Coarse-Grain Reconfigurable Computing
by
Ethan A. Mirsky

Submitted to the Department of Electrical Engineering and
Computer Science
in partial fulfillment of the requirements for the degrees of

Master of Engineering in Computer Science and Electrical
Engineering

and
Bachelor of Science in Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 1996
(© Massachusetts Institute of Technology 1996. All rights reserved.

AUthor . .
Department of Electrical Engineering and Computer Science

May 24, 1996

Certified by
Thomas F. Knight

Senior Research Scientist

Thesis Supervisor

Accepted by ..o
F. R. Morgenthaler

Chairman, Departmental Committee on Graduate Students

Coarse-Grain Reconfigurable Computing
by
Ethan A. Mirsky

Submitted to the Department of Electrical Engineering and Computer Science
on May 24, 1996, in partial fulfillment of the
requirements for the degrees of
Master of Engineering in Computer Science and Electrical Engineering
and
Bachelor of Science in Computer Science and Engineering

Abstract

All general-purpose computing devices must allocate resources to handling the in-
structions which tell the devices how to behave. The ways in which these devices
allocate their resources determines, to a large part, how efficiently a device will be
able to perform a given application. All traditional general-purpose computing de-
vices fix their resource-allocation decisions at fabrication time, making them efficient
only on a limited set of applications. This thesis will introduce MATRIX, a novel,
reconfigurable computing architecture which allows many of these resource allocation
decisions to be made at program-time, allowing it to efficiently yield performance
over a wide range of applications. This is made possible by a coarse-grain primitive
block that is capable of serving as an instruction store, memory block, control unit,
or a computing element, and a unified network capable of carrying both data and
instruction information. A multi-level configuration scheme allows a user to deploy
these primitive resources in an application-specific manner. A prototype device has
been designed, and preliminary estimates indicate that its performance is compara-
ble to modern high-performance computing devices, while maintaining a degree of
architectural flexibility unavailable in any other conventional device.

Thesis Supervisor: Thomas F. Knight
Title: Senior Research Scientist

Acknowledgments

I would like to take this all too brief opportunity to give my thanks to those who

have given me the greatest support in getting me where I am, and where I'm going.

First, and foremost, to my parents for their endless love and support, and for giving

me a foundation from which anything is possible.

To my sister, Naomi, without whose warm friendship and understanding the world

would surely be a dark and lonely place.

To all my friends: You opened up new horizons, showing me a world of wonder and
beauty, and were always there for me. I will never forget you. Thanks especially

to Matt, Burt, Marshal, Alan, Dan, Mike, Mary Beth, Erin and Rachel.

I also wish to give a big thank you to all those whose ideas and efforts have contributed

to this work. I am especially grateful to:

Dr. Tom Knight, for giving me the opportunity of a lifetime as well as the advice

and support I needed to accomplish it.

André DeHon, without whose brilliant insight and creativity these ideas would never
have come to light, and without whose support and encouragement this project

would never have even gotten off the ground.

Dan Hartman, an endlessly patient partner and friend, who was always ready to

help me over any stumbling-block.

And to Ian Eslick, whose creativity and enthusiasm have and will be an inspiration

for this project and beyond.

Thank You!

This research is supported by the Advanced Research Projects Agency of the Department of Defense
under Rome Labs contract number F30602-94-C-0252.

Contents

1 Overview

2 Resource Allocation in General-Purpose Computing Devices
2.1 General-Purpose Computing Devices
2.1.1 Temporal and Spatial Computing
2.1.2 Instructions Lo Lo
2.2 Design Issues for General-Purpose Computing Devices
2.2.1 Granularityo
2.2.2 Size of Instruction Memory
2.2.3 Number of Instruction Streams
2.2.4 Coupling of Instruction Streams
2.2.5 Composition of Instruction Streams
2.2.6 Architecture Taxonomy

2.3 Consequences of Resource Allocation

3 Meta-Configurable Architectures
3.1 Meta-Configuration L o
3.2 Building Blocks oo o

3.3 Granularityo
3.4 MATRIX . .. o

4 MATRIX Architecture Overview I: The BFU

11

14
14
15
16
17
17
18
18
19
20
20
20

23
23
23
24
25

4.2.1 Multi-BFU Operations

4.2.2 Multiply
4.3 Compare/Reduce
4.4 Input Ports
4.4.1 ALU Function Port 0L
4.4.2 Memory/Multiplexor Function Port

MATRIX Architecture Overview II: The Network

5.1 Network Ports
5.1.1 Floating Ports o
5.2 Network Lines
521 Level 1. . . o o oo oo
522 Level 2. . . o L
523 Level 3. . . o
5.3 Network Drivers
5.4 Distributed PLA oo
5.5 Complete Control Logic,

MATRIX Architecture Overview III: The Switches

6.1 Switch Architectureo oo
6.1.1 Static Value
6.1.2 Static Sourceo
6.1.3 Dynamic Source

6.2 BFU Switches
6.2.1 The Control Bit

6.3 Configuration Memories and Programming

Prototype Implementation
7.1 Floorplan
7.2 AreaResults.o

8 MATRIX Application Example: FIR

37
37
39
40
40
41
43
43
44
46

47
47
47
49
49
30
30
51

53
33
)

57

10

8.1 Comparison Benchmark,

8.2 Systolic - Spatial FIR o oo
8.2.1 Implementation oL
8.2.2 Performance Density
8.2.3 Conclusions
8.3 Microcoded - Temporal FIR
8.3.1 Implementation oL
8.3.2 Performance Density
8.3.3 Conclusions
84 Custom VLIWFIR
8.4.1 Implementation L oL
8.4.2 Performance Density
8.4.3 Conclusions
8.5 Hybrid FIR Architectures
8.6 Summaryo e e

Relationship to Conventional Computing Devices

9.1 OSystolic Architectures.o o
9.2 Traditional and SIMD Processors
9.3 Multi-Context Gate Arrays and VLIW Machines
9.4 MIMD Machines
9.5 Hybrid Architectures o oo
9.6 Summary e e
Conclusions

10.1 Results o o 0o
10.2 Future Worko
10.3 Summary
BFU Model

A1 Top Level BFU Module

69
69
70
72
74
74
75

76
76
77
78

80

A.2 Main BFU Modules
A.3 BFUcore Modules .
A.4 Helper Modules . .

List of Figures

2-1
2-2

4-1
4-2
4-3
4-4

5-1
5-2
5-3
5-4
3-3
5-6

6-1
6-2
6-3
6-4
6-5
6-6

7-1
7-2

Temporal Computing Model 15
Spatial Computing Model oL 16
MATRIX Basic Functional Unit 27
16 Bit Pipelined Multiplier o000 32
Comparison/Reduction Logic 33
Multi-Cell Compare/Reduce Logic. 34
MATRIX Network Switch Architecture - BFU Cell 39
Level 1 Network Connections 41
Level 2 Network Connections 42
Level-2 and Level-3 Network Drivers 44
Distributed PLA o 45
BFU Control Logic 46
MATRIX Dynamic Switch Architecture. 48
MATRIX Switch in Static Value Mode 48
MATRIX Switch in Static Source Mode 49
MATRIX Switch in Dynamic Source Mode 50
Switch Architecture with Control Bit 51
Configuration Memory Structure 52
BFU Floorplan 54
Network Wires Over A BFU 54

8-1
8-2
8-3
8-4

9-1
9-2
9-3
9-4
9-5
9-6

Systolic FIR Implementation 59

Microcoded FIR Implementation 61
Custom VLIW FIR Implementation 64
VLIW/MSIMD Hybrid FIR Implementation 67
Best Match Detector - Systolic Array 70
32 Bit Microprocessoro o o 71
SIMD System 72
VLIW Systemo 73
32 Bit MIMD System o T4
MSIMD System 75

List of Tables

2.1

4.1

5.1

7.1

8.1
8.2
8.3
8.4
8.5
8.6

Instruction/Control Architecture Taxonomy 21
ALU Opcodes o o 0o 35
BFU Switch Port Inputs oo 38
BFU Area Results oo 55
Systolic FIR Performance Density Comparison 60
Microcode for FIR Computation 62
Microcoded FIR Performance Density Comparison 63
VLIW Microcode for FIR Computation 65
VLIW FIR Performance Density Comparison 66
FIR Survey - 8 x8 multiply, 16-bit Accumulate 68

10

Chapter 1

Overview

General-purpose computing devices (GPCDs) have been widely used over the past few
decades because of their re-usability, commodity applications, and post-fabrication
adaptability. This adaptability is controlled by instructions, which are the commands
used to tell the device how to behave. These instructions can take a variety of forms.
On a microprocessor the instructions are the opcodes issued to the ALU on a cycle-
by-cycle basis. On an FPGA, or other traditional reconfigurable computing device,
the instruction is the configuration loaded at startup-time which sets the device’s
behavior for the entire run.
All general-purpose computing devices must address a number of important issues

regarding their instructions. These include:

e Granularity

e Size of Instruction Memory

e Number of Instruction Streams

e Coupling of Instruction Streams

e Composition of Instruction Streams
The way in which a particular GPCD addresses these issues distinguishes its architec-
ture from others, and can help classify it as one of the large classes of general-purpose
architectures (microprocessors, SIMD, MIMD, VLIW, FPGA, etc). In addition to
classification, these decisions play a large part in determining how efficient the device

will be on a particular application. Chapter 2 will examine this issues and how they

11

effect a device’s classification.

Modern general-purpose computing devices address these issues and fix their de-
cisions at fabrication time. The consequence of this is that the device will perform
well on applications whose needs it addresses, but poorly on those it does not. This
thesis will introduce a device, MATRIX, that is capable of changing its choices on the
issues listed above after fabrication, at program-time. This allows it to be efficient
over a much wider range of applications than other GPCDs.

This post-fabrication architectural reconfigurability is made possible in MATRIX
through the use of a higher-level configuration. This meta-configuration is used to
specify the computing architecture on top of the MATRIX substrate, which can then
be programmed as need to support a given application. Chapter 3 describes how this
meta-configuration works.

MATRIX itselfis composed of an array of 8-bit wide functional units, each of which
contains memory, an ALU, and control logic. These blocks are connected through a
reconfigurable network which can carry instruction information and data interchange-
ably. The switches on this network serve as the primary means of meta-configuring
network. This basic architecture will be described in detail in Chapters 4, 5, and 6.
The details here have been summarized from the more complete MATRIX Micro-
Architecture Specification ([12]).

A prototype MATRIX device has be designed for a 0.5um CMOS process. In this
technology the basic array unit has footprint of 1.2mm x1.5mm, and is estimated to
run at 100MHz. At this size a MATRIX chip consisting of 10x10 BFUs is easily
feasible. Such a device would have peak performance of 10 billion (8-bit) operations
per second. Chapter 7 gives more details of the current prototype implementation.

Unlike conventional architectures, MATRIX gives applications the opportunity to
optimize the device architecture to best suit their needs. Chapter 8 will go through
a detailed example of an application for a MATRIX device, in this case an FIR con-
volution. Different implementations will be created and compared with conventional
devices and architectures.

Because MATRIX doesn’t fix its instruction/control decisions at fabrication time,

12

it doesn’t fit in a standard architecture taxonomy. In addition, it is capable of im-
plementing almost any other architectural class. Chapter 9 will go through an ar-
chitectural taxonomy and compare these conventional architectures with MATRIX
implementations of those architectures.

Finally, Chapter 10 will conclude with an evaluation of the MATRIX effort and
lessons learned so far and will look ahead to future work.

Appendix A contains working Verilog code for one of the core MATRIX units. It
is the main part of a MATRIX simulation model.

13

Chapter 2

Resource Allocation in
General-Purpose Computing

Devices

2.1 General-Purpose Computing Devices

General-purpose computing devices (GPCDs) are components that can be programmed
to perform any computational task. Although GPCDs typically have a lower perfor-
mance when compared to application-specific IC (ASICs), they have a large number

of advantages. These include:

o GPCDs are reusable for different applications. This means that a single piece

of hardware can serve many different purposes in its lifetime.

e Because a GPCD can be used by many applications and application domains,

the devices become commodity items, lowering costs and increasing availabil-

ity.

The background material presented in this chapter has been summarized from André DeHon’s soon
to be released PhD thesis [5].

14

y=Ax2+Bx +C

Cycle 1: y = x * A
Cycle 2: y =y +
Cycle 3: y=x *y
Cycle 4: y =y +

Figure 2-1: Temporal Computing Model

e Systems built with GPCDs are post-fabrication adaptable. This means that
the algorithms and specifications used by the application can be changed and

optimized late in the design process.

2.1.1 Temporal and Spatial Computing

Because it is impossible to provide a hard-wired unit for every possible operation,
general-purpose computing devices compose complex computations from basic build-
ing blocks. Traditional GPCDs compose complex operation either temporally or

spatially, although we will see that it is possible create hybrid devices.

Temporal Computing Devices (TCDs) rapidly reuse a single piece of circuitry
for many different functions. In these devices, computations are assembled
temporally from a usually predetermined set of basic operations. Intermediate

data is stored in memory units until needed (Figure 2-1).

Typical temporal computing devices today are microprocessors which re-use
their ALUs (Arithmetic-Logic Units) for different operations on every cycle.
Modern microprocessors, including SIMD (Single-Instruction Multiple-Data),
MIMD (Multiple-Instruction Multiple-Data), and VLIW (Very Long Instruc-
tion Word) devices utilize the larger silicon area provided by modern processing

technologies to build larger ALUs and put several ALUs on a single chip. How-

15

y=Ax2+Bx +C

B
C

y

Figure 2-2: Spatial Computing Model

ever, they all still re-use these ALUs in time to compose operations.

