
Appearing in IEEE International Conference on Field-Programmable Technology (FPT 2009), December 9–11, 2009

VMATCH: Using Logical Variation to Counteract
Physical Variation in Bottom-Up, Nanoscale Systems

Benjamin Gojman #1, André DeHon ∗2

Computer and Information Systems, University of Pennsylvania
3330 Walnut Street, Philadelphia, PA, USA 19104

1 bgojman@seas.upenn.edu

∗ Electrical and Systems Engineering, University of Pennsylvania
200 S. 33rd Street, Philadelphia, PA, USA 19104

2 andre@ieee.org

Abstract—Nanowire building blocks provide a promising path
to small feature size and thus the ability to more densely
pack logic. However, the small feature size and novel, bottom-
up manufacturing process will exhibit extreme variation and
produce many devices that operate outside acceptable operating
ranges. One-mapping-fits-all, prefabrication assignment of logical
functions to physical transistors that exhibit high threshold
variation will not work—combining the wide range of physical
variation in transistor threshold voltage with the wide range of
fanouts in the design produces an unworkably large composite
range of possible delays. Nonetheless, by carefully matching
the fanout of each net to the physical threshold voltages of
devices after fabrication, it is possible to reduce the net range of
path delays sufficiently to achieve high system yield. By adding
a modest amount of extra resources, we achieve 100% yield
for systems built out of devices with 38% variation, the ITRS
prediction for threshold variation in 5 nm transistors. Moreover,
for these systems, we maintain delay, energy and area close to
the variation-free nominal case.

I. INTRODUCTION

As device feature sizes scale below optical wave length
scales, manufacturing reliable systems using lithographic tech-
nologies is increasingly challenging. As a consequence, re-
searchers have been exploring bottom-up manufacturing meth-
ods that avoid lithography for defining the smallest fea-
ture size. Though still in its infancy, one such technology
is catalyst-grown nanowires. Researchers have demonstrated
components built out of nanowires with diode and FET-like
behaviors [1], [2], [3]. Others have proposed how to build
integrated reconfigurable systems using these components [4],
[5], [6]. While encouraging, this bottom-up technology is not
without its challenges; high among them is extreme levels of
random variation in the nanoscale components.

Variation in these systems comes both from the independent
manufacturing of each component and the stochastic assembly
process this technology requires. Components are built out of
individually grown wires, and although scientist have demon-
strated impressive control of this growth process [7], [8],
atomic-scale dimensions mean that small differences among
wires manifests as greatly varying component characteristics.

Due to threshold voltage variation of 5 nm length transistors,
transistor on current (Ion) will range an order of magnitude

above and one below its nominal value, and transistor off
current (Ioff) will range five orders of magnitude below
and five above its nominal value. Unmitigated, this variation
will produce highly defective, “inherently irreproducible” [6]
devices, and both fixed and programmable systems built out
of nanowires will be inoperable.

We present VMATCH, an algorithm that takes advantage
of post-fabrication characterization of devices along with the
reconfigurable nature of the NanoPLA, to use highly varying
devices more effectively. It successfully maps designs by ex-
ploiting the fanout-variation introduced by the architecture and
logical netlist to counteract physical variation of the threshold
voltage, Vth, in the transistors. We show that our algorithm
solves the problem of mapping to systems with extreme
variation while maintaining yield, performance, energy and
area close to variation-free systems. This leads to reproducible
systems built out of irreproducible devices, resulting in a more
efficient variant of Von Neumann’s vision of reliable systems
built out of unreliable components [9].

Sec. II introduces our variant on the NanoPLA from [4] as
well as its sources of variation. We then present the operating
model for our NanoPLA (Sec. III) and motivate and introduce
VMATCH, our algorithm to mitigate the negative effects of
variation in Sec. IV. Experimental setup and results are shown
in Sec. V. We conclude in Sec. VI.

The novel contributions of this work are:
• Introduction of VMATCH, a post-fabrication mapping

algorithm that matches the fanout of logical nets with
physical transistor threshold voltages to effectively ex-
ploit nanoscale transistors with extreme Vth variation.

• Quantification for the Toronto 20 benchmark set [10] of
the impact of: (a) ignoring variation, (b) treating variation
as defects, and (c) using VMATCH to mitigate variation.

II. BACKGROUND

To appreciate the sources of variation, we first review the
technology and architecture of the NanoPLA.

c© 2009 IEEE

http://www.icfpt.org/
http://www.seas.upenn.edu/~bgojman
http://www.seas.upenn.edu/~andre

A. Technology: Nanowires

Nanowires are the main building block of the NanoPLA.
These can be grown out of many different materials including
doped Si [7], GaAS, GaN [11], and Au [12]. These wires can
be microns long [13] and their diameters can be precisely
controlled using seed catalysts [7]. Moreover, during the
growth process the doping of the nanowire can be varied along
its length [14], [15] allowing components such as field-effect
transistors to be embedded in the wire. Finally, insulating core
shells can be radially grown over the entire length of the wire
creating a separation between conducting wires as well as
between gate and control wires in a FET [16], [17].

Due to their small features and limited assembly techniques,
regular structures are easier to build out of these components
than arbitrary topologies. Langmuir-Blodgett (LB) flow tech-
niques are used to align nanowires into large-scale parallel
arrays [18], [19]. By using nanowires with insulating shells,
the LB technique can tightly pack nanowires without shorting
them. These shells can later be selectively etched away [19].
When repeated, this process allows for two orthogonal layers
to form a densely packed nanowire crossbar [18], [20].

Furthermore, chemist have demonstrated a number of tech-
niques for placing hysteretic switches into the crosspoints
between orthogonal nanowire layers. These include layers of
bi-stable molecules [21], [22], amorphous silicon nanowire
coatings [23], and nanowires made of switchable species
[1]. Some of these programmable switches have diode-like
rectification, an essential property for correct operation.

B. Architecture: NanoPLA

The NanoPLA is organized as shown in Fig. 1a. It consists
of tiled logic blocks with overlapping nanowires that enable
Manhattan routing while maintaining direct nanoscale-density
interconnect among blocks. It is a modification on DeHon’s
[4] nanoPLA blocks and uses amorphous Si switches [23] to
improve performance and energy.

The NanoPLA block is composed of three logic stages.
As in a conventional PLA, the first stage or input stage is
used to selectively invert the inputs x1 . Stage two and three
behave like the AND x2 and OR x3 planes respectively. Adding
the initial inverting phase allows us to avoid the need for non-
inverting restoration as used in [4] and thus improve the overall
performance and reduce the total energy used.

