height of the tree. The wires at
the lower levels are buffered to satisfy the optimized clock
speed set by the longest wire. The Buffer Wires case in
Fig. 6 shows the benefit of the optimization, where leakage
is minimized. While additional buffers increase Wire Inactive
and Wire Active energy, we achieve net benefit from buffering.

A significant portion of the remaining energy (Fig. 6) is
spent on switching unused wires (wire inactive). When a
switch multiplexer at an unused output port is configured to
select its input from the transitioning link, the wire connected
to the multiplexer output may spuriously switch. To prevent
this wasteful wire switching, we introduce an extra latch at
each port of the switch that is enabled only when the port is
used for routing a signal (Fig. 5). While the switch instruction
memories need to be wider, and hence larger, to provide extra
control bits for the latches, we achieve net energy benefit from
removing spurious wire switching activities, as can be seen
from the No Spurious (Switching) case in Fig. 6.
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While the configuration of the unused switch remains the
same as the previous cycle, we still need to spend energy
to read identical configuration bits. To minimize the energy
consumption in configuring inactive switches, we introduce a
data-driven design that has an instruction memory per port
of a switch that is only read when the port is used. The
instruction memories only store bits necessary for configuring
active multiplexers (instruction depths roughly 4 ·S ·2h(p−pt)).
As shown in Fig. 5, a 1:1 switch needs 6 control bits (2
per port) to send incoming data to a desired destination (2:1
switches need 10). To identify when data arrives on an input
port, we use a 2-bit packet signal where 00 or 11 signifies
that input data is not present and the memory is unused, and
01 or 10 indicates that there is input data, 1 or 0. In this
way, no energy is spent on the switches with inactive port(s),
as shown in the Data Driven case in Fig. 6. Although Wire
Active energy is doubled since we have to switch wire twice
to support the 2-bit packet signal, no energy is spent on Imem
Inactive energy, which results in net energy reduction.
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The data-driven design thoroughly utilizes sparse activation
opportunities and minimizes the inactive energies spent on the
processing elements, wires, and switch instruction memories.

VI. EXPERIMENTAL RESULTS

In the previous section, we have illustrated how to tune
the time-multiplexed architecture to minimize energy on a
single design and a single architectural point. More gener-
ally, we want to understand what is the optimal level of
time-multiplexing to minimize energy. Specifically, we con-
sider how much to serialize the computation at the PEs, S,
and how much to serialize network communication, pt. For
stereovision2, Fig. 7 plots the energy ratio to spatial
across this S and pt parameter space. We can see that S = 8
along with pt in the 0.4–0.6 range minimizes energy, but the
energy is an order-of-magnitude higher than the spatial design.

As noted in the introduction, a key opportunity is to reduce
the area and hence the length of the wires that must be
switched. Fig. 8 compares the side length of the small-
est matched chip that will support the stereovision2
benchmark for the spatial design and various levels of time
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multiplexing in the (S, pt) space. As expected, designs with
the highest time-multiplexing factors have the shortest wires,
which are essential to achieving a net win for the time-
multiplexed design. Surprisingly, we see no net reduction in
wire length for this design (Fig. 8).

To take both a broader and deeper look at the impact of PE
serialization, Fig. 9 shows the energy ratio as a function of S
for the entire benchmark set and a detailed breakdown of the
energy components for the stereovision2 benchmark. We
see that most designs have a minimum energy around S = 8.
The detail energy breakdown on the right helps explains
how this minimum arises. The leftmost bar shows the spatial
design, which has its dominant energy signaling on wires. Next
to that we show what would happen if the spatial design had
to pay for 100% switching activity on its wires, illustrating the
benefit the spatial design is getting from exploiting low activity
switching; this is a useful reference since the time-multiplexed
designs are spending 200% switching activity on the wires
due to the data-driven signaling scheme. We see that the time-
multiplexed designs do not make the wires sufficiently shorter
(Fig. 8) to compensate for the increased switching energy.
As we increase the time-multiplexing of the PE, we reduce
the wire energy, but we are also increasing the data and
instruction memory in the PE. At S=8, we roughly balance
the energy added from the PE instruction memories with the
wiring energy, minimizing total energy.