Spatial Computing Devices (often referred to as configurable or reconfigurable
computing devices (CCDs)) compose operations in space rather than time.
These devices generally consist of an array (or other structure) of basic building
blocks. In order to create a computation, each block is configured to perform
one basic operation. The blocks are then wired together so that intermediate

data is stored on wires between blocks rather than in memory units (Figure 2-2).

Typical configurable computing devices today are FPGAs (Field Programmable
Gate Arrays) which generally consist of an array of one bit wide basic building
blocks that can be configured to perform any logical operation on a small set of

inputs. These one-bit blocks are connected through a configurable interconnect.

2.1.2 Instructions

Every GPCD requires a specification input which will tell it how to perform. We will
refer to this specification as an instruction. The instruction can take a variety of
forms. In a microprocessor, the instruction is the sequence of operations issued to

the processing units on every cycle. In an FPGA, the instruction is the configuration

16

loaded into the basic blocks prior to the start of computing. Traditional GPCDs
choose one or the other of these methods. As we will see it is possible to mix these

styles, creating a hybrid device.

2.2 Design Issues for General-Purpose Comput-
ing Devices

When a designer sets out to design a general-purpose computing device, s/he must
make a number of decisions, consciously or unconsciously, on how to allocate silicon
area to handling instructions. All these issues are interdependent because silicon area
resources must be allocated to implement the desired features and there is always a
finite amount of area on a die. Improved manufacturing technologies have greatly
increased this area, increasing the flexibility afforded to designers in making these

choices.

2.2.1 Granularity

Granularity refers the data-width of the operations that can be independently speci-
fied by an instruction. In microprocessors this is the size of the datapath - typically 32
or 64 bits in modern microprocessors. In SIMD machines, this is the entire size of the
machine because all processors perform the same instruction. In MIMD and VLIW
machines, it is the width of each separate datapath. In FPGAs and other CCDs, the
granularity is the size of the basic building blocks, typically 1 bit in modern FPGAs.

Coarser-grain datapaths generally simplify the instruction distribution because
there are fewer units that need to see a given instruction. This is the reason that
microprocessors and other TCDs use large datapaths - a simple instruction distribu-
tion is the only possible way to broadcast a new instruction on a cycle-by-cycle basis
when the cycle time is very small.

On the other hand, coarse-grain devices are inefficient when working with small

data values. A 64-bit datapath will likely be slower than an 8-bit datapath when

17

working with 8-bit data, and will certainly be much larger. Because many compu-
tations do not require large data-words, FPGAs and other CCDs use very fine-grain
blocks. The price they pay is that they cannot rapidly change operations because the

instruction distribution required would take a great deal of area and time.

2.2.2 Size of Instruction Memory

The size of the on-chip instruction memory determines the number of instructions that
can be stored on-chip for rapid use. In microprocessors this is the size on the on-chip
instruction cache. In FPGAs and other CCDs, this is the number of configurations
that can be stored on-chip.

Large instruction memories are essential for temporal computing devices, because
going off-chip for new instructions would greatly slow the rate at which instructions
can be issued, and thereby reduce the device’s overall performance. For this reason,
the instructions on microprocessors and other TCDs tend to be small, selecting from
a pre-determined set of operations. Small instructions also require less memory area,
and therefore more can be stored on chip.

Because configurable computing devices require an instruction memory for every
basic building block, CCDs cannot put many instructions on-chip without using an
excessive amount of die area to do so. For this reason modern FPGAs store only one
configuration on-chip. As a result, FPGA are not efficient for performing dynamically
changing computations - new operations require a long time to configure.

Its important to note that this limit of one in FPGAs is not inherent to CCDs.
Experimental devices, such as [20], have put more than one configuration on a CCD,

allowing a limited amount of cycle-by-cycle flexibility.

2.2.3 Number of Instruction Streams

The number of instruction streams on a general-purpose computing device refers to
the number of operations that can be performed in parallel. Traditional microproces-

sors have only one instruction stream. SIMD machines also use a single instruction

18

stream controlling multiple ALUs. MIMD and VLIW machines can have several in-
struction streams running in parallel. On FPGAs and other CCDs, the number of
instruction streams is the same as the number of basic building blocks because each
can be programmed differently.

The greater the number of instruction streams, the more parallism the device can
exploit, which often means higher performance. On the other hand, each instruction
stream requires its own separate memory to store instructions. MIMD and VLIW ma-
chines require a separate memory for each ALU, while SIMD machines and traditional
microprocessors require only one per chip, and can therefore use larger memories, or
put more ALUs on the die. On FPGAs every basic block requires its own memory.

The fact that FPGAs do not share instruction memories between blocks the way
SIMD machines do is not fundamental to all CCDs. The MATRIX device described in
this thesis is a CCD which can share instruction memories between blocks. However,

this is feasible only a coarser granularity than the one-bit blocks used in FPGAs.

2.2.4 Coupling of Instruction Streams

While the number of instruction streams refers to the ratio between the number of
instruction memories and ALUs, the coupling of instructions streams refers to the
ratio between the number of control units and instruction streams. The best example
of this is difference between VLIW and MIMD machines. Both use several different
ALUs, each running a separate instruction stream. However, on MIMD machines,
each stream is controlled independently so that branches performed on one stream
do not necessarily happen on others. On VLIW machines, however, there is only one
control unit so that a branch taken on one stream happens on all streams.
Traditional microprocessors and SIMD machines have only one instruction stream
and therefore only one control unit. FPGAs typically have no control units, because

they store only one instruction (configuration) on chip.

19

2.2.5 Composition of Instruction Streams

Finally, the composition of instruction streams refers to the nature of the instruc-
tions in a stream. The more powerful the instruction (the more operations a single
instruction can specify), fewer instructions will be needed to complete a computation
on a TCD. However, the more powerful the instruction, the larger it is and the more
area resources need to be dedicated to distribute and control them.

On microprocessors and other TCDs, the instructions typically select from a set
of operations which were fixed at fabrication time. This is generally done to keep the
instructions small and easily distributed, as discussed in Section 2.2.2.

FPGAs and other traditional CCDs can be seen as the extreme case of powerful
instructions. The CCD configuration is capable of expressing any computation (to
the limits of the die area), but is so large, it is extremely difficult to distribute and

control.

2.2.6 Architecture Taxonomy

Table 2.1 ! summarizes the architecture descions made by conventional computing
devices. Because conventional devices fix their choices of n, w, m, ¢ at fabrication time,

they all can be classified on this table.

2.3 Consequences of Resource Allocation

All general-purpose computing devices must deal with all these issues. However, the
performance of applications on a particular GPCD depend greatly on the particular
resource allocation choices the GPCD designer made. The reason for this is that ev-
ery application requires a certain amount of control, has a certain amount of inherent
parallism, and has a certain data-size, which will be very different from other ap-
plications. Thus different applications require different amounts of the architectural

resources discussed above. The closer the match between the application’s require-

IThis table was taken from [5].

20

Control Threads (PCs)
Instruction Streams per Control Thread
Instruction Memory per Stream
Datapath Granularity
‘ Architecture/Examples
00| n/a | Hardwired Functional Unit
0 1 FPGA, Programmable Cellular Automata
n|l w reconfigurable ALUs
Programmable Systolic Datapath Arrays
n-1 | bitwise SIMD
1|e¢ w Traditional Processors
n-w | Vector Processors
1 c 1 DPGA [20]
n|8 16 PADDI [3]
c w VLIW
m |1 |c| 2w |MSIMD
c 1 VEGA [11]
n|1]8 16 PADDI-2 [22]
c w MIMD (traditional)

Where:

n is the number of processors

w is the width of a single processor

m is the number of program counters (PCs)
¢ is the size of the instruction memories

Table 2.1: Instruction/Control Architecture Taxonomy

21

ment and the device’s resource allocation, the more efficient that device will be at
running that application. [5] discusses this in more detail.

All modern general-purpose computing devices fix their resource allocation deci-
sions when they are fabricated. As a result, there will be a set of application’s whose
needs match the choices made by that particular device - and there will be a large
number of applications whose needs do not match the device’s resources. In order to
create a device that will be efficient over a wide range of applications and application
requirements we need to be able change the resource allocation of the device after

fabrication. Chapter 3 suggests a way this can be done.

22

Chapter 3

Meta-Configurable Architectures

3.1 Meta-Configuration

As discussed in Chapter 2, we would like to create a device who resource allocation
choices can be made on a per-application basis, rather than at fabrication time. In
order to accomplish this, such a device would need to be given at least two levels of
configuration. The most basic level(s) would describe the exact resource allocation
and architectural layout an application requires. We will refer to this kind of config-
uration as a meta-configuration. Once the application’s desired architecture has
been specified, the application itself can be programmed or configured on top of that
architecture.

A meta-configuration could be a generic architecture specification, such as a “3

«

thread, 8-bit, VLIW microprocessor”, or could include specific constants, such as “a

(3x + 4y) calculator”, depending on the flexibility required at run-time.

3.2 Building Blocks

In order to create a meta-configurable architecture, we need to first create a set
of basic building blocks. Because we cannot know in advance what requirements
applications may have, all the building blocks on the chip should be identical, or at

least be spread uniformly across the chip.

23

There need to be at least several, preferably many, such blocks on a chip because
of the possible need to create a spatial computing engine. On the other hand, each
block, or a set of blocks, must be able to change its operations rapidly in response to
a broadcast operation code, so that temporal computing devices can be created.

Each block, or a uniformly distributed set of blocks, needs to be able to provide any
of the four basic resources (datapath compute, instruction distribution, control and
memory) on demand. The provided resources should be reasonably high performance,
in both speed and area, so that applications running on the device will not suffer when

compared with more hardwired structures.

3.3 Granularity

The easiest approach to creating such a block is to create a block that contains a
compute unit, a control unit, and a memory unit, and is connected to a switchable
network which can carry data, instructions, and control information. An important
question that needs to be asked is: how big should the block be?

A small block would allow many such blocks to be built onto a single die, greatly
increasing flexibility. A small block, or group of small blocks, could also more closely
match the actual data width of any given application than a large block, or set of
blocks.

On the other hand, a larger system composed of small uniform elements, where
each element is large enough to contain a compute engine, memory and control struc-
tures, will be much larger and slower than a device composed of larger basic elements.
This is a result of the fact that the wires and switches needed to connect many small
elements in a configurable way will require a great deal of area and time, while the
larger blocks hardwire more connections so that they require less switching.

In addition, each block must be able to change its function rapidly in response to
a broadcast operation. Our flexible substrate is subject to the same problems as are
fixed architectures: A fine-grained device requires a great deal of wires, switches, and

time to be able to broadcast an operation to all of its elements. All of these factors

24

argue in favor of a large building block.

The easiest answer is to compromise: create a block large enough that the area
required for the switching and wires needed to broadcast instructions and compose
the units doesn’t completely dominate the block’s area, yet small enough that its
possible to put a significant number on a single die. We are fortunate that modern

manufacturing technologies have reached a point where is this is easily feasible.

3.4 MATRIX

MATRIX (Multiple Alu archiTecure with Reconfigurable Interconnect eXperiment)
is a prototype of a meta-configurable architecture. It utilizes a coarse-grain, 8-bit
wide basic building block containing a memory, ALU and control unit. It connects
these with a unified network which can carry data and instruction information inter-
changeably. The following chapters discuss the prototype architecture in depth, as

well as discuss some of the tradeoffs involved in creating this kind of design.

25

Chapter 4

MATRIX Architecture Overview
I: The BFU

MATRIX consists of an array of 8 bit wide functional blocks called Basic Functional
Units (BFUs) connected in a reconfigurable multi-level network. Each block contains
a memory, ALU, and a control unit, connected in a configurable manner. The 8-bit
granularity of a MATRIX BFU was chosen so that an network line (8 bits wide)
could carry a function specification, a memory address into a 256-byte memory, or
a data byte. It was believed that a 256-byte memory would be large enough to be
interesting, but would not take up the majority of the basic cell. This assumption
proved reasonably correct, as we will see in Chapter 7. However, it turned out that
8 bits were not sufficient to fully specify a BFU’s cycle-by-cycle operation. The need
for more specification lead to the creation of a two-byte function input.

When originally conceived, the block would take in 3 inputs: memory address,
data (or a second memory address), and a ALU function select. It would then compute
on either incoming data, its own internal memory data, or both, and output a single
result. Because of the need for more function specification, the core BFU now requires
4 byte-sized inputs. Figure 4-1 shows the current BFU architecture. The major
elements of the BFU will be described below.

26

[C/R Network]

Compare/Reduce 1T

< DATA 2

E WE MODE g

£ Memory z

2 Block =

5 A_ADR

s S

ke A PORT B PORT <

r4 =
. 2
~ | e
= =1
S N N
© A_in B_in =
5 AN ALU 2
= Decode F_sel Decode =2
=Y Logic C_in C_out Logic l=— g
— g N Out g]
< N g
-
Carry In Carry Out —_

Compare/
Reduce I
[Level-1 Network | C/R Networ]

Figure 4-1: MATRIX Basic Functional Unit

27

4.1 Memory

The main MATRIX memory is a 256 word by 8 bit wide memory, which is arranged
to be used in either single or dual port modes. The memory mode is controlled by
the Memory/Multiplexor function port (see Section 4.4).

In single port mode, the memory uses the A_ADR port for an address and outputs
the selected value to both ports. In dual port mode, the B_LADR port selects a value for
the B_PORT separately from the A_PORT. However, in dual-port mode, the memory
size is reduced to 128 words in order to be able to perform both read operations
without increasing the read latency of the memory.