Fig. 1b shows a detailed view of a NanoPLA block. Us-
ing the bottom-up assembly discussed above, small diameter
nanowires are arranged into tight-pitch parallel arrays. Though
logically each plane performs a different function (Invert, AND
and OR) physically all three planes are identical and are made
up of a diode-programmable, wired-OR stage built using the
switches previously described, followed by an inversion stage
where lightly doped regions of the nanowire behave like field-
effect gates and provide restoration. During assembly, etching
is used to differentiate the three stages. Decoders built into the
nanowires (See Fig. 10a) are used to program the diode-like
switches. They are built as described in [4] and demonstrated
in [15].

The NanoPLA is similar to conventional FPGAs. Both
use Manhattan routing to connect discrete clusters of logic.
However, routing in the NanoPLA is done through the blocks
rather than using an independent switching network. In order
to allow signal routing, the output of the OR-plane of every
block connects to itself and four neighboring blocks.

C. Source of Variation

Unlike today’s technology where region-based and system-
atic variation dominate, in the NanoPLA random variation
dominates due to the bottom-up manufacturing process. Along
with the variation that affects even today’s technology (e.g.
[24], [25], [26], [27]), the NanoPLA faces additional sources
of random variation.

• Nanowire geometries and features (e.g. length of doped
regions, core shell thickness) will vary independently
since each nanowire will be individually fabricated.

• Statistical alignment techniques [28] during assembly
cause the geometry of the field-effect regions to vary from
device to device [29].

• Each programmable diode region will be composed of a
small number of elements or bonds, giving them large,
random variation from crosspoint to crosspoint.

These sources of variation manifest as differences in the
nanowire resistances and capacitances, the diode resistances,
and the threshold voltages (Vth) for the field-effect restore
nanowires. Note that [27] calculates that the 5 nm long transis-
tors we are considering are nearly impossible to manufacture
reproducibly. We assume independent Gaussian distributions
for these values (e.g. [27], [26], [24], [25]).

P (x) =
(

1
σ
√

2π

)
e

„
− (x−x)2

2σ2

«
(1)

Throughout this paper we express the amount of variation as
a percentage equal to σ/µ; we will refer to this simply as
σ. Though other works also report variation as a percent it
is worth noting that many, including the ITRS [30], tend to
report 3σ variation while we label our variation points by σ.
Hence our σ = 38% cases corresponds to the 3σ = 112%
cases ITRS predicts for 5 nm physical gate lengths (13 nm
half-pitch technology) as shown in the DESN9b table in [30].

III. SYSTEM MODEL

A. Evaluation Model

The NAND-term is the smallest unit of computation of a
plane in the NanoPLA. Physically it is composed of a set of
inverting, restoring wires followed by a wired-OR section thus
computing INVERT-OR or, by DeMorgan’s laws, NAND. Fig.1c
shows an equivalent circuit-level diagram of a NAND-term in
a plane of the NanoPLA block. Each plane is composed of
many of these NAND-terms together in parallel.

Within each plane, computation is done in a precharge fash-
ion by first pre-discharging the nanowires and then evaluating
the inputs. Since each block is composed of three planes,
the evaluation scheme demands that we use a three-phased

(a) NanoPLA Block Tiling (b) NanoPLA Block (c) NanoPLA NAND-term Circuit

Fig. 1: NanoPLA Organization

clock to sequence logic in the NanoPLA. At the level of the
PLA block, one clock cycle is defined as the time to evaluate
all three planes once, τcycle = τphase1 + τphase2 + τphase3 .
Since interconnect is routed through the NanoPLA blocks, it is
effectively pipelined (e.g. [31]), allowing for high throughput.

B. Defect Model
The time it takes for a plane in the NanoPLA block to

switch during the evaluate phase, τswitch, is defined as the
time it takes the slowest used NAND-term to switch. Similarly
the precharge leak time, τleak, is the time it takes the leakiest
used NAND-term to lose its perchared value. As the NanoPLA
is pipelined to the level of a plane, we can bound permissible
phase times by the slowest plane and worst-case leakage by
the fastest leaking plane:

max
planes

(τswitch) ≤ τphase ≤ min
planes

(τleak)

To provide adequate noise margins we demand at least two
orders of magnitude separation between the worst case τswitch

and τleak. This guarantees leakage will charge the output to
less than 1% of Vdd and therefore leakage current will be less
than 1% of drive current across all blocks for a functional
NanoPLA. We can state this constraint as:

100 · max
planes

(τswitch) ≤ min
planes

(τleak) (2)

If a NanoPLA does not meet this constraint, the NanoPLA
does not yield and is called defective. In other words, to
compute correctly, all planes must hold charge long enough
to allow all computations to complete.

C. Timing Model
We use the following Elmore Delay models as a conserva-

tive estimate of NAND-term switching and leakage:

τswitch = (Rcontact + RonFET + 0.5RinWire)

×(CinWire +
∑

fanout

CoutWire) (3)

+(Rdiode + 0.5RoutWire) · CoutWire

τleak = (Rcontact + RoffFET + 0.5RinWire)

×(CinWire +
∑

fanout

CoutWire) (4)

+(Rdiode + 0.5RoutWire) · CoutWire

Each term in the equation maps to a physical section of the
NAND-term as shown in Fig. 1c. Since the input wire may be
connected to many outputs, we include the effect of this fanout
as the sum of the downstream capacitance,

∑
fanout CoutWire.

Variation of the resistances and capacitances of the wires
and diodes are directly modeled as Gaussian distributions
(Eq. 1). Also modeled as a Gaussian distribution is Vth vari-
ation which is used in Eqs. 5 and 6 to calculate the variation
of the on and off resistance of the transistor, RonFET and
RoffFET . Since the dominate variation is random (Sec. II-C),
we assume independent distributions in this paper.

D. NanoPLA CAD Flow

Here we review how logic is mapped on the NanoPLA.
Covering and clustering [32] is followed by a block-level
placement computed using VPR 4.3 [33]. Global routing
and detailed placement and routing are done by our custom
NanoPLA place and route tool, NPR. The architecture of the
NanoPLA does not provide a separate switching network but
rather uses the connections provided by the blocks themselves
to perform routing. Conventional FPGA routing algorithms
such as Pathfinder [34] perform this block-level routing or
global route. This determines MinC, the minimum channel
width necessary for the design to route. Each block has
logic functions assigned to it by VPR’s placement and route-
throughs defining what nets route through the block, computed
by the global route. Detailed place and route then performs the
final mapping. It first decomposes the functions and route-
throughs assigned to each block into three sets of logical
NAND-terms, one for each of the three planes in the NanoPLA
block. Then, one plane at a time, each logical NAND-term is
mapped to a physical NAND-term. Without post-fabrication
knowledge, however, the mapper is unable to distinguish

 0

 200

 400

 600

 800

 1000

10-10 10-8 10-6 10-4 10-2 100 102

N
A

N
D

-T
er

m
 C

ou
nt

Time (s, log scale)

TLeak

100×TSwitch

Fig. 2: Distribution of τleak and 100 × τswitch of a delay
oblivious-mapping. Benchmark spla at σ = 38%

between physical NAND-terms and must treat them all as
having identical characteristics when performing the mapping.
It produces a single mapping that is applied obliviously to all
chips. The next section explains why this variation-oblivious
mapping produces defective chips and introduces a solution.