Fig. 10 focuses on the impact of network serialization, pt,
again looking at all designs and showing a detailed break-
down for stereovision2. We see that most designs are
minimized around pt = 0.5. This happens mostly because the
wiring requirement, p, for the designs is close to 0.5 (Tab. III),
but some designs have a slightly larger physical p value. The
right graph shows how the energy shifts as we increase pt. As
pt increases the wire lengths increase (Fig. 8), increasing the
wiring energy. However, as pt increases, the lower serialization
reduces the switch instruction memory and reduces the leakage
energy down to about pt=0.5. Above pt=0.5, the instruction
memory does not increase for stereovision2, but the
larger number of unused switches increases the leakage energy.
The composite effect of wire length and leakage growth leads
to a clear minimum at pt = 0.5.
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Using the optimal serialization of S=8, pt=0.5, Fig. 11 plots
the energy ratio between the data-driven, time-multiplexed
design and the fully spatial design for all the benchmarks
by their LUT count. All designs are using significantly more
energy than the spatial design. The ratio has a downward trend
for the larger designs, but even the design with half a million
4-LUTs requires 11× the energy of the spatial design. For the
designs with p>0.5, asymptotic effects suggest a diminishing
spatial energy advantage as the design size increases [2].

VII. WHY DOES THE TM DESIGN HAVE LARGER ENERGY?

The time-mulitplexed design did not reduce its wires suffi-
ciently to get a net energy reduction. In fact, in many cases, it
did not reduce the wire lengths and even the energy spent on
wires was larger than in the spatial design. DeHon suggests
the big win for time-multiplexing comes when the design
is wire dominated [2]. In that case, there is no limit to the
potential benefit of using a pt < p wiring network. Even
before the asymptotic

(
2h

)(p−pt) takes effect, the reduction of
wires by a factor of 32 for the time-multiplexed design can be
significant—the S = 8, 4-LUT design could need 4×8 inputs,
which we sequentialize to a single input wire. However, these
designs are not wire dominated in this technology (Fig. 10,
right) because the p’s are generally small and, even when the
p’s are greater than 0.5, the design sizes are not large enough
(Tab. III). In stereovision2 wires account for less than
10% of the area, with switches accounting for roughly 50%.

When switches rather than wires dominate, switch sharing
can still save area, if the switch configuration memory area
for one switch use is smaller than the switch area itself. In
this design the area for a time-multiplexed switch configu-
ration is larger than a spatial switch, negating this potential
advantage. This comes in part due to energy optimization
that required additional area, including the latch to prevent
spurious switching and the extra configuration bits to prevent
instruction reads on unused cycles. Nonetheless, even when
there is an area advantage, it is a constant one rather than an
asymptotic one. The total number of switches is still linear
in N for any p < 1.0. Tabula’s design was one-third the
size of spatial designs and would only have

√
3 shorter wires,

suggesting, at most, a 40% reduction in wire energy, which is
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Fig. 10. Impact of pt on all benchmarks (left) and Energy and Area Decomposition for stereovision2 (right) at S = 8

likely insufficient to compensate for the loss of activity savings
from wires that are only active 26% of the time in the spatial
case. Traditional island-style mesh designs [11] are even more
likely to be switch dominated than wire dominated [23].

VIII. FIXED RESOURCES

In the previous section, we allowed each design to be
mapped to the perfectly matched architecture—that is, a spa-
tial component with exactly the wiring growth schedule to
map the benchmark and a time-multiplexed design where the
instruction memory depths were similarly sized to match the
benchmark. In practice, an FPGA vendor would only sell one,
or a few, variants. Typically, this drives the FPGA vendor to
richly provision the interconnect so that it will support most
applications customers might want to map. This will make the
wires longer for both the spatial and time-multiplexed designs
and make the memories deeper for the time-multiplexed de-
sign. This could increase wiring requirements since the fixed
p will often be larger than the benchmark’s own p.