In both modes this read operation takes place during the first half of the clock
cycle and the values are latched for the rest of the cycle. Write operations take place
on the second half of the cycle. Writes are always done to the current A_ADR address.
If the feedback path (shown in Figure 4-1 as a dashed line) is used, then the BFU
is performing “A op B — A” in one cycle. Two cycles are needed to perform “A
op B — C7 operations, because there are currently only two memory address ports
in BFU. In this case, the feedback is performed by the normal Level-1 network (see
Chapter 5).

4.2 ALU

The MATRIX ALU is a basic 8 bit arithmetic logic processing unit. It is capable of

performing the following operations:

Input Invert - Prior to performing any of the following operations either, or both

of the ALU inputs can be inverted.

Pass - Passes either A or B input to Out. With the input inversion, this operation
can be a NOT.

NAND - Performs bitwise operation: (A NAND B). With input inversions this can
be an OR.

28

NOR - Performs bitwise operation: (A NOR B). With input inversions this can be
a AND.

XOR - Perform bitwise operation: (A XOR B). With input inversions this can be a
XNOR.

Shift - Shifts A or B either left or right one bit.

Add - Performs (A+B+Cin). Cin can be selected from 0, 1, or Cout of an adjacent
cell. Combined with the input inversion a subtract can be made: (A-B)=(A +
B+ 1).

Multiply - Performs (A*B). Can also perform (A*B+4+X) and (A*B+X4Y), where
X and Y are special inputs. These operations are needed to create pipelined
multiply structures. Multiply operations require two cycles to fully complete.
The low byte is available on the first cycle and the high byte is available on the
second. The multiply operation will be described in more detail in Section 4.2.2,

below.

4.2.1 Multi-BFU Operations

BFUs are designed so that they can be smoothly chained together to form wider-word
ALU structures. In order to accomplish this, the user must specify the carry-chain of
each of datapath element as it travels through multiple BFUs. In order to accomplish
this, part of the meta-configuration needs to specify how the carry-chains are formed.

In a BFU this is accomplished by setting the following bits:
LSB - Set to “1” marks the least-significant-byte position.
MSB - Set to “1” marks the most-significant-byte position.

Rightsource - Specifies the direction to the next least-significant-byte. Can also be

set to receive a carry from another source (see below).

Leftsource - Specifies the direction to the next most-significant-byte. Can also be

set to receive a carry from another source (see below).

29

The source selection can be one of the following:
North - North BFU.
East - East BFFU.
South - South BFU.
West - West BFU.
Local - The local BFU’s carry from the previous cycle.
Control Bit - The local Control Bit. See Section 4.3.
Zero - Constant Zero.
One - Constant One.

In addition, pipeline stages can be inserted into the carry chain by specifying
another meta-configuration bit, CarryPipeline, to be “1”7. This will register the
incoming carry prior to its being used. This is important for addition operations,
because the carry-chain is limited by the clock period and the speed of the adder.

Based on this local information, the actual Shift and Add operations have different

effects:

Shift

There are two main shift functions: Left and Right. Left shift moves the bits
towards the MSB, and right shifts move the bits towards the LSB. Normally, the
carry-in value is used to fill the newly-created opening, but if the cell is an LSB or
and MSB the new bit is determined by additional information contained the chosen
shift instruction. For Left Shifts the LSB position will be different, while for the
Right Shifts it will be the MSB position. The options are:

Force Carry - This option will override the LSB/MSB setting and force the shift
to use the carry-in from its designated source (Left/Rightsource). This allows

BFU(s) to perform barrel-shift operations on a defined datapath.

30

Skip Bit - This option will keep the same LSBit/MSBit, essentially duplicating the

low/high bit of the shifted number. This allows sign-extension operations.
Insert O - This will insert a zero into the LSBit/MSBit.

Insert 1 - This will insert a one into the LSBit/MSBit.

Addition

There are three addition functions: Add, Add-0, and Add-1. Add will perform a
normal add-with-carry (A+B+Cin), in all cases. Add-0 will perform a normal add-
with-carry, except that the Carry-In of the LSB block will be forced to zero. Add-1
is similar, except that the LSB Carry-In is forced to one.

Note that a “normal” addition operation is usually performed with the Add-
0 function. The basic Add operation is primarily intended for performing “block
serial” addition - in which addition is performed over multiple cycles on the same
set of BFUs. The sequence would be an Add-0, followed by however many Adds are
needed to complete the Addition.

Subtracts are performing using the Add-1 operation and inverting the B input

value (2’s complement subtract).

4.2.2 Multiply

Because many common applications require multiply operations, it was decided to
include a multiply operation. As we will see in Section 7, the multiplier took up very
little area, and can therefore be considered a good addition to the BFU.

However, the main problem with a hard-wired multiplier is that it produces 16
bits of output, while the datapath it setup for only 8 (or 9, if the carry is considered).
When original conceived, the BFU had no mechanism for dealing with all 16 output
bits so it was decided to have the multiplier output its result over two cycles: the first
cycle outputs the low 8 bits of result and the second cycle outputs the high 8 bits.

In addition to performing a basic multiply, the array multiplier used in in building

MATRIX is capable of performing additions into the multiply. It was decided to

31

A0 Al

BO +——— PO
{ {

Bl { ——-{ —>f M/A | 1 M/A P1

Pass > Add P2

> Add P3

Figure 4-2: 16 Bit Pipelined Multiplier

include this function so that cascading BFU’s into larger pipelined multiply structures
would be possible (Figure 4-2).

The result is that there are four multiplication functions: Mult, Mult-Add,
Mult-Add-Add and Mult-Cont. The first three initiate a multiply operation,
performing A*B, A*B+X, or A*B+X+Y, respectively. The low byte of the product
is available at the end of the current cycle. Mult-Cont is then issued in order to output
the high byte. Mult-Cont does not have to be issued, but if it is it must immediately
follow a Mult, Mult-Add, or a Mult-Add-Add. The inputs to the multiply are latched
on the cycle the Mult, Mult-Add, or Mult-Add-Add is issued, so that the inputs to
the BFU may be changed during the Mult-Cont function, without effecting the final
value.

The source for X and Y, if used, are special. There are two meta-configuration bits
associated with these inputs: M Addlsource and M Add2source. If these are set
to “0” they hardwire the X and Y inputs for use in pipelined multipliers (Figure 4-2).
In this case the X input is connected to the nearest North neighbor (L1_N1), and
the Y input is hardwired to the output of the Northwest neighbor (L1_NW) of the

previous clock cycle (see Chapter 5 for information on the Level-1 network). If the

32

BFU Output

9
Control Word 1
Match?
Context Select Word 2 atc

Figure 4-3: Comparison/Reduction Logic

MAddsource bits are set to “1”7 they allow special network switches called “floating
ports” (see Chapter 5) to select the source of the multiply-adds.

Its important to note that this two-cycle output is not inherent in the multiplier
design. As we will see in Chapter 5, the BFU can actually output up to 5 bytes of
data on every cycle, so it is quite feasible to output all 16 bits simultaneously. It will
be worth investigating this possibility for future designs because it is often difficult to
create designs that fit within the two-cycle latency of the multiplier (see Chapter 8,

for some example designs).

4.3 Compare/Reduce

Compare/Reduce is the first of two forms of control logic built into the MATRIX
BFU. The second, a distributed PLA, will be described in Chapter 5. This Com-
pare/Reduce serves as general-purpose “condition codes” of the outputs of a BFU.

Figure 4-3 illustrates what happens in Compare/Reduce 1. The 9-bit output of
the BFU (data plus carry-out) is compared to one of two programmed words. The
Control Context Select (which is part of the ALU function - see Section 4.4, below)
determines which word is used. These words can contain “don’t care” bits, so it is
possible to test any part of the BFU output. For example, a zero-detect function
would test all of the data bits for zeros, but ignore the carry, while a sign-check would
look only at the 8th (high) bit of the data and ignore the rest.

The result of this comparison is passed to all the BFU’s neighbors in the same

style as the Level-1 network (see Chapter 5). Figure 4-4 shows an example of a multi-

33

reee—— 1_ __________ — l_ ______

I I
: | Comp/Reduce I | I : |C0mp/Reduce I | : : | Comp/Reduce I | I
| . I | 1 . |
I L Control Bit I I
I BFU Output : | Local Context Select : : BFU Output :

I

| BFUI [BFUII [BFU III |
- do - _ Je_ - _ _ |

Figure 4-4: Multi-Cell Compare/Reduce Logic

BFU reduction. The Compare/Reduce 11 block performs a similar reduction on the
C/R values from the BFU’s neighbors, except that it uses only one comparison word.

The final result of these comparisons is a local Control Bit in each BFU. This
control bit is used to change the functionality of the BFU network switches (see
Chapter 6). By changing the functionality of the network switches, the Control Bit
can be use to select between different BFU operations, such as different data inputs,

different ALU functions, or different dataflow structures.

4.4 Input Ports

There are four port into the core BFU (Figure 4-1), each of which is 8 bits wide.
The values on ports A and B are used as data for the or addresses into the memory.
The selection between how they are used is controlled by the data on the Mem-
ory/Multiplexor Function Port, described below.

4.4.1 ALU Function Port

The ALU Function Port (Fa Port) controls the operation of the BFU’s ALU, the
write enable (WE) for the main memory, and the Compare/Reduce word selection
(see Section 4.3). The ALU controller decoding is described below.

The inclusion of the memory write enable in the Fa Port was done because the

ALU function port is intended for things that are frequently changed on a cycle-by-

34

ALU Opcode H Operation ‘
Multiply
Multiply-Add
Multiply-Add-Add
Multiply-Cont

Shift with Force Carry
Shift with Copy Bit
Shift with Insert 0
Shift with Insert 1
Add

Add-0

Add-1

(Add-1) !

Pass

NAND

NOR

XOR

SISO R W N=O

[y
o)

o
o

[y
N

[y
w

[y
I

[y
221

Table 4.1: ALU Opcodes

cycle basis. The Memory/Multiplexor Function Port (Fm Port - described below)
was added to control thing that are not frequently changed, but are not static enough
to be included in the meta-configuration. As we will see in Chapter 6, it is possible to
statically set the value of a port without consuming network lines. This means that
if an application doesn’t need to change the Fm port’s value (a likely occurrence), it
does not need to allocate network lines to supply the value.

Table 4.1 lists the ALU opcodes. In addition to these, two additional control bits
are used: Invert A and Invert B. During normal operation, these bits will perform
a bit-wise invert on the A and B ALU input respectively. This is used with the logical
operations, as well as with the Adds in order to generate a subtract.

During Shift and Pass operations, however, these bits serve special functions:

Shift Invert-A is used to select the Shift Direction (Left or Right) and Invert-B is
used to select the Shift Source (A input or B input). In the current model, there

is no way to perform an inversion during a shift operation.

!This is an unused opcode but will generate an Add-1 if issued.

35

Pass Invert-A is used to invert the Pass value and Invert-B is used to select the Pass

Source (A or B input).

4.4.2 Memory/Multiplexor Function Port

The Memory/Multiplexor Function Port (Fm Port) controls the less frequently needed
parts of the BFU function:

Main Memory Mode Selects between one-ported (256 byte) and two-ported (128

byte) memory mode.

ALU Input Selectors Selects between memory and input data port inputs for the
ALU.

Memory Data Select Selects between input data port and write-back data for the

main memory write.

Configuration Memory Read/Write Controls writes to the configuration mem-

ories.

The last item deserves a little more explanation. The BFU contains a set of
configuration memories which store the meta-configuration used by the BFU and
network switches. These memories can be written to from the normal network ports,
making it possible for the BFU’s to reprogram themselves during operation.

When the configuration memory write enable (CWE) is asserted, the BFU takes
the A input as address, and the B input as data and writes to the configuration
memories rather than the main memory. Similarly, when the configuration memory
read enable (CRE) is asserted, the BFU outputs the value in the configuration at the
address specified by the value on input port A.1

The normal programming methodology will be discussed in Chapter 6.

'In the current implementation, the configuration memory value is actually output onto one of
the Level-3 network lines.

36

Chapter 5

MATRIX Architecture Overview
II: The Network

5.1 Network Ports

As was described in Chapter 4, the core BFU is connected to the network through
4 ports. The network itself uses 4 additional ports for its own switching. Figure 5-1
shows how all 8 ports are connected. Four switch-ports (Address/Data A and B, Fa
and Fm) feed data into the BFU core. Four other switches: Network Switches 1 and
2, and Floating Ports 1 and 2 (FP1, FP2, N1 and N2) feed data into the Level-2 and
3 network drivers.

The mechanism used to implement each of these switches will be described in
Chapter 6. The network drivers will be described in Section 5.3.

Each switch/port selects from its inputs to produce a single byte of output. The
inputs to each switch are listed in Table 5.1. The Control Byte comes from the
distributed PLA, described in Section 5.4. The switches are used uniformly for data,

control, and instruction information.