IV. DEVICE SPECIFIC MAPPING

In this section we illustrate why the mapper must consider
the physical variation (Sec. IV-A). We examine how variation
affects τswitch and τleak (Sec. IV-B) and introduce a naive
solution that satisfied Eq. 2 but at a high cost. (Sec. IV-C).
Finally we introduce VMATCH, our algorithm that considers
the effects the mapping has on τswitch and τleak (Sec. IV-E).

A. Variation-Oblivious Mapper

At high levels of variation, the distribution of τswitch

and τleak is such that, when mapping a design oblivious to
the variation in the system, the probability of meeting the
constraint set by Eq. 2 is almost zero. Fig. 2 shows the
distribution of 100 × τswitch and of τleak that results from
such an oblivious mapping. Since the curves overlap, it is
immediately apparent that Eq. 2 does not hold.

B. Primary Sources of Variation

Before exploring how to modify the mapping algorithm,
we first look at which sources of variation in τswitch and
τleak are primarily responsible for this yield problem. From
Eq. 2 we observe that, for a particular NAND-term to be defect
free it must be the case that 100 · τswitch ≤ τleak. Since the
only difference between τswitch and τleak is the state of the
transistor being on and off respectively (see Eq. 3 and 4),
for correct operation RoffFET must be the dominant term in
τleak. If this were not the case and one of the other terms in
Eq. 4 dominated, there would be nearly no difference between
τswitch and τleak and, as such, correct operation would be
impossible regardless of how the design is mapped.

The difference between RoffFET and RonFET comes from
the fact that RoffFET is the apparent resistance of the
transistor in the sub-threshold region or RoffFET = Vdd/Isub

(Eq. 6). In the on state, the transistor operates in saturation,
and we define the value of RonFET as Vdd/Isat (Eq. 5). Since
the nanowires are still Silicon, we use short-channel MOSFET
current equations [35], [36]:

Isat = WvsatCox (Vgs − Vth − 0.5 · Vd,sat) (5)

 0

 500

 1000

 1500

 2000

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101

N
A

N
D

-T
er

m
 C

ou
nt

Time (s, log scale)

TLeak

100×TSwitch

Fig. 3: Distribution of τleak and 100 × τswitch of a Defect-
Avoidance mapping. Benchmark spla at σ = 38%

Isub =
W

L
µCox(n−1) ·vT

2e

Vgs − Vth

nvT (1−e−Vds·vT
−1

) (6)

We see that saturation current is linear in Vth and Vdd and
that sub-threshold current is exponential in Vth and Vdd. Thus
a small change due to the variation in Vth will cause a linear
change in the value of RonFET and an exponential change in
the value of RoffFET . Consider that, at Vth = 295mV and
Vdd = 0.7V, the mean value for RonFET is 51kΩ and for
RoffFET is 30GΩ. At σ = 38%, the 3σ Vth variation point
gives a range for RonFET from 2.8 × 104Ω to 3.2 × 105Ω.
For RoffFET the range is from 4.7 × 105Ω to 1.9 × 1015Ω.
While the minimum RoffFET value is larger than RonFET ,
they are less than a factor of two apart and hence do not satisfy
Eq. 2. Given that all other parameters in Eqs. 3 and 4 vary
linearly based on Gaussian distributions, RoffFET varies over
the greatest range and therefore is the dominating variation in
the system. A successful mapping algorithm must first focus
on reducing the range over which RoffFET varies to create
the separation required by Eq. 2.

C. Defect-Avoiding Algorithm

The oblivious algorithm fails because it uses NAND-terms
that leak faster than some resources can switch. The Defect-
Avoiding algorithm tries to solve this problem by not using
the leakiest resources, essentially marking them as defective.
Mapping to the remaining resources is arbitrary. The idea of
mapping around defective resources has been well studied by
many, including [5], [37], [38], and is generally accepted as
necessary for nanoscale systems.

A nanowire is marked defective if its off resistance is too
low. We determine a conservative threshold for this resistance
using Eq. 4 and assuming the wire is driving a single,
variation-free output nanowire (i.e. fanout of one). Additional
fanout will only increase τleak, so the fanout one case serves
as the worst-case possible assignment.

Fig. 3 shows the result of mapping the same chip shown
in Fig. 2. Though the separation between τswitch and τleak

is great, this mapping required 167% extra resources above
MinC and marked 48% of all NAND-terms as defective; that
is, it discards the fraction of the τleak distribution (Fig. 2)
that is below 6× 10−5s. In Sec. V we show that this defect-
avoidance algorithm, on average, needs 193% more resources
than the variation-free case.

D. Logical Variation: Variation in Fanout

Though the defect-avoiding algorithm works, it is too con-
servative and thus loses some of the scaling benefits this sub-
lithographic technology affords. A review of Eq. 4, however,
shows that physical variation is not the only variation that
determines the range of the τleak distribution. Along with
the physical parameters, there is a fanout parameter whose
value comes directly from the logical netlist and varies over a
significant range. Fanout in the NanoPLA comes from the fact
that a NAND-term has non-restoring, diode-like connections
(Fig. 1c). If a signal on an input wire is needed by multiple
output wires, the input wire must have the associated diodes
programmed to connect to the required output wires, and it
must charge up all connected wires. Consider an example:
When mapping the logical function AB + ACD + BE + AF
to a block in the NanoPLA, three terms in the AND-plane
will use input signal A (AB, ACD, and AF), while signal
F is only used once by AF . Even without physical variation,
this means that signal A’s NAND-term will see three times the
CoutWire capacitance that F ’s will.

The maximum fanout of a NAND-term is determined by the
architecture of the NanoPLA. Each PLA in an array of PLAs,
like the NanoPLA, will have a maximum number of inputs,
AND-terms and outputs. This will have a direct effect on the
number of output wires each input wire can potentially connect
to, and consequently, the maximum fanout a NAND-term can
have. For our mappings, we use PLAs with at most 64 AND-
terms and 16 inputs that may need inversion; as shown in
Fig. 1a routing nanowires are exposed to two AND-planes and
two inversion planes. This means the worst-case fanout for a
nanowire is (16 + 64) × 2 = 160. In practice, the maximum
fanout is lower. Fig. 4 shows a typical distribution with a
maximum fanout of 34. While there are a few high fanout
nets, note that most of the nets have fanout one. Mapped
obliviously, this adds another two orders of magnitude to the
range of the τleak distribution; this makes fanout the second-
most significant source of variation in Eqs. 3 and 4. In the
next section we explain how we use this logical variation to
counteract the physical variation of RoffFET to map designs
that maintain acceptable performance, energy and area.