To model this case, we recorded the maximum wiring
requirements across our entire benchmark set and came up
with a minimum wire growth schedule for the tree that would
accommodate all of the designs. We then evaluated the energy
for mapped design using this fixed wire provision rather
than the exact matched provision used earlier. In Fig. 11,
we show this ratio of the spatially mapped design to the
energy-minimizing time-multiplexed architecture along with
the matched designs. The energy penalty for time multiplexing
is slightly lower for this fixed case than the matched case, but
energy is still worse than the spatial design.

If we take this to the extreme and use a fixed p=1
design, we do begin to see an energy advantage to time
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multiplexing for the larger designs (Fig. 12). This arises
for the anticipated reasons. The wire area dominates (97%
for spatial stereovision2), so that the time-multiplexed
design that shares wires has significantly lower area and hence
wire lengths (80% lower for stereovision2)—sufficiently
lower to achieve a net energy reduction. Nonetheless, this is
probably not a case for time multiplexing as much as a case
against over-engineering the wiring in spatial designs [24]. The
spatial design with wiring closer to the benchmark set (fixed
case) is still lower energy than the time-multiplexed designs.

IX. SENSITIVITY

A challenge in evaluating these designs is tool quality [25],
model accuracy, and changing technology. In this section, we



briefly evaluate how the trends or conclusions might change
with different technology, tools, and usage.

The previous sections establish pretty clearly that these
designs are not wire dominated. That means the partitioner
is at least of reasonable quality. A better partitioner would
only push the designs further into the switch- rather than wire-
dominated domain, which, as we have seen, is favorable to the
spatial design over the time-multiplexed design.

The spatial design benefits from the ability to exploit low
activity factors. We estimate these designs have activities under
26%, with some down to 2.6% (Tab. III). As a limit case to
understand the impact of higher activity, we include a “100%
activity” curve in Fig. 12, showing that higher activity is
not enough to make the time-multiplexed designs preferred.
This also provides a bracket in case our gate-level activity
simulations under estimate spatial glitching activity.

As noted, a key factor that plays against this design is
that the switch configuration is larger than the spatial switch.
It is possible that our spatial switch estimates are smaller
than reasonable (e.g., [26]). To understand this effect, we
evaluated variant models where we multiplied the switch size
by different factors. Even at a fairly extreme case of 16×
switches, which make the switch area 11× the area of the
switch configuration in memory, the spatial design still has
lower energy than the time-multiplexed designs (Fig. 12).

Memory consumes much of the area in the time-multiplexed
design (Fig. 10). Technologies that would reduce the size of
memory cells could change the tradeoffs. Non-volatile mem-
ories have been demonstrated at 50F 2 [27], and FLASH and
DRAM cells can reach 4F 2 [28, ORTC-2c]. To explore this,
we evaluated configuration bits that were 32× smaller than
our main assumption of roughly 150 F 2. We left the periphery
area unchanged. Many of our small data memories are already
periphery dominated, so they will see small changes. As a
result, the overall impact of even a 32× reduction in memory
cell area is small as shown in the “Abit/32” line in Fig. 12.

If we restrict the network routing to 2 metal layers, instead
of 8, designs become wire dominated earlier. We see a clearer
downward trend for the time-multiplexed energy (Fig. 12), but
it remains larger than spatial for this benchmark set.

The results here are for bit-level architectures. Wide-word
architectures share configurations, thus reducing the ratio of
instruction memory area to switch area and may become wire-
dominated and see a benefit earlier than bit-level architectures.

X. CONCLUSIONS

Typical designs have low activity and high locality (Rent
exponent close to 0.5). As such, they are switch rather than
wire dominated and are relatively energy efficient on spatial
FPGAs. In these switch-dominated designs, time-multiplexed
architectures have limited ability to reduce area and hence
wire length, but must pay the cost of higher activity on the
wires and the cost for reading instructions from memories. As
a result, even our highly optimized time-multiplexed designs
require more energy than spatial designs. The time-multiplexed
architectures may be able to provide an advantage in wire-
dominated regimes, such as large designs with extreme, non-
local interconnect requirements.
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