37

‘ Source H Description

‘ Local H The local BFU
L1_N1 Level-1 Network, From North-1 cell
L1_N2 Level-1 Network, From North-2 cell
L1_NE || Level-1 Network, From NorthEast cell
L1_E1 Level-1 Network, From East-1 cell
L1_E2 Level-1 Network, From East-2 cell
L1_SE Level-1 Network, From SouthEast cell
L1-51 Level-1 Network, From South-1 cell
L1.52 Level-1 Network, From South-2 cell
L1_SW || Level-1 Network, From SouthWest cell
L1-W1 || Level-1 Network, From West-1 cell
L1-W2 || Level-1 Network, From West-2 cell
L1_NW || Level-1 Network, From NorthWest cell
L2_N1 Level-2 Network, North-1 Line
L2_N2 Level-2 Network, North-2 Line
L2_E1 Level-2 Network, East-1 Line
L2_E2 Level-2 Network, East-2 Line
L2_51 Level-2 Network, South-1 Line
L2.52 Level-2 Network, South-2 Line
L2-W1 || Level-2 Network, West-1 Line
L2-W2 || Level-2 Network, West-2 Line
L3_V1 Level-3 Network, Vertical-1 Line
L3_V2 Level-3 Network, Vertical-2 Line
L3_V3 Level-3 Network, Vertical-3 Line
L3_V4 Level-3 Network, Vertical-4 Line
L3_H1 Level-3 Network, Horizontal-1 Line
L3_H2 Level-3 Network, Horizontal-2 Line
L3_H3 Level-3 Network, Horizontal-3 Line
L3_H4 Level-3 Network, Horizontal-4 Line

‘ CByte H Control Byte
Co Constant Value 0 (Binary: 00000000)
C1 Constant Value 1 (Binary: 00000001)

Table 5.1: BFU Switch Port Inputs

38

Level-2, Level-3
Network
. Network Network -
Switch 1 (N1) Switch 2 (N2)
Level 2,3
Network Drivers
Floating loating
Incoming Port 1 (FP1) L3 Control Port 2 (FP2) Incoming
Network Lines — Lines — Network Lines
(L1,L2,L3) (L1,L2,L3)
Address/ A B Address/
DataA [| =1 DataB
BFU
Core
ALU Memory
Function | —{ Fa Fm {<— Function
(Fa) Out (Fm)
Level 1
Network Drivers
Level-1 \‘L\Jetwork

Figure 5-1: MATRIX Network Switch Architecture - BFU Cell

5.1.1 Floating Ports

The BFU’s floating ports are special switches because they are used for several differ-
ent functions. When not being used as network selectors, FP1 and FP2 can serve to
control the dynamic switching capability of the A;B,N1 and N2 ports (described in
Chapter 6). In addition, FP1 and FP2 can feed data to the control PLA (described
in Section 5.4), or can select the source for the Multiply-Adds (Chapter 4).

The reason the floating ports serve so many functions is that every switch included
in the BFU significantly increases the size of the BFU (see Chapter 7). Because of
this, it is infeasible to dedicate a switch for every possible function. Rather, the
floating ports serve many functions which are unlikely to be used in combination. It
remains to be seen how seriously this will hurt application designs, if it will effect

them at all.

39

5.2 Network Lines

The MATRIX network is intended to provided high-bandwidth connections between
BFUs in a flexible, configurable manner. A three-level interconnect structure, con-
sisting of a regular neighborhood mesh, longer switchable lines, and long broadcast
lines was chosen. It was believed that this provided sufficient balance between local
broadcasts and long distance connections. However, it turned out that the currently
implemented network lines are useful in ways not planned for in the original design.
This will be discussed in more detail below.

The current network architecture was designed to be used on chips containing up
to 256 (16x16) BFUs. Larger chips would probably benefit from a 4th level between
the current 1.2 and L3 levels, or making the 1.2 network longer than 4 BFUs.

5.2.1 Level1l

The Level-1 (L1) network was intended to carry data from a BFU to its nearest neigh-
bors. From the beginning it was intended that this communication should happen in

the same cycle as the compute, so that the full cycle time looks like:

MemoryRead — ALUC ompute — L1NetworkTransition/MemoryWrite
— IncomingAddress/DataLatchedat Ports

Being on the critical path, the 1.1 must be fast. This limits the distance it can
traverse. Timing simulations determined that a manhattan distance of 2 would be
the maximum distance into order to maintain a reasonable cycle time (100 MHz).
Diagonal connections were including, despite the fact that they increased the size
of each input switch (Chapter 6) by 4 inputs, because it made it possible to build
compact array multipliers and other, inherently diagonal, designs.

Figure 5-2 shows the current Level-1 network structure. The 8-bit output of every
BFU is passed a manhattan distance 2 in every direction. As a result every cell
receives 12 L1 inputs.

The major drawback to the Level-1 network is the fact that it broadcasts the data

to all its neighbors on every cycle. Because these are high-speed lines, the power

40

Figure 5-2: Level 1 Network Connections

required to accomplish this becomes quite significant. It was estimated that an array
of 64 BFUs would use over 8 watts of power just driving the L1 wires. As a result, it
was decided to include a mechanism to turn off network lines that are not being used

in a design. This is now part of the meta-configuration of a MATRIX design.

5.2.2 Level 2

The Level-2 (L2) network was intended to carry data intermediate distances (in steps
of four) across the chip. It turns out that actual designs have tended to use the L2
network for the fact that it can pipeline data (see below), rather than for its distance
communication. Many of the experimental applications that have be mapped to
MATRIX require registers for pipelining and retiming that are not easily available
anywhere else without sacrificing a complete BFU as a register. Future designs of the
L2 network should reflect this change of purpose.

The current Level-2 network uses two drivers in every BFU (see Section 5.3).

41

Figure 5-3: Level 2 Network Connections

These broadcast along length-4 (4 BFUs) lines either horizontally or vertically. This
results in a checkerboard tiling of BFUs. Figure 5-3 shows this structure. Every
colored block in Figure 5-3 represents two Level-2 network switches. Each line shown
is a 2-directional broadcast line where the starting switches are the source of the
broadcast. Every BFU that a line crosses has access to the data being broadcast on
the line.

The checkerboard design was chosen even though it made mapping designs which
use the L2 network difficult, because it cut down the size of the BFU. Adding the two
additional drivers for each BFU, to complete the symmetry, would add 8 new switch
inputs to every BFU, as well as require the additional switches and drivers in each

BFU. Given the sizes of the switches (see Chapter 7), this was deemed excessive.

Pipelining on Level-2

Level-2 drivers operate in two modes: Source and Pass. These modes are part of the

chip’s meta-configuration. In Source mode, the data selected by one of the network

42

switches is registered and broadcast on the line on the next cycle. The register is used
to add pipeline stage in network, because the transit time on the L2 network would
exceed the basic cycle time.

In Pass mode, the data is broadcast without the pipeline stage. This allows longer
chains of network lines. At some point, a pipeline stage must be inserted (by using
a Source-mode switch) to keep the clock period small. The possible number of links
in these chains depends on particular implementations of this design as well as the
internal clock speed.

The L2 drivers are also capable of being deactivated when not in use to save power,
in the same manner as the the Level-1 drivers.

It turned out that the Level-2 network’s ability to add a register every 2 BFUs
was more useful to many applications than its ability to carry data. Many systolic
computing structures require that data be retimed or pipelined across a structure,

and the L2 registers are the only current mechanism for accomplishing this.

5.2.3 Level 3

The MATRIX Level-3 (1.3) network is intended to carry data long distances as rapidly
as possible. It consists of 4 shared network lines spanning every MATRIX row and
column. Each BFU cell gets to drive up to 4 inputs onto the L3 network. Section 5.3
describes how this is done. In addition, every BFU has access to every Level-3 line
crossing it.

The delay across Level-3 is also one clock cycle per step, except that steps at this
level are up to a full-chip long. Thus it is possible to get from any BFU to any other
BFU in a MATRIX array in 2 clock cycles.

The control logic, to arbitrate the bus lines, for the L3 network is located at the
perimeter of the MATRIX core.

5.3 Network Drivers
There are 2 Level-2 and 8 Level-3 tristate drivers in every BFU. Each uses the

43

Enable

RegEnable
(Level-2 Only)

Select —

Nlout —1\

N2out
FPlout
FP2out

Figure 5-4: Level-2 and Level-3 Network Drivers

Network and Floating Ports (N1,N2,FP1,FP2) to select their inputs on a cycle-by-
cycle basic. The assignment of switches to drivers, however, is set by the meta-
configuration. Figure 5-4 shows a generic L2 or L3 driver for this network. One of
the four switches is configured to drive each line. In the event that the line is not
used, it can be completely disabled in the same way as the L1 lines. On the L3
network, these drivers as actually tristate, and are controlled globally. Finally, the
Level-2 network contains the optional registers - these set the Source/Pass mode of
this 1.2 driver. On the L3 drivers, the register is mandatory.

This setup allows up to 4 data values to be driven onto the L2 and/or L3 network
on every cycle. Including the L1 driver, this gives a BFU up to 5 bytes of output per

cycle.

5.4 Distributed PLA

The Compare/Reduce logic, described in Chapter 4, performs fast reduction and
control operations if the control is simple. However, this many not be adequate for
more complex control operations. In order to handle these cases, a distributed PLA
was included in the MATRIX design.

A distributed PLA is a normal PLLA where each of the two planes (AND and OR,
usually implemented as two NOR planes), are physically scattered across the chip

and connected in a configurable manner. Figure 5-5 shows an example of how this

44

_________________ - -
| 1

OR Plane : o | [Floating Port |

(1/2) PLA K | s |

Control | Byte [§ | |

3 | |

’ N . |

: é | OR Plane = Control Byte :

LZSNfEtwl?rk R K I (1/2) PLA L/ _ Control Bit |

wite | | Local Context Select |

| |

_________________ g L __ BN

Figure 5-5: Distributed PLA

works.

The BFU output from BFU I gets passed to an OR plane which is used in place of
a NOR plane because the inversions can be performed at the inputs to the OR, and
at the ALU of the final BFU. The the fact that a Floating Port is used to switch this
allows any network input to serve as initial data. The register after the floating port
provides the necessary pipeline stage if the data used is coming off a long network
line.

The OR plane serves as one stage of a multi-level logic function. Therefore its
eight outputs can be thought of as product-terms of a standard PLA. These product
terms are then passed to a Level-2 or Level-3 network switch.

After the one cycle delay from crossing the network, one of BFU II’s floating ports
switches the product terms to its OR plane. This plane performs the second stage
of the multi-level logic function. If more stages were required, 8 new product terms
could be sent to another BFU to continue the operation. In the example shown, only
two levels are required.

In the distributed PLA control logic, there are two final outputs. The first is
the same as the C/R logic: the local Control Bit used to change the function of the
network switches. However, the PLA can also output a Control Byte, which can be
inserted into a BFU port or network switch. This allows the control logic to generate
specific constants.

Note that the distributed PLA control requires 3 cycles to complete a two-level

45

Neighborhood
Comp/Reduce Floating Port I Floating Port II

b w k
N

Select 4
1 13 8 4(, 8§, 8

Comp/Reduce I | | Comp/Reduce II | OR Plane

Neighborhood

(12 PLA)
9 8
BFU Output Control Bit Control Byte

Figure 5-6: BFU Control Logic

logic operation, but is capable of performing complex logic operations as well as
distributing this control across large portions of a MATRIX chip (the Level-2 and
Level-3 network spans). On the other hand, the C/R logic operates in a single cycle,

but is limited in functional complexity and distance.

5.5 Complete Control Logic

Figure 5-6 shows the complete control logic for a single BEFU. The Comp/Reduce |
is performed just as described in Chapter 4, while the Comp/Reduce II is linked with
the OR plane. This connection allows these two styles of control logic to be mixed.
For example, the Neighborhood Comp/Reduce can be used as an input to the OR
plane, or the floating port outputs can used in the Comp/Reduce II operation.

In order to reduce the size of these reduction operations, a number of pre-selections
are made on the incoming data. Comp/Reduce II operates on all 13 C/R inputs, but
can only include one of the Floating Port values. The OR Plane takes both Floating
Ports (so that it can combine the outputs), but only takes 4 bits of the C/R inputs.
Any 4 can be selected as part of the design’s meta-configuration.

One final bit of meta-configuration selects the source of the Control Bit: C/R 11

or OR plane.

46

Chapter 6

MATRIX Architecture Overview
I1I: The Switches

As was described in Chapter 5, the BFU’s are connected to the interconnect network
through a set of eight switches. The architecture of these switches is unique, because

they provide the mechanism by which MATRIX can be meta-configured.

6.1 Switch Architecture

MATRIX switches operate in three modes: Static Value, Static Source, or
Dynamic Source. Each of these will be explained in more detail below. Figure 6-1
shows the architecture of a MATRIX switch. Each switch takes in values from the
30 network lines crossing a BFU (these are listed in Table 5.1).

The switch is controlled by a 10 bit configuration word. This word contains 8 bits
of data, and 2 bits which determine how the switch will interpret that data. This
combination constitutes the basis of MATRIX’s meta-configuration, as we will see

here and in later chapters.

6.1.1 Static Value

In Static Value mode, the switch passes the 8-bit data byte directly to its output,
as shown by the dark line on Figure 6-2. This allows port value to be set without

47

Local Output %
Level-1 %

8x8

Level-2

Level-3 %
Control Byte %

Network Inputs
30x8

5

4_}(714

Floating Port
Dynamic Control Input

8 FU Port
8|, 1
10
1 bit 1bit 8 bits
Configuration Static/ Constant/ | Data/
Word Dyanmic | Source Source Address

Figure 6-1: MATRIX Dynamic Switch Architecture

Local Output %
yS) Level-1 %
5
- 8x8 8
X Level-2
is 0 S<4wBFU Port
s
< Level-3 %
r 4
S 1
Control Byte %
5
%% 1,
Floating Port
Dynamic Control Input 10
1 bit 1bit 8 bits
Configuration]
Word Static Value Data

Figure 6-2: MATRIX Switch in Static Value Mode

48

Local Output %»
Level-1 %
Level-2 %L»»
Level-3 M»

Control Byte %

Network Inputs
30x8

Floating Port
Dynamic Control Input 10
1 bit 1bit 8 bits
nfiguration
Configuratio Static Source | Source Address
Word

Figure 6-3: MATRIX Switch in Static Source Mode

consuming network wires. For example, if a BFU is always performing add opera-
tions, the add instruction would be programmed into the configuration word for the
Fa Port’s switch, and the switch set to static value mode. This will fix the ALU oper-
ation to add without consuming network lines to broadcast that instruction. This is
especially useful for the Fm Port because, as was discussed in Chapter 4, the functions
controlled by this port are often constant during normal operation.