We could architect smaller arrays with fewer AND-terms
to reduce the fanout but only at the expense of increasing the
total energy, area, and evaluation latency. While smaller arrays
can reduce the clock cycle (τcycle), they increase the number
of blocks in a logical evaluation path. Our design point with
64-AND-term arrays was chosen so the overall evaluation time
and area were both close to minimum across the array shape
parameter space.

E. VMATCH: NanoPLA Mapping Algorithm

VMATCH is our variation-aware mapping algorithm, it
takes advantage of the fanout variation to counteract the vari-
ation in RoffFET by carefully matching a high-fanout term
with a low RoffFET NAND-term and vice versa, achieving
a mapping that yields while maintaining performance, energy
and area close to the variation-free case. We can understand

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30

Lo
gi

ca
l N

A
N

D
-T

er
m

 C
ou

nt

Fanout

Fig. 4: Fanout distribution. Benchmark spla

why this works by examining how the τleak distribution
changes based on how each of the three algorithms uses
the RoffFET and fanout variation. In the variation-oblivious
mapping, the two orders of magnitude fanout variation (Fig. 4)
essentially gets multiplied by the ten orders of magnitude of
RoffFET variation leading to the twelve orders of magnitude
range of τleak in Fig. 2. The defect avoiding algorithm limits
τleak’s range by directly limiting the range of RoffFET values
used, but this must discard almost half of the resources.
VMATCH, on the other hand, is able to divide the magnitude
of physical RoffFET variation by that of the logical fanout
variation, reducing the total range of τleak while using many
of the resources the defect avoiding algorithm discarded.

1) Threshold Measurement: To perform this variation-
aware post-fabrication mapping it is necessary to measure
the nanowire transistor threshold voltages. Appendices A
through C sketches how these measurements could be made.
Nonethelss, the primary focus of this paper is to characterize
the benefits these measurements provide. As the variation-
oblivious mapping illustrates, this information is required for
correct operation.

2) Algorithm: In order to reduce max(τswitch) and main-
tain performance, we map the slowest (highest fanout) logical
NAND-term to the fastest (lowest RoffFET) physical NAND-
term and use the resulting τleak as a minimum target, τtarget,
that all other mappings try to match.

Alg. 1 shows VMATCH in detail. First all logical NAND-
terms are sorted by fanout in a descending priority queue. Then
τtarget is calculated as described above. Each logical function
in the queue is mapped to the physical NAND-term with the
lowest RoffFET that does not cause it to have a τleak lower
than τtarget. If a mapping cannot find a resource that meets
this target, it picks the physical NAND-term that is closest to
the target and updates τtarget to be that NAND-term’s τleak.

Fig. 5 shows the results of using this algorithm to map
the same chip shown in Fig. 2. Clearly Eq. 2 holds and
the mapping is defect free. However, unlike the conservative
mapping (Fig. 3), this mapping achieves a lower max(τswitch)
and only requires 3% extra resources over MinC.

To build intuition for this success, Fig. 6 presents the distri-
bution of the used RoffFET s for each of the three algorithms.
For the oblivious algorithm, the distribution spans a very
wide range as previously noted (Fig. 2). The defect-avoiding

foreach Function L ∈ {logic} do
// Descending fanout
PriorityQueue LQ.add(L)

end
Target := −1
while LQ.hasNext do

L := LQ.pop()
P := L.physicalP lane
if Target = −1 then

NandTerm NT := P.NextMinRoff()
NT.program(L)
NT.commit(L)
Target := NT.T leak()

else
repeat

NandTerm NT := P.NextMinRoff()
NT.program(L)

until (NT.T leak() ≥ Target || lastNT (NT))
NT.commit(L)
if (lastNT (NT) && NT.T leak() < Target)
then

Target := NT.T leak()
end

end
end

Algorithm 1: VMATCH

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

N
A

N
D

-T
er

m
 C

ou
nt

Time (s, log scale)

TLeak

100×TSwitch

Fig. 5: Distribution of τleak and 100 × τswitch of VMATCH
mapping. Benchmark spla at σ = 38%

algorithm chooses resources that are above the conservative
threshold. Fig. 3 shows that this is too cautious and forces the
use of slower resources. The distribution of transistors used
by VMATCH includes most of the resources that the defect-
avoiding algorithm found to be too leaky. By correctly pairing
fast resources with high fanout nets, we are able to use faster
resources as Figs. 5 and 6 demonstrate.

V. RESULTS

A. Experimental Setup

We simulated a NanoPLA using 5 nm pitch wires with
crosspoints implemented in Amorphous-Si technology [23]
and transistors with 5 nm channel lengths and 295mV nominal
Vth. We ran our simulation using 0.7V Vdd which produced
an effective mean on and off transistor resistance of 51kΩ and
30GΩ respectively. Mean wire resistance and capacitance vary
based on design and NanoPLA route channel width but are of

 0

 200

 400

 600

 800

 1000

104 106 108 1010 1012 1014 1016

U
se

d
T

ra
ns

is
to

r
C

ou
nt

Resistance (Ω, log scale)

Oblivious
Defect
VMATCH

Fig. 6: Used RoffFET distribution for Oblivious, Defect and
VMATCH algorithms. Benchmark spla at σ = 38%

the order of 50kΩ and 45fF for the input wires, and 1MΩ
and 50fF for the output wires. Mean crosspoint on resistance,
Rdiode, is 100kΩ and microscale contact resistance, Rcontact,
is 10kΩ.

We implemented VMATCH as well as the Defect-Avoiding
(Defect) and Variation-Oblivious (Oblivious) algorithms in
our custom NanoPLA router and used them to characterize
the benefits VMATCH provides. We routed the Toronto 20
benchmark set [10] on 100 Monte Carlo generated chips; this
means we can be 90% confident that the results estimated as
100% yield at least exceed 97.5% yield. Variation on all com-
ponents was modeled as independent Gaussian distributions as
previously defined in Sec. II-C.

B. Achievable Yield

Fig. 7 shows how yield drops as a function of percent
variation in the system. We explored the effect of providing
extra resources by routing on both the minimum channel width
(MinC), calculated by the global route, and 30% extra channels
on top of MinC (MinC + 30%). Yield is based on Eq. 2.
The Oblivious algorithm achieves near 100% yield up to 9%
variation but drops to no yield by 15% variation. This is true
even with extra channels since the Oblivious case makes a
fixed mapping to channels that is not affected by the actual
characteristics of each wire; the chance of selecting unusable
wires is the same even when selecting from a larger resource
pool (i.e., more channels). The Defect case does not yield
because it discards too many NAND-terms as defective and is
unable to fit the design on the remaining resources. It can yield
with additional resources as noted in the following section.

The last two curves are for VMATCH at minimum channel
with and 30% extra channels. Both maintain 100% yield
well past the point where Oblivious fails. For the case with
extra channels, because the algorithm carefully chooses what
resources to use it can take advantage of the modest increase in
channel width and maintain 100% yield up to 35% variation,
and it stays above 90% yield at extreme variation.

The first section of Tab. I reports the highest percent
variation that achieves 100% yield for both Oblivious and
VMATCH assignment at 30% extra channels. On average the
Oblivious router maintains 100% yield up to 10% variation
compared to VMATCH at 30%.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

Y
ie

ld
 (

%
)

Variation (%)
VMATCH. MinC
Defect MinC
Oblivious MinC

VMATCH. MinC + 30%
Defect MinC + 30%
Oblivious MinC + 30%

Fig. 7: Yield curves for Oblivious, Defect and VMATCH
mapping. Benchmark spla 100 chips

 0

 30

 60

 90

 120

 150

 180

 0 5 10 15 20 25 30 35 38

P
er

ce
nt

 O
ve

rh
ea

d
C

ha
nn

el
s

Variation (%)

VMATCH

Defect

Fig. 8: Average minimum number of channels required to get
100% yield. Benchmark spla 100 chips

C. Delay, Energy and Area

Both VMATCH and Defect routing can exploit extra re-
sources; as noted above, Oblivious cannot. In this section we
explore the effects extra resources have on delay, energy and
area only for the Defect and VMATCH cases.

Adding extra resources, increases the probability that, after
the Defect algorithm marks the defective resources, there
are enough acceptable resources left to map the design. For
VMATCH, extra resources allow it to choose more of the
resources that are faster and improve overall delay. For both
cases it increases the probability of the design yielding.
The disadvantage of extra resources is that, a wider route
channel forces longer wires; this increases wire resistance and
capacitance, increasing nominal wire delay, total energy, and
total area. Therefore, the goal is to use the minimum number
of extra channels so that the design yields.

For the 100 Monte Carlo experiments, Fig. 8 shows the
average of the minimum number of extra channels, as a percent
of the minimum channel width, needed to make the chip
yield the design. At low variation VMATCH needs no extra
channels, even at 38% variation it only requires 15% extra
channels. In contrast, Defect needs 130% extra at very low
variation and it only increases.

Fig. 9 shows how these channel widths (Fig. 8) affect the
total delay, energy and area. The curves shown are a ratio to the
variation free Nominal case. Even at 38% variation VMATCH
is within 70% of the Nominal delay and within 20% of the

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 5 10 15 20 25 30 35 38

R
at

io
 to

 N
om

in
al

Variation (%)

VMATCH Delay
VMATCH Energy
VMATCH Area
Defect Delay
Defect Energy
Defect Area

Fig. 9: Ratio to variation free Nominal of delay, energy and
area at 100% yield. Benchmark spla 100 chips

Nominal energy and area. Defect is a factor of 5.1 slower, 3.8
larger and uses 2.6 times as much energy as Nominal.

The right side of Tab. I shows the mean and standard
deviation for delay, energy and area ratios as well as number
of extra channels required for the benchmark set to achieve
100% yield at 38% variation. On average, VMATCH uses 24%
more channels than Nominal, and aggregate characteristics
stays within 90% of Nominal for delay, 30% for energy and
40% for area, while multiple factors over Nominal are needed
for Defect to work. By matching the fanout of the logical
NAND-term to the RoffFET variation of the physical NAND-
term, VMATCH is able to produce a mapping that not only
yields but is close to the efficiency of the variation-free case.

VI. CONCLUSION

We introduced VMATCH, an algorithm for the NanoPLA
that can successfully deal with extreme variation. By matching
the dominant physical variation to the logical fanout variation
we get high yield where an oblivious mapping fails. We can
trade a modest amount of extra resources to get performance,
energy and area close to what a variation-free device could
achieve. This shows that “nansocale field-effect transistors
which are inherently irreproducible” [6] (footnote 7) need not
prevent the construction of field-programmable components
that deliver reproducible design mappings with reasonable
energy, delay, and area metrics. Our results also show that, for
variation above 10%, component-specific mapping is required
to obtain acceptable yield levels.

VII. ACKNOWLEDGMENTS

This research was funded in part by National Science Foun-
dation grant CCF-0726602 and CCF-0904577. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation. Nikil
Mehta provided assistance and code for device modeling.

REFERENCES

[1] Z. Fan, X. Mo, C. Lou, Y. Yao, D. Wang, G. Chen, and J. G. Lu,
“Structures and electrical properties for Ag-tetracyanoquinodimetheane
organometallic nanowires,” IEEE Trans. Nanotechnol., vol. 4, no. 2, pp.
238–241, March 2005.

Highest Variation That Defect at 38% σ and 100% Yield VMATCH at 38% σ and 100% Yield
Achieves 100% Yield % Extra Ratio to Nominal % Extra Ratio to Nominal

at 30% Extra Channels Channels Delay Energy Area Channels Delay Energy Area
Net Oblivious VMATCH Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev.

alu4 10% 32% 174 19 4.3 0.73 2.4 0.16 3.3 0.35 17 12 1.5 0.20 1.2 0.10 1.2 0.12
apex2 11% 25% 192 14 6.5 0.75 2.6 0.13 4.0 0.31 26 21 1.9 0.50 1.3 0.17 1.3 0.29
apex4 11% 32% 192 25 4.5 0.62 2.4 0.19 3.6 0.47 17 13 1.6 0.35 1.2 0.09 1.3 0.13

bigkey 12% 33% 164 14 8.5 1.2 2.5 0.15 4.2 0.44 17 13 2.0 0.47 1.2 0.12 1.3 0.23
clma 10% 29% 183 15 7.5 0.80 2.7 0.15 4.9 0.46 34 5.9 2.1 0.11 1.3 0.04 1.5 0.10

des 9% 30% 178 14 7.7 19 2.6 0.14 4.5 0.41 26 18 1.9 0.51 1.2 0.15 1.4 0.30
diffeq 12% 29% 241 24 7.5 1.3 2.6 0.15 3.5 0.31 23 21 2.0 0.41 1.2 0.13 1.3 0.18