In addition to fixed instructions, this mode can be used to assert constant memory

addresses or insert specific constants into the BFU data ports, or onto the the network.

6.1.2 Static Source

In Static Source mode, the switch uses 5 bits of the data byte to select one of the
incoming network lines to pass its data onto the BFU port. Figure 6-3 shows the
paths used in this mode. This mode allows the data, instruction, and control paths

through the network to be statically set as part of the meta-configuration.

6.1.3 Dynamic Source

In Dynamic Source mode, the switch allows an outside source to control the cycle-

49

Local Output %»
Level-1 %
Level-2 %L»»
Level-3 M»

Control Byte %

Network Inputs
30x8

Floating Port
Dynamic Control Input 10
1 bit 1bit 8 bits
Configuration .
Word Dynamic | Source Unused

Figure 6-4: MATRIX Switch in Dynamic Source Mode

by-cycle selection of incoming network lines. This presents the 30—1 multiplexor to
the programmer who can use it as part of the meta-configured design. The MATRIX

switches use the floating ports to generate (select the source for) this dynamic control.

6.2 BFU Switches

The actual eight switches in every BFU are all variants of the switch described above.
The main differences are that the function ports (Fa and Fm) and the Floating Ports
(FP1 and FP2) do not support the dynamic source mode. This was done to simplify
the design because dynamic control for all ports seemed excessive.

In addition, the four BFU core ports (Fa, Fm, A, and B) all have registers attached,

in order to establish the pipeline stage on every BFU operation.

6.2.1 The Control Bit

As discussed in Chapters 4 and 5, the Control Bit generated by the control logic
changes the function of the ports. Figure 6-5 shows how this is done. Every switch
actually has two independent configuration words, and the Control Bit selects between

them. This mechanism allows the Control Bit to change the ALU operation, an

30

Local Output %
Level-1 %

Level-2 -8 8 BFU (A,B)
etwork Drivers (N1,N2)
8x8 Register on
Level-3 7 | A,B Ports Only

Network Inputs
30x8

Control Byte %

-—
FPout

Control Bit

[

Configuration Configuration
Word A Word B

Figure 6-5: Switch Architecture with Control Bit

input constant, a memory address, or even the datapath/control flow. If no change
is desired, the same data can be programmed in both configurations. Its important
to remember that a BFU’s Control Bit changes the operation of all eight switches

simultaneously.

6.3 Configuration Memories and Programming

Chapter 4 described how the BFU’s configuration memories were programmed through
the Configuration Memory Read/Write Enable bits in the Fm Port. The difficulty
with this system is that it requires the port configuration to exist in a known state
at startup, so it is possible to route the address/data pairs, as well as the enables
themselves, to the BFUs. In MATRIX this is accomplished by giving all of the con-
figuration memories on the chip several Global Contexts.

In the current prototype there are four such contexts, as shown in Figure 6-6.
Two of these (Contexts 2 and 3) are programmable, while the other two (Contexts 0

and 1) are hardwired.

51

Configuration Word

Global Mode Select

Global Context Select

| cx0 | ox1 | | cx2 | o3 |
Hardwired Programmable

Figure 6-6: Configuration Memory Structure

The hardwired contexts used to bootstrap the chip. When set to Context 0, a
MATRIX chip looks like a memory chip in write mode, so an external device can
generate address/data pairs to program both the configuration memories as well as
the main memories. Context 1 sets to the chip to act a memory in read mode, so
that a configuration state can be offloaded. More sophisticated uses of the hardwired
contexts are possible, such as a machine that will automatically load configurations
from a passive memory off-chip, or even complete designs to manage system-level
startup issues. For the sake of simplicity, these were not implemented in the initial
prototype.

The programmable contexts are the ones used to hold meta-configurations for
user applications. When originally conceived, MATRIX was intended to have a
“background-load” feature. This would allow a second meta-configuration to be
loaded while another was in use. The new design could then be swapped into opera-
tion in a single cycle, allowing MATRIX to change algorithms or even entire designs
rapidly. This turned out to be too complicated for the initial prototype. The cur-
rent design still allows designs to be rapidly swapped out, only now they cannot be

re-loaded without interrupting a running design.

52

Chapter 7

Prototype Implementation

The MATRIX prototype is being implemented in a 0.5pm, 3 metal layer CMOS
process. A complete BFU has been designed and floorplanned, and results of this
will be described below. However, timing analysis of the circuitry has not yet been
completed, so timing results are not available at this writing. Initial estimates suggest
that this prototype will be able to achieve a 10ns (100Mhz) cycle time.

One of the main goals of the layout was to keep the BFU as small as possible. As
we will see in Chapter 8, the performance of a MATRIX chip of a given size is directly
related to the number of BFUs that can be fit on it. The original targeted BFU size
was Immx1mm. As we will see, this turned out to be too difficult to accomplish on

this first pass design.

7.1 Floorplan

Figure 7-1 shows the floorplan design for a MATRIX BFU. The design evolved
from the BFU block diagram (Figure 4-1), with the main memory in the top center
and the switches feeding addresses and data in from the sides.

Figure 7-2 shows how the network wires travel across the BFU. The blue lines
(dark grey) are horizontal, red lines (light grey) represent the vertical wires. Data on
the wires is switches in the eight switches, and travels down to the registers. From

the registers the data is passed to the rest of the BFU, including the memory and

33

Network
Switches

Registers

Configuration
Memory

Network Drivers
OR Plane

Main

Memory

Network
Switches

Registers

Configuration
Memory

Figure 7-1: BFU Floorplan

'y

yyyyl

YYVYYWY

Yvyvyvy

\A

AARA

Figure 7-2: Network Wires Over A BFU

o4

| Component | Dimensions (ym) | Area (ym?) | Percentage |

| BFU | 1500x1200 | 18M | 100% |

MainMem 755x620 468,100 26%
ALU 230265 60,950 3.4%
Multiplier 215265 56,975 3.2%
Switches (700x67)x8 375,200 20.8%
Switch Config (284%x67)%x8 152,224 8.5%
Registers (186x67)x8 99,696 5.5%
ORplane 1050100 105,000 5.8%
C/R1 (60x50) %9 27,000 1.5%
C/RII (60x50) %21 63,000 3.5%
Drivers,

Misc Logic, 21.8%
Unused Area

Table 7.1: BFU Area Results

ALU.

The floorplan shown in Figure 7-1 is certainly not an optimal layout. For example,
if the switches, registers and switch configuration memories were built together, the
overall structure would be smaller, and probably faster, due to the large amount of
wiring currently used to connect these units.

However, even the current BFU design does not result in poor performance. A
BFU of 1.2mm x1.5mm allows a MATRIX chip consisting of a 10x10 array of BFUs
to be fabricated in a reasonable die size. A MATRIX chip of this size would have a

raw performance of 10 billion (8-bit) operations per second.

7.2 Area Results

Table 7.1 shows the breakdown in area usage of the BFU components. The whole

BFU is approximately 1.2mm x1.5mm. Some of the significant results of this are:

e The main memories account for 26% of the whole BFU area. This means that
the 256x8 bit size is not too large for this BFU. However, if the BFU were to
become smaller, this size will become quite significant. in a Immx1mm BFU,

this memory would consume nearly 47% of the area. Under those circumstances,

)

either a tighter memory design, or a smaller memory size would be required.

The switches, and their associated configuration memories and registers account
for 34.8% of the current BFU. This amounts to over 4% per switch. If the BFU
had been its targeted size, this would be nearly 63%, or nearly 8% per switch.
Clearly, a tighter layout would be required in order to make the BFU smaller.

Another possibility would be to reduce the size of the switches themselves. If
each switch took 15 inputs, instead of 30, the switches would fall to under 25%
of the current BFU size, or 44% of the Imm x 1mm BFU. If this option is chosen,
the network would have to be redesigned (which may be a good thing), because
there would be a large degree of asymmetry in which network lines were visible

to the BFU.

The actual computing logic is only 6.6% of the current BFU, or almost 12% of
a lmmx1mm BFU. Compared to the other component this is almost insignif-
icant. However, even though more functionality may balance the situation, its
probably more advantageous for the whole chip to reduce the size of the other

components instead of increasing the ALU.

The multiplier essentially doubles the size of the current ALU, but since the
ALU is so small (in comparison with everything else), the addition of the mul-

tiplier was a net win.

56

Chapter 8

MATRIX Application Example:
FIR

In order to illustrate how MATRIX works, this chapter will examine a simple applica-
tion in depth. The application used is a Finite Impulse Response (FIR) convolution,
a common primitive in signal processing. The problem is to take a set of k£ weights
{wy, wq, ... wi} and a sequence of samples {x1, x,...}, and compute a sequence of

results {y1, y2,...} according to:
Yi = Wi T + We - Tigr + 00+ Wk Tipk—1

where each wy - x; is called a Filter TAP. These examples are based on 8-bit sample

data (z;) and a 16-bit accumulate (y;).

8.1 Comparison Benchmark

In order to compare the efficiency and performance of MATRIX designs with more
conventional architectures, we will employ the metric of functional density, similar

to the one used in [5]. Functional density measures the capacity per unit area of

I am indebted to André DeHon for working through the details of these examples. This material
first appeared in [13].

57

a device. The capacity of a device is roughly the number of unit operations it can
perform in a unit of time.

In this case, we will measure the number of filter TAPs per unit area. We will
use the second (s) as the unit of time. The unit area will be in terms of A?, where
A is one-half the minimum feature size of the process used (a lpm process would
have a A of 0.5um). This will help to eliminate advantages due to superior process
technologies so we can evaluate devices in terms of their architectures only. The

resulting benchmark looks like:

Filter TAPs
A2 .5

The advantage of using a capacity-based measurement, especially when process
technology variations have been normalized out, is that we can compare the efficiency
with which an architecture utilizes its silicon area for a the given task. Because the
amount of normalized silicon area used is directly related to the raw cost of fabricating
a chip, this measurement can be viewed as a kind of price/performance benchmark
rather than one of the maximum performance benchmarks traditionally used.

For all these examples we will be assuming a MATRIX BFU is 1.2mmx1.5mm,
in a 0.5um process (as shown in Chapter 7), giving it a size of ~ 29MA?. We will

assume a clock rate of 100MHz, giving a 10ns cycle.

8.2 Systolic - Spatial FIR

8.2.1 Implementation

Figure 8-1 shows a purely systolic or spatial implementation of the FIR filter, with
eight TAPs (k = 8). Every block in the array is a BFU configured to act as labeled.
The top row simply acts a staged pipeline, carrying the input down the row at one
cycle per step. The multiply cells perform the 8x8 multiplication against hardcoded
weights. The lower two rows accumulate the 16-bit results of the multiply operations.

This example uses the BFU ports in Static Value mode to set the function of

38

Xi —a Pass Pass Pass Pass Pass Pass Pass Pass

(8 bit) ! ! ! ! ! ! ! !
-] Add Add Add Add Add Add Add Add
Yi

(16 bit)
<—| Add Add Add Add Add Add Add Add

Figure 8-1: Systolic FIR Implementation

each of the BFUs as well as the weights on the multiply operations. In addition,
Static Source mode is used on the data inputs to define the datapaths (the arrows in
Figure 8-1).

The performance limiting step in this case is the multiply operation because it
takes two cycle to complete the 16 bits of result. As a result, new inputs can only be
fed in every other cycle, giving a throughput of 50MHz.

The implementation in Figure 8-1 uses 4 BFUs per filter TAP, but a more involved

implementation could:

o Use the horizontal Level-2 lines for pipelining the inputs, removing the need for

the top row of BFUs simply to carry sample values through the pipeline.

e Use both the horizontal and vertical Level-2 lines to retime the data flowing
through the add pipeline so that only a single BFU adder is needed per filter

tap stage. This is an example of an unplanned use of the Level-2 lines

e Use three I-stores and a program counter (PC) to control the operation of the
multiply and add BFUs, as well as the advance of samples along the sample
pipeline. This design would be a hybrid between the systolic implementation

and the microcoded example in Section 8.3.

39

Device MATRIX FPGA (XC4K)

Reference [CSPATI3 [4] App. Note [§]

Size 2 BFUs/TAP | 100 CLBs/TAP | 67 CLBs/16-TAPs
29M)\?/BFU 1.25M*/CLB

Speed 20 ns cycle 100 ns cycle 184 ns cycle

Density 0.87/A* - s 0.08/A* - s LO/A? -8

TAPs/)\ -s (symmetric)

Table 8.1: Systolic FIR Performance Density Comparison

Thus, the k-weight filter can be implemented with only 2k + 4 cells in practice.

8.2.2 Performance Density

Table 8.1 shows a density comparison between the MATRIX systolic FIR imple-
mentation and two other systolic FIR implementations, both done on Xilinx 4000-
series FPGAs. The second FPGA design is restricted to symmetric weights, while
both MATRIX and the first FPGA design can use fully flexible weights.

Using an average of 2 BFUs per TAP, at 50MHz, MATRIX compares favorably
even to the symmetric-weight FPGA design, and is a factor of 10 more dense than a

more typical FPGA design. In addition it has a much higher overall throughput.

8.2.3 Conclusions

As we will see, systolic designs can achieve the highest raw performance density of any
design styles on a general-purpose computing architecture. However, there are two
main drawbacks to systolic designs. First of all, they require resource to be allocated
for every operation to be performed. In this case, 2 BFUs are required for every
TAP desired, regardless of the clock rate. This sets a minimum area for these designs
which can grow to be quite large for many TAPs.

The second drawback is also related to the minimum area. If the application’s
required throughput is lower than that provided by the design, the design’s yielded

performance density decreases from the peak performance. For example, if an appli-

60

Xj

(8 bit)

- Yi
I— (16 bits output
I mf I b over 2 cycles)

Figure 8-2: Microcoded FIR Implementation

cation required an FIR at 25MHz, the MATRIX design would yield at ~ 0.4 - A% - 5.1

Systolic designs have no means of taking advantage of the extra time alloted.

8.3 Microcoded - Temporal FIR

8.3.1 Implementation

Figure 8-2 shows a microcoded design of an FIR filter. Rather than dedicating
BFU to performing dedicated functions, one BFU is being used to perform all the
required operations (the blue (dark grey) BFU marked “ALU”). The BFU’s main
memory is being used as a register file to store the coefficient weights (wy) as well as
six intermediate variables.

Six additional BFUs are used as instruction stores to hold the microcoded pro-
gram. These BFUs use their main memories as 256 byte blocks, and do not use their

ALUs for any computation. The purpose of each are as follows:
I, and [}, are used to store the A and B register addresses.
L1, and I, are used to store the ALU operation, and Fm Port function, respectively.

The I;,. memories control the dynamic behavior of the A and B ports (through the
FP1 and FP2 ports). This is an example of ports being used in Dynamic Source

'Tt may be worth noting that neither FPGA implementations could achieve this rate all.

61

Label

ALU Op

PC

newsample

xpcontl

Rxp < Rxp + 1 ; Match (k£ + 1) (6 bits)
< Rxp > < new z;
Rxp «— 65

< Rxp > < new z;
Rs «— < Rxp >

Rwp «— 1

Rw «— < Rwp >

Rs «— Rs x Rw

Rw «— Xx-continue

Rl — Rs; Match false
Rh — Rw

BNE xpcontl
(pipelined branch slot)

BNE enterloop
(pipelined branch slot)

innerloop

enterloop

xpcont?2

Rs «— Rs x Rw

Rw «— Xx-continue

Rl — Rs + RI

Rh «— Rw +-continue Rh

Rxp < Rxp + 1 ; Match (k£ + 1) (6 bits)
Rs «— < Rxp >

Rxp «— 65

Rs «— < Rxp >

Rwp < Rwp + 1 ; Match (k + 1) (6 bits)
Rw «— < Rwp >

BNE xpcont2
(pipelined branch slot)

BNE innerloop
(pipelined branch slot)

last

read Rl ; Match false
read Rh

BNE newsample
(pipelined branch slot)

mode. During normal operation, the A and B ports are being used to supply
the register addresses for the internal calculation. However, in order to load
a new sample value, these ports must switch to loading data from an external

source. This is accomplished using the dynamic port mode on the A and B

ports.

Finally, a single BFU has been configured to supply the lookup address for the
[-stores. This Program Counter (PC) is setup to either increment its counter, or load
a new counter value from its internal memory, based on the current operational step.

Table 8.2 shows the microcode for the FIR computation. The 8 BFUs shown in
Figure 8-2 produce a new 16-bit result every 8k + 9 cycles (k is the number of filter
TAPs). The result is output over two cycles. In this example, & < 61 because of

the limited space in the ALU’s register file memory. Larger FIRs could be supported

Table 8.2: Microcode for FIR Computation

using additional BFUs to store the extra sample and coefficient values.

62

Device MATRIX MIPS-X NEC VSP8 1996 Alpha
MSTEP 32b mpy 64b mpy

Reference [SSCC8T [10] [14] [SSCCI6 [9]
Size 8 BFUs 1 die 1 die 1 die
Area 29M\?/BFU 68MA? 1.2GA? 6.8G A\
Clock Rate 10 ns cycle 50 ns cycle 10 ns cycle 2.3 ns cycle
Throughput || 8 cycles/TAP | 10+ cycles/TAP | 4 cycles/TAP | 1 cycle/TAP
Density 0.054/X% -5 0.029/X% -5 0.022/X% -5 | 0.064/\% -5
TAPs/)\ -s

Table 8.3: Microcoded FIR Performance Density Comparison

8.3.2 Performance Density

Table 8.3 compare the performance density of the microcoded MATRIX design
with three modern microprocessor architectures. Of these, the NEC VSP8 and the
DEC Alpha have hardwired multipliers, while the MIPS-X has only a multiply-step
operation. As we can see, MATRIX compares very well to these designs, beating out
all but the Alpha.

The main reason the microprocessors performed poorly against the MATRIX de-
sign, is the fact that they tied up their entire chip performing the simple 8-bit FIR,
while MATRIX was able to free whatever space remained on the die to performing
other operations. This demonstrates the one of the main inefficiencies of traditional
microprocessor architectures: unneeded on-chip resources are wasted when not in
use. In modern microprocessors, a large amount of chip area is dedicated to caches
designed to handle rapidly changing, random instruction streams. On regular appli-
cations such as FIR this area goes mostly unused. In addition the large datapath

widths (64 bits on the Alpha) are unneeded in this 8-bit FIR example.!

8.3.3 Conclusions

Microcoded designs provide a mechanism for reusing functional blocks to perform

multiple operations in time. As a result they are very useful when there is a lim-

!This is not an unreasonably small size - most signal processing applications require FIRs no
larger than 16 bits.

63

PC I

| alu
! ! I X{ @it

!
l, —>1 Xptr W ptr Yi

alu src w

(16 bits output
over 2 cycles)

Figure 8-3: Custom VLIW FIR Implementation

ited amount of space available. In fact, microprocessor architectures were originally
conceived as a method of efficiently using the very limited (at the time) silicon area
available. However, modern microprocessors do not suffer this restriction, yet con-
tinue to follow the same design methodology. As a result, their performance density
has suffered in comparison to other architectures.

The major drawback for microcoded designs is that due to the need to perform
all operations on a single unit, every application will require a minimum amount of
time to run. One possible solution to this was mentioned in Section 8.2 - create a
hybrid systolic/microcoded design. In such a design, the systolic logic would handle
the high required throughput portions of the application, while the microcoded logic
would handle the control and infrequently needed functions. The combination of the
two would be smaller than a pure systolic array, but faster than a pure microcoded
design.

Another possible solution is presented in Section 8.4, below.

8.4 Custom VLIW FIR

8.4.1 Implementation

Figure 8-3 shows a custom VLIW implementation of an FIR filter. This exam-
ple takes advantage of the parallism inherent in the FIR computation to construct
application-specific datapaths, while maintaining a temporal computing style.

As shown in Figure 8-3, there are four BFU allocated to performing computation:

64

Label Xptr unit Wptr unit MPY unit ~+-unit

firstsample Xptr—64 Wptr—0
output Xptr output Wptr < Xptr > < new x;
nextsample Xptr++ mod k | 64 Wptr++ < Xptr > X < Wptr >
output Xptr output Wptr X-continue Rlow — MPY-result
Xptr++ mod k | 64 Wptr++ < Xptr > X < Wptr > Rhigh— MPY-result
output Xptr output Wptr X-continue Rlow — Rlow 4+ MPY-result
innerloop Xptr++ mod k | 64 Wptr4+4; Match k& < Xptr > X < Wptr > Rhigh— Rhigh + MPY-result
output Xptr output Wptr X-continue Rlow — Rlow 4+ MPY-result
last output Xptr output Wptr < Xptr > X < Wptr > Rhigh— Rhigh + MPY-result
Xptr++ mod k | 64 Wptr—0; Match false X-continue Rlow | — Rlow 4+ MPY-result
output Xptr output Wptr < Xptr > <« new z; Rhigh |— Rhigh 4+ MPY-result

Table 8.4: VLIW Microcode for FIR Computation

one each for the multiply and add operation, one to manipulate the sample pointer
(Xptr), and one to manipulate the coeffient pointer (Wptr). There are also six BFUs
allocated as instruction stores, and one BFU for serve as a program counter. This
arrangement makes it possible to reduce the inner loop of the FIR computation to
two steps, as shown in Table 8.4. The boxed values in last column are the pair of y;
output bytes at the end of each convolution.

As shown in Figure 8-3, this implementation requires 11 BFUs and produces a
new 16-bit result every 2k + 1 cycles. As in the microcoded example the result is
output over two cycles on the ALU output bus. The number of weights supported is
limited to £ < 64 by the space in the ALU’s memory.

Most of the I-stores used in this design contain only a few instructions. With clever
use of the control PLA and configuration words, the number of I-stores can be cut
in half making this implementation no larger than the microcoded implementation,

while still being four times faster.

8.4.2 Performance Density

Table 8.5 compares the performance density of the MATRIX VLIW FIR imple-
mentation with a modern DSP chip. The DSP uses a similar VLIW approach to
performing FIR computations. In this case, the DSP’s slower clock rate and larger
area gave it a significantly lower performance density. While DSPs have tailored
their datapath to performing signal processing operations, they include many more

hardwired functional units, most of which are not needed for a given application.

65

Design MATRIX Toshiba 16b DSP
Reference CICC92 [17]
Size 11 BFUs 1 die
Area 29M)\?/BFU 275M\?
Clock Rate 10 ns cycle 50 ns cycle
Throughput || 2 cycles/TAP 1 cycle/TAP
Density 0.16/A* - s 0.072/* - s
TAPs/)\ -s

Table 8.5: VLIW FIR Performance Density Comparison

8.4.3 Conclusions

This example demonstrates the advantages of customizing a datapath to an individual
application. The VLIW approach to a problem improves the performance of temporal

designs with a usually minimal area cost.

8.5 Hybrid FIR Architectures

Microcoded and VLIW designs allow MATRIX to take advantage of a lower desired
throughput to reduce the chip area required for the computation. This saved area
could be used to perform other computations, or could be used to perform the same
computation in parallel. For example, a MATRIX chip with 64 BFUs could, theo-
retically, perform 8 microcoded, or 5 VLIW, FIR computations in parallel simply by
dedicating a separate microcoded design to each FIR.

It each FIR computation is running at a different rate, or in different time-steps,
this is the best that can be done. However, if the FIRs can be run in lock-step, a
drastic improvement can be made. Figure 8-4 shows a Multiple-SIMD /VLIW hybrid
FIR Implementation. A single VLIW control structure, running the code shown in
Table 8.4, controls 6 parallel FIR computations. The whole structure requires 21
BFUs which is one-third the size of 6 independent VLIW designs.

Many other hybrids are possible, depending on the flexibility and requirements
Hardware optimizations like these are only possible on

of specific applications.

MATRIX-like architectures which allow users to completely define the computing

66

PC I

alu

alu

X Xptr | _Wptr

Figure 8-4: VLIW/MSIMD Hybrid FIR Implementation

structure that ideally suits the problem.

8.6 Summary

Table 8.6 shows the performance density results for the FIR example running on
several different architectures. The “XC4K” is a Xilinx 4000-series FPGA. A CLB
is a 4—1 combinational logic block, the basic unit of Xilinx FPGAs. PADDI2 is an
experimental MIMD device with 16-bit execution units (EXUs). Two fully custom
FIR chips have been included for comparison.

As we can see, MATRIX designs are comparatively dense, or even better, than
similar architectures. In addition, as we have seen, MATRIX has the ability to
change its design to match application requirements and flexibility, giving it a robust

performance density across a wide range of applications.

67

Filter TAPs

Architecture Reference Area and Time TS
16b DSP [SSCC86 [21] 125 ns/TAP 0.090
CICC92 [17] 50 ns/TAP 0.072
32b RISC MSTEP MIPS-X [10] 50+ ns/TAP 0.029
32b RISC/DSP VSP8 [14] 40 ns/TAP 0.022
64b RISC 1996 Alpha [9] 2.3 ns/TAP 0.064
systolic 2 BFUs, 20ns/TAP 0.87
MATRIX microcode 8 BFUs, 80ns/TAP 0.054
VLIW 11 BFUs, 20ns/TAP 0.16
XC4K App. Note [8] | 64 CLBs, 184 ns/16-TAPs 1.0
ICSPAT93 [4] | 400 CLBs, 100ns/4-TAPs 0.080
PADDI2 [SSCCY5 [22] 5 EXUs, 20ns/TAP 0.93
Full Custom JSSC89 [16] 45ns/64-TAPst 6.1
JSSCI0 [7] 33ns/16-TAPs 3.5

T — symmetric filter; § — 24-bit accum.

Table 8.6: FIR Survey - 8x8 multiply, 16-bit Accumulate

63

Chapter 9

Relationship to Conventional

Computing Devices

As we have seen, MATRIX is capable of changing its architectural structure in order
to match application needs. This makes the task of comparing it to other conven-
tional architectures which cannot change their structure difficult. Table 2.1 classified
conventional architectures by the instruction/control allocation choices they made
(Chapter 2). This chapter will examine these architectures and compare the choices

they made with MATRIX implementations of those architectures.

9.1 Systolic Architectures

As discussed in Chapter 2, systolic architecture compute spatially, and therefore do
not have any control threads. Table 2.1 list three different kinds of systolic architec-

tures:

Hardwired Functional Units are included here as a special case since they are
not general-purpose architectures. Hardwired units fix all of their functionality

choices at fabrication time, and are not programmable.

FPGAs are fine-grain programmable systolic arrays. Due to their granularity, they

typically have a large number of basic units on a die (large n). Due to its

69

l | |
B 8 [t
| || |

R X N W

Posit{on Count |!

Figure 9-1: Best Match Detector - Systolic Array

basic 8-bit granularity MATRIX cannot implement these architectures, but will
generally perform much better against FPGAs implementations of coarser-grain

computations.

Reconfigurable ALUs are coarse-grain programmable systolic arrays. At first glance,
a MATRIX array looks a great deal like these devices, especially when pro-
grammed to perform systolic operations. Figure 9-1 shows an example of a
MATRIX array acting as an array of reconfigurable ALUs. The computation

shown is a best-match detector used in video compression applications.