dsip 12% 32% 202 17 9.9 1.3 2.8 0.15 4.3 0.43 28 16 2.3 0.56 1.3 0.13 1.3 0.23
elliptic 10% 29% 162 12 6.7 0.79 2.6 0.14 4.6 0.42 27 26 1.9 0.79 1.3 0.24 1.5 0.51
ex1010 11% 26% 260 24 6.4 0.80 2.8 0.17 4.2 0.41 43 22 2.0 0.39 1.4 0.15 1.4 0.24

ex5p 10% 35% 167 39 4.0 0.87 2.2 0.30 3.2 0.70 6.7 12 1.4 0.14 1.1 0.07 1.2 0.14
frisc 10% 26% 214 12 7.2 0.77 2.8 0.11 4.6 0.31 42 17 2.0 0.39 1.4 0.13 1.5 0.24

misex3 10% 28% 204 27 4.4 0.61 2.6 0.21 4.0 0.56 26 11 1.4 0.21 1.2 0.09 1.4 0.10
pdc 9% 32% 191 12 5.9 0.43 2.7 0.11 4.2 0.31 30 16 1.9 0.3 1.3 0.13 1.4 0.21

s298 9% 28% 165 12 9.8 1.1 2.6 0.13 4.4 0.39 23 32 2.4 1.4 1.3 0.29 1.5 0.62
s38417 8% 29% 184 22 7.3 1.3 2.8 0.24 4.9 0.77 26 5.1 1.9 0.19 1.3 0.04 1.4 0.08

s38584.1 11% 30% 228 13 6.6 0.59 2.7 0.11 4.2 0.24 33 6.4 1.9 0.31 1.3 0.05 1.4 0.07
seq 9% 34% 168 13 5.0 0.74 2.5 0.13 4.1 0.38 24 14 1.6 0.26 1.2 0.12 1.3 0.21

spla 8% 35% 177 21 5.1 0.59 2.6 0.19 3.8 0.45 15 9.0 1.7 0.16 1.2 0.08 1.2 0.10
tseng 12% 29% 260 29 6.8 0.95 2.6 0.18 3.5 0.37 24 11 1.9 0.61 1.2 0.06 1.3 0.08
Mean 10% 30% 193 17 6.4 0.96 2.6 0.18 4.1 0.41 24 17 1.9 0.34 1.3 0.10 1.4 0.20

TABLE I: Tolerable Variation and Overheads Required for Toronto 20 Benchmark Set

[2] J. Brault, M. Saitoh, and T. Hiramoto, “Channel width and length
dependence Si nanocrystal memories with ultra-nanoscale channel,”
IEEE Trans. Nanotechnol., vol. 4, no. 3, pp. 349–354, 2005.

[3] Y. Huang, X. Duan, Y. Cui, L. Lauhon, K. Kim, and C. M. Lieber, “Logic
gates and computation from assembled nanowire building blocks,”
Science, vol. 294, pp. 1313–1317, November 9 2001.

[4] A. DeHon, “Nanowire-Based Programmable Architectures,” ACM J.
Emerg. Technol. Comput. Syst., vol. 1, no. 2, pp. 109–162, 2005.

[5] G. Snider, P. Kuekes, and R. S. Williams, “CMOS-like logic in defective,
nanoscale crossbars,” Nanotechnology, vol. 15, pp. 881–891, June 2004.

[6] D. B. Strukov and K. K. Likahrev, “A reconfigurable architecture for
hybrid CMOS/nanodevice circuits,” in FPGA, 2006, pp. 131–140.

[7] Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, and C. M. Lieber,
“Diameter-controlled synthesis of single crystal silicon nanowires,”
Appl. Phys. Let., vol. 78, no. 15, pp. 2214–2216, 2001.

[8] N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M.
Petroff, and J. R. Heath, “Ultrahigh-density nanowire lattices and
circuits,” Science, vol. 300, pp. 112–115, April 4 2003.

[9] J. V. Neumann, “Probabilistic logic and the synthesis of reliable organ-
isms from unreliable components,” in Automata Studies, C. Shannon and
J. McCarthy, Eds. Princeton University Press, 1956.

[10] V. Betz and J. Rose, “FPGA Place-and-Route Challenge,” <http://www.
eecg.toronto.edu/∼vaughn/challenge/challenge.html>, 1999.

[11] P. V. Radovanovic, C. J. Barrelet, S. Gradecak, F. Qian, and C. M. Lieber,
“General syntehsis of manganese-doped II-VI and III-V semiconductor
nanowires,” Nanoletters, vol. 5, no. 7, pp. 1407–1411, 2005.

[12] C. Wang, Y. Hu, C. M. Lieber, and S. Sun, “Ultrathin Au nanowires and
their transport properties,” J. Am. Chem. Soc., vol. 130, pp. 8902–8903,
2008.

[13] M. S. Gudiksen, J. Wang, and C. M. Lieber, “Synthetic control of the
diameter and length of semiconductor nanowires,” J. of Phys. Chem. B,
vol. 105, pp. 4062–4064, 2001.

[14] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber,
“Growth of nanowire superlattice structures for nanoscale photonics and
electronics,” Nature, vol. 415, pp. 617–620, February 7 2002.

[15] C. Yang, Z. Zhong, and C. M. Lieber, “Encoding electronic properties
by synthesis of axial modulation-doped silicon nanowires,” Science, vol.
310, pp. 1304–1307, November 25 2005.

[16] L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, “Epitaxial
core-shell and core-multi-shell nanowire heterostructures,” Nature, vol.
420, pp. 57–61, 2002.

[17] M. Law, J. Goldberger, and P. Yang, “Semiconductor nanowires and
nanotubes,” Annual Review Material Science, vol. 34, pp. 83–122,
August 2004.

[18] Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, “Directed assembly of
one-dimensional nanostructures into functional networks,” Science, vol.
291, pp. 630–633, January 26 2001.

[19] D. Whang, S. Jin, and C. M. Lieber, “Nanolithography using hierarchi-
cally assembled nanowire masks,” Nanoletters, vol. 3, no. 7, pp. 951–
954, July 9 2003.

[20] D. Whang, S. Jin, Y. Wu, and C. M. Lieber, “Large-scale hierarchical or-
ganization of nanowire arrays for integrated nanosystems,” Nanoletters,
vol. 3, no. 9, pp. 1255–1259, September 2003.

[21] Y. Chen, D. A. A. Ohlberg, X. Li, D. R. Stewart, R. S. Williams, J. O.
Jeppesen, K. A. Nielsen, J. F. Stoddart, D. L. Olynick, and E. Anderson,
“Nanoscale molecular-switch devices fabricated by imprint lithography,”
Appl. Phys. Let., vol. 82, no. 10, pp. 1610–1612, 2003.