While MATRIX can act like an array of reconfigurable ALUs (at a multiple-of-8
granularity), it is not a systolic array because of its ability to temporally reuse
its resources. As we saw in Chapter 8, this ability allows MATRIX to take

advantage of application flexibility in ways traditional systolic arrays cannot.

9.2 Traditional and SIMD Processors

Moving down on Table 2.1, we begin to see devices that temporally reuse their re-

sources. The first three types of these are traditional microprocessors and SIMD

70

Figure 9-2: 32 Bit Microprocessor

(Single Instruction, Multiple Data) or Vector (essentially wide-datapath SIMD) pro-
cessors. These three are similar in that they each have only one instruction stream
on the device.

Traditional processors use a single, usually very coarse grain (w = 32 or 64 bit)
ALU. Figure 9-2 shows an example of a (simple) traditional microprocessor architec-
ture implemented on MATRIX. The MATRIX implementation composes the 32-bit
datapath from 4 BFUs by creating a carry-chain. Three other BFUs store the 24-bit
instruction ([A op B — A] style operations), and one BFU serves as the program
counter.

In a similar manner, MATRIX can implement a SIMD or Vector machine. A single
program counter and set of instruction stores can control any number of processors,
as shown in Figure 9-3. MATRIX cannot emulate a bitwise SIMD array due to
the 8-bit granularity of the BFU, but it can implement a SIMD or Vector machine
built from multiple-of-8 datapaths. Datapaths are assembled by composing BFUs
through carry-chains. We saw an application-specific example of this processing style
in Chapter 8.

A number of other architectures have been proposed or built which can also adjust

71

Figure 9-3: SIMD System

to different datapath granularity. Typically, this is accomplished through segmentable
datapaths (e.g. [19] [1]). These generally exhibit SIMD instruction control for the
datapath, but can be reconfigured to treat the n bit datapath as k, 2-bit words, for
certain, restricted, values of k. Modern multimedia processors (e.g. [18] [6]) allow
the datapath to be treated as a collection of 8, 16, 32, or 64 bit words.

All of these architectures give users the ability to choose an appropriate granularity
for their computation. However, they all control these datapaths in a SIMD manner.
MATRIX allows not only flexible data-widths, but flexible control, as we will see in

the following sections.

9.3 Multi-Context Gate Arrays and VLIW Ma-
chines

Another group of device that have a single on-chip instruction thread are multi-
context gate arrays and VLIW (Very Long Instruction Word) machines. These devices
are categorized by having multiple instruction stream operating under a single thread

of control.

72

Figure 9-4: VLIW System

Multi-context gate arrays are FPGA-like devices which store multiple instruction
(configurations) on-chip. Several designs have been proposed including: the DPGA
[20] which provides a small number of instructions per basic look-up table (4 in
the current prototype), and VEGA [11] which provides 2048 instructions.! These
devices all fix the number instructions on-chip at fabrication time, making it hard
select the “correct” size of the instruction memories. While MATRIX cannot match
the fine-grain datapaths of the DPGA and VEGA, it can flexibly deploy instruction
memories (in 256 instruction chunks, on the current prototype) to more closely match
an application’s requirements.

VLIW machines are essentially coarse-grain versions of multi-context gate arrays
(or that the multi-context gate arrays are fine-grain VLIW machines). Figure 9-4
shows a generic VLIW machine implemented on MATRIX. A single program counter
(PC) controls three separate instruction streams. As discussed in Chapter 2, these
designs generally provide more processing power per unit area than MIMD machines,
but do not have the same control flexibility.

Various architectures, such as PADDI [3] choose a granularity (16 for PADDI),

'VEGA actually has multiple program counters and therefore functions as a MIMD machine.

73

Figure 9-5: 32 Bit MIMD System

and a instruction memory size (8 for PADDI). MATRIX allows a designer to choose
the VLIW architecture which best suits the application to the extent that the 8-bit

BFU allows. We saw an example of this in Chapter 8.

9.4 MIMD Machines

Devices utilizing more than one program counter (control unit) per die are con-
sidered MIMD (Multiple-Instruction, Multiple-Data) machines. Figure 9-5 shows an
generic 2-PC, 32-bit MIMD machine implemented on MATRIX. Just as in the VLIW
case, a variety of devices, such as PADDI-2 [22], have chosen a specific data point,

while MATRIX gives a designer the option of changing those choices.

9.5 Hybrid Architectures

Certainly not all applications fall into one of the traditional computing realms
discussed above. In order to efficiently deal with these cases a number of architectures,
including MSIMD (e.g. [2], [15]) have been developed. These devices allocate control

units among a set of processing units. Like MATRIX, these devices can deploy control

74

Figure 9-6: MSIMD System

units as applications require. Unlike MATRIX, the control and processing units are
not the same, nor do data and control travel over the same network. This limits the
structure and flexibility of any resource allocation. Figure 9-6 shows an example of
one possible MSIMD design on a small MATRIX array.

Many hybrid architectures are possible on MATRIX. We saw an application-

specific example of one in Chapter 8.

9.6 Summary

As we have seen in these examples, MATRIX covers nearly all the architectural pos-
sibilities listed in Table 2.1, as well as many that are not listed there. All the devices
listed on the table fix their place in the taxonomy at fabrication time. MATRIX,
on the other hand, can use its meta-configurability to implement nearly any of those

structures, and therefore cannot be fit into that classification.

75

Chapter 10

Conclusions

10.1 Results

The MATRIX prototype demonstrates the possibilities for meta-configurable archi-

tectures. These include:

e High Performance — The prototype architecture can support designs that
achieve a similar performance density to conventional commercial and academic

devices with similar computing styles.

e Flexibility - The MATRIX architecture can implement nearly any kind of

traditional architecture, while not fitting into any traditional classification.

e Architectural Advantages - MATRIX achieves its performance and flexibil-
ity without relying on exotic manufacturing technologies, and can therefore ride

the process technology curve along with all other architectures.

On the downside, MATRIX is so different from traditional architectures that stan-
dard methods of programming do not easily apply. MATRIX allows the programmer
to optimize the architecture while optimizing a program and the algorithm. This
multi-dimensional space is very difficult to search.

It is always possible to implement a conventional architecture on MATRIX, then

program it normally. However, this does not allow the application to take advantage of

76

MATRIX’s meta-configurability and its performance will suffer accordingly. In order
for meta-configurable architectures to come into widespread use, a new programming

methodology is needed.

10.2 Future Work

Meta-configurable architectures open up a very large space of architectures and sys-
tems that has not yet been explored. The MATRIX prototype is simply a single

datapoint in this space. Some avenues for future exploration include:

e Different Granularities — While meta-configuration does not make sense at
a very small or very large granularity, there is still a wide range of basic gran-

ularities that might work better than the 8 bits chosen for MATRIX.

e Different Internal Arrangement of the BFU - Perhaps a more flexible
BFU structure would be able to better deploy some of its resources without
consuming others. For example, a different BFU structure might make the
ALU available for computation even when the memory has been deployed as an

I-store.

e Different Network Structures — Network structures that more accurately
reflect the needs of applications, such as the inclusion of pipeline/retiming reg-

isters, will certainly improve the usability of these devices

e Hybrid Architectures — Coarse-grain blocks, such as the MATRIX BFU,
are not well suited for fine-grain control logic, and the distributed PLA is a
poor substitute for real fine-grain logic. Perhaps combining a MATRIX-like
architecture with FPGA-like fine-grain blocks would make creating control logic

much easier.

On the other hand, traditional microprocessor-like structures are very well-
suited for handing random control manipulations. Instead of FPGA-like logic,
perhaps the inclusion of a small microprocessor on a MATRIX array would

prove worthwhile.

77

e Programming Tools — As mentioned above, the programming methodolo-
gies required to create very high-performance designs on a meta-configurable
architecture are very different from traditional methods. A whole set of tools
needs to be developed so that designs can be quickly and easily mapped to
meta-configurable architectures like MATRIX.

10.3 Summary

All general-purpose computing devices can perform any operation, based on their
instruction stream. However, traditional general-purpose computing devices cannot
adapt the way in which they handle these instruction to match the application’s
requirements. Because of this, these devices are efficient only on a specific set of
applications. MATRIX, on the other hand, supports a meta-configuration layer which
allows applications to create a computing architecture which more closely matches

their requirements. This is accomplished through:

e Parallel, Configurable Dataflow — Datapaths can be wired up in an application-
specific manner allowing data to be delivered directly to their destinations,

rather than requiring special, load/store-like operations to move the data.

¢ As much Dynamic Control as Needed — Whenever an application needs to
change instructions or data on a cycle-by-cycle basis, resources can be allocated
to do so. On the other hand, when these things do not need to change, they
can be configured so they do not consume control or network resources, freeing

these resources for other needs.

e As much Regularity as Exploitable — Every instruction can be broadcast
to any number of functional units, so that regular operations do not consume

extra instruction memories and control units.

e Deployable Resources — Each BFU and network switch has unified instruc-

tion control, datapath, and memory resources, which can be deployed as needed

78

in an application. High-bandwidth applications, or parts of applications, can be
composed spatially, while low-bandwidth applications can save space by com-

posing application temporally.

These features allow MATRIX to yield high performance across a wide range of

applications.

79

Appendix A

BFU Model

This appendix contains the Verilog code for a MATRIX BFU model. The code

has been debugged and tested on a wide range of input vectors. It will be part of

a complete MATRIX chip model, which will be used to run applications until the

prototype chips are in.

A.1 Top Level BFU Module

/****************************/

/* Specifications for BFU.v */
[/ F Ak Ak A A KA KA KA K/

/*

*/

BFU is the model of a MATRIX BFU. See TN130 for details on its operation
and I/0 ports. (Hopefully all the names here will be the same as listed
in TN130)

The modules contained in this module are:

BFUcore, CompReduceI, Config, Control, Fport, Lidrivers, L2driver,
L3decode, L3driver, MAdd, NAport, TSregister.

A BFU has the following parameters:

X, Y : The BFU’s X and Y address in the array.

/ kK k ok ok kK k ok ok kkkkk /
/* Include Files */

80

/ kK k ok ok kK k ok ok kkkkk /
‘include "BFUcore.v"
‘include "CarryDecode.v"
‘include "Config.v"
‘include "Control.v"
‘include "Fport.v"
‘include "Lidrivers.v"
‘include "L2driver.v'"
‘include "L3decode.v"
‘include "L3driver.v'"
‘include "MAdd.v"
‘include "NAport.v"

‘ifdef CompReduce_defined
‘else
‘include '"CompReduce.v"
‘endif

‘ifdef TSregister_defined
‘else
‘include "TSregister.v"
‘endif

/ F Kk kkkkkokkkkk [/

/* Module BFU */
/ F Kk kkkkkokkkkk [/

module BFU(CLK, Gctx, start,
Li_N1, L1_N2, L1i_NE, L1_E1, L1_E2, L1i_SE,
Li_S1, L1_S2, Li_SW, Li_Wi, L1_W2, L1_NW,
CR_N1, CR_N2, CR_NE, CR_E1, CR_E2, CR_SE,
CR_S1, CR_S2, CR_SW, CR_W1, CR_W2, CR_NW,
Cin_N, Cin_E, Cin_S, Cin_W,
L2_Ni1, L2_N2, L2_E1, L2_E2, L2_S1, L2_S2, L2_Wi, L2_W2,
L3_vi1, L3_Vv2, L3_V3, L3_v4, L3_H1, L3_H2, L3_H3, L3_H4,
L3_Vien, L3_V2en, L3_V3en, L3_V4en,
L3_Hlen, L3_H2en, L3_H3en, L3_H4en,
Li_Nout, Li_Eout, Li_Sout, L1_Wout, CRout, Cout,
L2_1out, L2_2out);

/ kK ko ok kK okkkkk /

/* Parameters */
/ kK ko ok kK okkkkk /

parameter X = 0, Y = 0;
/%K kK ok ok ok sk ok ok ok ok sk sk k ok ok sk ok ok /

/* I/0 Declarations */
/%K kK ok ok ok sk ok ok ok ok sk sk k ok ok sk ok ok /

input [1:0] Getx;
input CLK, start;

81

input
input

input
input

input
input
inout

input
input

[7:0] L1_N1, L1_N2, L1_NE, L1_E1, L1_E2, L1_SE;
[7:0] L1_S1, L1_S2, L1_SW, L1_Wi, L1_W2, L1_NW;

CR_N1, CR_N2, CR_NE, CR_E1, CR_E2, CR_SE;
CR_S1, CR_S2, CR_SW, CR_Wi, CR_W2, CR_NW;

Cin_N, Cin_E, Cin_S, Cin_W;
[7:0] L2_N1, L2_N2, L2_E1, L2_E2, L2_S1, L2_S2, L2_W1, L2_W2;
[7:0] L3_v1, L3_V2, L3_V3, L3_V4, L3_H1, L3_H2, L3_H3, L3_H4;

[3:0] L3_Vien, L3_V2en, L3_V3en, L3_V4en;
[3:0] L3_Hlen, L3_H2en, L3_H3en, L3_H4en;

output [7:0] L1_Nout, L1_Eout, Li_Sout, Li_Wout, L2_1lout, L2_2out;
output Cout, CRout;

/[F kK k ok ok kK ok ok ok kkkkkk /

/* Internal Wires */
/[F kK k ok ok kK ok ok ok kkkkkk /

/* Port Outputs */
wire [7:0] Aout, Bout, Flout, FMout, Nlout, N2out, FPlout, FP2out;
wire [7:0] Aout_reg, Bout_reg, FAout_reg, Flout_reg;

/* Decoded Carries */
wire LeftCarry, RightCarry;

/* Special Input to Carry Decode */
wire AddSig;

/* BFUcore Output */
wire [7:0] BFUcore_out;