[22] Y. Chen, G.-Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. O.
Jeppesen, K. A. Nielsen, J. F. Stoddart, and R. S. Williams, “Nanoscale
molecular-switch crossbar circuits,” Nanotechnology, vol. 14, pp. 462–
468, 2003.

[23] Y. Dong, G. Yu, M. C. McAlpine, W. Lu, and C. M. Lieber, “Si/a-
Si core/shell nanowires as nonvolatile crossbar switches,” Nanoletters,
vol. 8, no. 2, pp. 386–391, 2008.

[24] A. Asenov, “Intrinsic threshold voltage fluctuations in decanano MOS-
FETs due to local oxide thickness variation,” IEEE Trans. Electron
Devices, vol. 49, no. 1, pp. 112–119, January 2002.

[25] ——, “Random dopant induced threshold voltage lowering and fluctu-
ations in sub-0.1 µm MOSFET’s: A 3-D “atomistic” simulation study,”
IEEE Trans. Electron Devices, vol. 45, no. 12, pp. 2505–2513, December
1998.

[26] A. Asenov, S. Kaya, and A. R. Brown, “Intrinsic parameter fluctuations
in decananometer MOSFETs introduced by gate line edge roughness,”
IEEE Trans. Electron Devices, vol. 50, no. 5, pp. 1254–1260, May 2003.

[27] V. A. Sverdlov, T. J. Walls, and K. K. Likharev, “Nanoscale silicon
MOSFETs: A theoretical study,” IEEE Trans. Electron Devices, vol. 50,
no. 9, pp. 1926–1933, September 2003.

[28] G. Yu, A. Cao, and C. M. Lieber, “Large-area blown bubble films
of aligned nanowires and carbon nanotubes,” Nature Nanotechnology,
vol. 2, no. 6, pp. 372–377, Jun 2007.

[29] A. DeHon, P. Lincoln, and J. Savage, “Stochastic Assembly of Sublitho-
graphic Nanoscale Interfaces,” IEEE Trans. Nanotechnol., vol. 2, no. 3,
pp. 165–174, 2003.

[30] “International technology roadmap for semiconductors,” <http://www.
itrs.net/Links/2008ITRS/Home2008.htm>, 2008.

[31] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung, O. Rowhani,
V. George, J. Wawrzynek, and A. DeHon, “HSRA: High-Speed, Hier-
archical Synchronous Reconfigurable Array,” in FPGA, February 1999,
pp. 125–134.

[32] D. Chen, J. Cong, M. Ercegovac, and Z. Huang, “Performance-driven
mapping for CPLD architectures,” IEEE Trans. Computer-Aided Design,
vol. 22, no. 10, pp. 1424–1431, October 2003.

[33] V. Betz, “VPR and T-VPack: Versatile Packing, Placement and Rout-
ing for FPGAs,” <http://www.eecg.toronto.edu/∼vaughn/vpr/vpr.html>,
March 27 1999, version 4.30.

[34] L. McMurchie and C. Ebeling, “PathFinder: A Negotiation-Based
Performance-Driven Router for FPGAs,” in FPGA. ACM, February
1995, pp. 111–117.

[35] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated
Circuits, 2nd ed. Prentice Hall, 1999.

http://ic.ese.upenn.edu/abstracts/nanowirebased_jetc2005.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://ic.ese.upenn.edu/abstracts/nanodecode_tnano2003.html
http://ic.ese.upenn.edu/abstracts/nanodecode_tnano2003.html
http://www.itrs.net/Links/2008ITRS/Home2008.htm
http://www.itrs.net/Links/2008ITRS/Home2008.htm
http://www.cs.berkeley.edu/projects/brass/documents/hsra_fpga99.html
http://www.cs.berkeley.edu/projects/brass/documents/hsra_fpga99.html
http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html
http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html
http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps

[36] S. Hanson, B. Zhai, K. Bernstein, D. Blaauw, A. Bryant, L. Chang, K. K.
Das, W. Haensch, E. J. Nowak, and D. M. Sylvester, “Ultralow-voltage,
minimum-energy CMOS,” IBM J. Res. and Dev., vol. 50, no. 4–5, pp.
469–490, July/September 2006.

[37] A. DeHon and H. Naeimi, “Seven Strategies for Tolerating Highly
Defective Fabrication,” IEEE Des. Test. Comput., vol. 22, no. 4, pp.
306–315, July–August 2005.

[38] D. B. Strukov and K. K. Likharev, “CMOL FPGA: a reconfigurable
architecture for hybrid digital circuits with two-terminal nanodevices,”
Nanotechnology, vol. 16, no. 6, pp. 888–900, June 2005.

APPENDIX A
DEVICE CHARACTERIZATION

VMATCH depends on the ability to characterize RoffFET

of the transistors. In this section we present a testing technique
that allows us to perform these measurements. Essentially,
we take advantage of the NanoPLA architecture to configure
voltage dividers between each input or restore wire and a
reference resistance to estimate the restore wire’s resistance
and in turn the transistor’s off resistance.

All restore wires are connected to source and ground
voltage terminals. (Source Voltage and Measurement Voltage
in Fig. 10). During operation, these columns are used as a
restoration mechanism; however, by connecting a reference
resistance to the bottom terminal we can create a voltage
divider between the restore wire, including the transistor, and
the reference resistance. Isolating each restore wire would
allow us to measure the resistance of each wire and transistor,
giving us all the information needed to run VMATCH. An
examination of Fig. 10, however, shows that since all restore
wires in a plane are connected to the same Source and
Measurement terminals, it is not obvious how to fully isolate
a restore wire in order to measure its resistance without
measuring the resistance of other wires in the column as well.

Though direct isolation of the restore wires is not possible,
it is possible to select one restore wire since programing
diodes requires the ability to select the restore and output
or compute wires connected to the diode being programmed.
The mechanism that allows individual wire selection is the
Address Decoder (Fig. 10). Compute wires are encoded with
a k-hot code [29] that allows the decoder to isolate a particular
compute wire. These, in turn, gate the transistor in the restore
wires (one of t1 through t4, Fig. 10b). We can turn all
transistors off by selecting all compute wires and storing
charge on them by isolating the charge between the decoder
on one end and the precharge transistor on the opposite end
(Fig. 10). Using the decoder we can then select one compute
wire and charge it so that it turns the corresponding transistor
on. If there was no variation, turning all transistors except one
off would successfully isolate one restore wire. Unfortunately
there are two problems with this idea. First as we have seen in
Sec. III-B, under certain variation conditions, an off transistor
can leak faster than an on transistor can switch. Second,
the nanowires have high resistance. When the transistor is
switched on, the wire resistance RinWire will dominate the
transistor resistance RonFET . Thus, it is possible that either
a highly leaky wire will charge the measurement terminal of
the voltage divider before the restore wire we are interested

in measuring does, or we will measure the restore wire’s
resistance and not the transistor’s resistance. Both are results
that don’t provide the information we need for VMATCH.

To deal with the first problem, we strongly turn off all
transistors. Eq. 6 shows that by using a voltage that is
significantly greater than the operating voltage, we can counter
the expected Vth variation and can guarantee that leakage is
not a problem. Measuring the transistor resistance, RFET ,
rather than RinWire requires more work. Once all transistors
are strongly off, we use the address decoder to select a wire to
test. Sweeping the Test Voltage terminal (Fig. 10) from the on
operating voltage to the off operating voltage and measuring
at each point the resistance using the voltage divider, we can
observe the resistance of the wire plus the resistance of the
transistor. Moreover, this test voltage vs. resistance curve will
clearly show when the wire resistance dominates and when the
transistor resistance dominates. Finally, from this and Eqs. 5
and 6 we can characterize Vth for this transistor, producing
the sufficient information for VMATCH. Appendix B accounts
for the steps required for this measurement technique to work.
Appendix C considers the time it takes to perform this testing.

APPENDIX B
DETAILED MEASUREMENT STEPS

Measuring each restore wire requires a series of initial-
ization steps done at the plane level followed by a set of
measurements on the individual wire. These initialization and
measurement steps are repeated for each wire that must be
measured. What follows is a detailed description of these steps.

Using the decoder, we first select all compute wires at
once by setting the reserved all zero nanowire address. This
address enables conduction through all the nanowires. Then
we isolate them using the precharge transistors and charge
them through the test voltage terminal to a higher than normal
voltage Vtest = strongOff so that the transistors on the
restore wires are strongly turned off. strongOff is chosen
to be sufficiently high that it can disable even nanowires with
the highest thresholds the variation allows across a chip.

Once this initialization is done, we select one compute
wire and perform a set of measurements on the corresponding
restore wire. We address the compute wire with the decoder,
set the test voltage terminal to the on operating voltage
and measure Vmeasure(Vtest = on). In order to observe
the effects of RFET we take several more measurements
as we sweep the voltage Vtest between the on operating
voltage and the off operating voltage. This generates a set
of measurements {Vmeasure(Vtest = on), Vmeasure(Vtest =
v1), . . . , Vmeasure(Vtest = off)} which we can use to solve
for the actual resistances Rwire using Eq. 7.

Rwire(Vtest) =
Rref · Vsource

Vmeasure(Vtest)
−Rref (7)

Each Rwire(Vtest) will be composed of three resistances. The
series combination of the actual wire resistance, RinWire and
the transistor resistance, RFET (either on or off, depending

http://ic.ese.upenn.edu/abstracts/seven_strategies_ieeedt2005.html
http://ic.ese.upenn.edu/abstracts/seven_strategies_ieeedt2005.html

(a) NanoPLA Block with Address Decoder (b) NanoPLA Inversion Array Circuit with Address Decoder

Fig. 10: NanoPLA Organization with Address Decoder

Fig. 11: Expected Rwire as a function of Vtest showing where
RFET dominates and where RinWire dominates

on the value of Vtest) in parallel with the parallel resistance
of all the other wires not being tested, Rrest.

1
Rrest

=
∑

i 6=test wire

(
1

Rwirei (strongOff)

)
(8)

Eq. 9 shows the composition of Rwire, the series resistances
of the wire followed by the transistor all together in parallel
with the resistance of the other wires.

1
Rwire(Vtest)

=
1

RFET (Vtest) + RinWire
+

1
Rrest

(9)

Plotting the measured Rwire as a function of Vtest would look
similar to Fig. 11. At Vtest = strongOff the leakage from the
other wires may dominate. As Vtest decreases, the transistor
resistance dominates Rwire by becoming small compared to
Rrest while still dominating RinWire. Eventually, however,
Vtest decreases enough that the wire resistance, RinWire,
dominates Rwire. By taking enough measurements in the
section of Fig. 11 where the transistor dominates, we can use
Eq. 9 along with Eqs. 5 and 6 to characterize the transistor
and estimate Vth.

This measurement technique requires that we store the Vth

for all of the transistors in our NanoPLA which is not ideal.
It is explained here as a proof of concept rather than an
optimal measurement algorithm. We believe that more efficient
measurement techniques are possible and expect to develop
them in our future work.

APPENDIX C
TIME TO MEASURE

To estimate the Vth of each wire, we need to make a series
of measurements as described above. Addressing control oper-
ations to precharge and select nanowires takes less than 10ns.
When the wire resistance dominates, the RC time constant
of wires is around 10ns for the Toronto 20 benchmarks and
our technology assumptions. As we increase Vtest and begin
to turn off the transistor, the effective resistance increases
(Fig. 11), increasing the RC time constant. Even if we make
10–20 measurements and allow each measurement a settling
time around 50µs, the total time to make the full set of
measurements will be under 1ms. Limiting measurement time
to 50µs allows us to accurately measure resistances up to 1GΩ.
This provides an adequate range for measurements since 1GΩ
is 1000 times the 1MΩ nominal on resistance of the most
resistive nanowires and is comparable to the nominal Rrest.

On average, the Toronto 20 benchmarks, use a grid of
20×20 blocks and, accounting for all three planes, each
NanoPLA block has 250 restore wires. Using our conservative
assumption of 1ms per device, measuring every device in the
NanoPLA takes on average 100 seconds. As we explore larger
designs than those in the Toronto 20 Benchmarks, the time to
measure all devices may grow to hours or days. However, the
measurement technique above can be parallelized when the
wires are in different blocks brining the time back to seconds.

Web link for this document: <http://ic.ese.upenn.edu/abstracts/vmatch fpt2009.html>

http://ic.ese.upenn.edu/abstracts/vmatch_fpt2009.html

	Introduction
	Background
	Technology: Nanowires
	Architecture: NanoPLA
	Source of Variation

	System Model
	Evaluation Model
	Defect Model
	Timing Model
	NanoPLA CAD Flow

	Device Specific Mapping
	Variation-Oblivious Mapper
	Primary Sources of Variation
	Defect-Avoiding Algorithm
	Logical Variation: Variation in Fanout
	VMATCH: NanoPLA Mapping Algorithm
	Threshold Measurement
	Algorithm

	Results
	Experimental Setup
	Achievable Yield
	Delay, Energy and Area

	Conclusion
	Acknowledgments
	References
	Appendix A: Device Characterization
	Appendix B: Detailed measurement steps
	Appendix C: Time to measure