/* BFU Output */
wire [7:0] BFU_out;

/* Control Context */
wire CtrlCtx;

/* Control Outputs */
wire CtrlBit;
wire [7:0] CtrlByte;

/* L3

Enables */

wire Vien, V2en, V3en, V4en, Hien, H2en, H3en, H4en;

/* MAdd Values */
wire [7:0] MAdd1, MAdd2;

/* Config Read/Write Enable */

82

wire Conf_RE, Conf_WE;

/* Config Data Outputs */
wire [7:0] Main_Config, OR_Config;
wire [7:0] Config_ Out, Nilspecial;

/* Configuration Words */

wire LSB, MSB, CarryPipeline, TSenable, MAddisource, MAdd2source;
wire [2:0] LeftSource, RightSource;

wire [8:0] Fa_a, Fa_b, Fm_a, Fm_b;

wire [9:0] A_a, A_b, B_a, B_b;

wire [9:0] Ni_a, N1_b, N2_a, N2_b;

wire [8:0] FP1_a, FP1_b, FP2_a, FP2_b;

wire [3:0] L1_Enable;

wire [1:0] L2_1_Enable, L2_2_Enable;

wire [1:0] L2_1c, L2_2c;

wire [1:0] L3_V4c, L3_V3c, L3_V2¢c, L3_Vic;

wire [1:0] L3_H4c, L3_H3c, L3_H2c¢, L3_Hic;

wire [3:0] TS_A, TS_B, TS_Fa, TS_Fm, TS_FP1i;

wire [3:0] TS_FP2, TS_WE, TS_CR, TS_MAddi, TS_MAdd2;
wire [17:0] CRI_a, CRI_b;

wire [41:0] CRII;

wire [3:0] CRsel_1, CRsel_2, CRsel_3, CRsel_4;

wire CRIIsel, CtrlBitsel;

/***************************************/

/* Module Declarations and Connections */
/st s ok ok sk sk ske o o sk sk s o s sk sk sk o s ok sk sk s ook sk sk sk ok o ok sk sk ok /

/* Configuration Block */

Config #(X, Y)

Configuration(start, Getx, Aout_reg, Bout_reg, Conf_WE, Conf_RE, CLK,
Main_Config,
LSB, MSB, RightSource, LeftSource, TSenable,
MAddisource, MAdd2source, CarryPipeline,
Fa_a, Fa_b, Fm_a, Fm_b, A_a, A_b, B_a, B_b,
Ni_a, Ni_b, N2_a, N2_b, FP1_a, FP1_b, FP2_a, FP2_b,
L1_Enable, L2_1_Enable, L2_2_Enable,
L2_1c, L2_2c,
L3_V4c, L3_V3c, L3_V2c, L3_Vic,
L3_H4c, L3_H3c, L3_H2c¢, L3_Hlc,
TS_A, TS_B, TS_Fa, TS_Fm, TS_FP1, TS_FP2, TS_WE, TS_CR,
TS_MAdd1l, TS_MAdd2, CRI_a, CRI_b, CRII,
CRsel_1, CRsel_2, CRsel_3, CRsel_4, CRIIsel, CtrlBitsel);

/* Config Output */

Sel2 #(8) Config_sel(Main_Config,OR_Config,Config_Out,Aout_regl[6],start);
Sel2 #(8) Ni_sel(Niout,Config Out,Nispecial,Conf_RE,start);

/* Ports */

83

Fport Fa(BFUcore_out, L1_N1, Li_N2, Li_NE, Li_Ei, L1_E2, L1_SE,
Li_S1, L1.S2, L1_SW, L1 Wi, L1_W2, L1_NW,
L2_Ni, L2 N2, L2_E1, L2_E2, L2_S1, L2_S2, L2_Wi, L2_W2,
L3_V1, L3_V2, L3_V3, L3_V4, L3_H1, L3_H2, L3_H3, L3_H4, CtrlByte,
Fa_a, Fa_b, CtrlBit, FAout, start);
Fport Fm(BFUcore_out, L1_N1, Li_N2, Li_NE, Li_Ei, L1_E2, L1_SE,
Li_S1, L1.S2, L1_SW, L1 Wi, L1_W2, L1_NW,
L2_Ni, L2 N2, L2_E1, L2_E2, L2_S1, L2_S2, L2_Wi, L2_W2,
L3_V1, L3_V2, L3_V3, L3_V4, L3_H1, L3_H2, L3_H3, L3_H4, CtrlByte,
Fm_a, Fm_b, CtrlBit, FMout, start);

Fport FP1(BFUcore_out, L1_N1i, Li1_N2, L1_NE, Li_Ei, L1_E2, L1_SE,
Li_S1, L1_S2, Li_SW, Li_Wi, L1_W2, L1_NW,
L2_Ni, L2_N2, L2_E1, L2_E2, L2_S1, L2_S2, L2_W1, L2_W2,
L3_vi, L3_V2, L3_V3, L3_V4, L3_H1, L3_H2, L3_H3, L3_H4, CtrlByte,
FP1_a, FP1_b, CtrlBit, FPlout, start);
Fport FP2(BFUcore_out, L1_N1, Li1_N2, L1_NE, Li_Ei, L1_E2, L1_SE,
Li_S1, L1_S2, Li_SW, Li_Wi, L1_W2, L1_NW,
L2_Ni, L2_N2, L2_E1, L2_E2, L2_S1, L2_S2, L2_W1, L2_W2,
L3_vi, L3_V2, L3_V3, L3_V4, L3_H1, L3_H2, L3_H3, L3_H4, CtrlByte,
FP2_a, FP2_b, CtrlBit, FP2out, start);

NAport A(BFUcore_out, L1_N1, Li_N2, Li_NE, Li_Ei, Li_E2, Li1_SE,
Li_S1, L1.S2, L1_SW, L1 Wi, L1_W2, L1_NW,
L2_Ni, L2 N2, L2_E1, L2_E2, L2_S1, L2_S2, L2_Wi, L2_W2,
L3_V1, L3_V2, L3_V3, L3_V4, L3_H1, L3_H2, L3_H3, L3_H4, CtrlByte,
A_a, A_b, FPlout, CtrlBit, Aout, start);
NAport B(BFUcore_out, L1_N1, Li_N2, Li_NE, Li_Ei, L1_E2, L1_SE,
Li_S1, L1.S2, L1_SW, L1 Wi, L1_W2, L1_NW,
L2_Ni, L2 N2, L2_E1, L2_E2, L2_S1, L2_S2, L2_Wi, L2_W2,
L3_V1, L3_V2, L3_V3, L3_V4, L3_H1, L3_H2, L3_H3, L3_H4, CtrlByte,
B_a, B_b, FP2out, CtrlBit, Bout, start);

NAport N1(BFUcore_out, L1_N1i, Li1_N2, L1_NE, Li_Ei, Li1_E2, L1_SE,
Li_S1, L1_S2, Li_SW, Li_Wi, L1_W2, L1_NW,
L2_Ni, L2_N2, L2_E1, L2_E2, L2_S1, L2_S2, L2_W1, L2_W2,
L3_vi, L3_V2, L3_V3, L3_V4, L3_H1, L3_H2, L3_H3, L3_H4, CtrlByte,
Ni_a, Ni1_b, FPlout, CtrlBit, Nilout, start);
NAport N2(BFUcore_out, L1_N1i, Li1_N2, L1_NE, Li_Ei, Li1_E2, L1_SE,
Li_S1, L1_S2, Li_SW, Li_Wi, L1_W2, L1_NW,
L2_Ni, L2_N2, L2_E1, L2_E2, L2_S1, L2_S2, L2_W1, L2_W2,
L3_vi, L3_V2, L3_V3, L3_V4, L3_H1, L3_H2, L3_H3, L3_H4, CtrlByte,
N2_a, N2_b, FP2out, CtrlBit, N2out, start);

/* Port Registers */

TSregister #(8) FAreg(FAout, L3_H4[3:0], FAout_reg, TSenable, TS_Fa,
CLK, start);

TSregister #(8) FMreg(FMout, L3_H4[3:0], FMout_reg, TSenable, TS_Fm,

CLK, start);

TSregister #(8) Areg(Aout, L3_H4[3:0], Aout_reg, TSenable, TS_A,

84

CLK, start);
TSregister #(8) Breg(Bout, L3_H4[3:0], Bout_reg, TSenable, TS_B,
CLK, start);

/* Control Stuff */

CompReducel #(9) CRI({Cout,BFUcore_out}, CRI_a, CRI_b, CtrlCtx,
CRout, start);

Control Ctrl({CRout,CR_N1,CR_N2,CR_NE,CR_E1,CR_E2,CR_SE,
CR_S1, CR_S2, CR_SW, CR_W1, CR_W2, CR_NW},
FPlout, FP2out, CtrlBit, CtrlByte, CLK, Gctx,
Aout_reg, Bout_reg, Conf_WE, Conf_RE, start,
OR_Config,
CRII, CRIIsel, CRsel_1, CRsel_2, CRsel_3, CRsel_4, CtrlBitsel,
TSenable, L3_H4[3:0], TS_CR, TS_FP1, TS_FP2);

/* Network Drivers (and Decoder) */

L3decode #(X,Y) L3decoder(L3_Vien, L3_V2en, L3_V3en, L3_V4en,
L3_Hlen, L3_H2en, L3_H3en, L3_H4en,
Vien, V2en, V3en, V4en, Hlen, H2en, H3en, H4en,
start);

Lidrivers Liout(BFUcore_out, L1_Enable, start,
L1i_Nout, Li1_Eout, Li1_Sout, Li_Wout);

L2driver L2_1(Niout, N2out, FPlout, FP2out, L2_1out, L2_1ic,
L2_1_Enable, CLK, start);

L2driver L2_2(Niout, N2out, FPlout, FP2out, L2_2out, L2_2c,
L2_2_Enable, CLK, start);

L3driver Vi(Niout, N2out, FPlout, FP2out, L3_V1, L3_Vic,
Vien, CLK, start);

L3driver V2(Niout, N2out, FPlout, FP2out, L3_V2, L3_V2c,
V2en, CLK, start);

L3driver V3(Nispecial, N2out, FPilout, FP2out, L3_V3, L3_V3c,
V3en, CLK, start);

L3driver V4(Niout, N2out, FPlout, FP2out, L3_V4, L3_V4c,
V4en, CLK, start);

L3driver Hi(Niout, N2out, FPlout, FP2out, L3_H1, L3_Hlc,
Hien, CLK, start);

L3driver H2(Niout, N2out, FPlout, FP2out, L3_H2, L3_H2c,
H2en, CLK, start);

L3driver H3(Niout, N2out, FPlout, FP2out, L3_H3, L3_H3c,
H3en, CLK, start);

L3driver H4(Niout, N2out, FPlout, FP2out, L3_H4, L3_H4c,
H4en, CLK, start);

/* MAdd Cell */

89

MAdd MAdd_decode(L1_N1, L1_NW, FPlout, FP2out, MAddlsource, MAdd2source,
TSenable, L3_H4[3:0], TS_MAdd1, TS_MAdd2, CLK,
start, MAdd1l, MAdd2);

/* Carry Decoder */

CarryDecode Cdecode(CLK, CarryPipeline, LeftSource, RightSource, Cin_N,
Cin_E, Cin_S, Cin_W, Cout, CtrlBit, LeftCarry,
RightCarry, AddSig, start);

/* BFU Core */

BFUcore Core(Aout_reg, Bout_reg, FAout_reg, FMout_reg, LeftCarry,
RightCarry, CLK, MAddil, MAdd2, BFUcore_out, Cout, LSB, MSB,
TSenable, TS_WE, L3_H4[3:0], CtrlCtx, Conf_WE, Conf_RE,
AddsSig, start);

endmodule

86

A.2 Main BFU Modules

/************************************/

/* Specifications for CarryDecode.v */
[/ F A A A A A A A A A KK AR Ak KKKk

/* This module handes the selection of the carry-in for the ALU. It takes in
the local configuration information (CarryPipeline, LeftSource,
RightSource) and the six possible sources (N,E,S,W,Local, and Control) and
selects the appropriate one (or a constant) for Cin_left and Cin_right.

In addition, this module impliments logic that, on an add operation using
a local carry (right), the pipeline is always used.

*/

/ kK k ok ok kK k ok ok kkkkk /

/* Include Files */
/ kK k ok ok kK k ok ok kkkkk /

‘ifdef selector_defined
‘else
‘include "Selector.v'"
‘endif

/% 3k ok ok ok ok sk ok ok ok ok sk ok ok sk sk %k ok sk ok ok /

/* CarryDecode Module */
/% 3k ok ok ok ok sk ok ok ok ok sk ok ok sk sk %k ok sk ok ok /

module CarryDecode (CLK, CarryPipeline, LeftSource, RightSource, Cin_N,
Cin_E, Cin_S, Cin_W, Cin_Local, CtrlBit, Cin_left,
Cin_right, AddSig, start);

input [2:0] LeftSource, RightSource;

input Cin_N, Cin_E, Cin_S, Cin_W, Cin_Local, CtrlBit;
input CLK, CarryPipeline, AddSig, start;

output Cin_left, Cin_right;

/% 3k ok ok ok ok sk ok ok ok ok sk ok k ok sk ok ok ok ok %k /

/* Internal Registers */
/% 3k ok ok ok ok sk ok ok ok ok sk ok k ok sk ok ok ok ok %k /

reg Left, Right; /* Selected Carries */
reg Left_reg, Right_reg; /* Registered Carries */

/[F kK k ok ok kK ok ok ok kkkkkk /
/* Begin Decoding */

/[F kK k ok ok kK ok ok ok kkkkkk /

always Q@(LeftSource or start)

87

begin
case (LeftSource)
2°d0: /* North */
assign Left = Cin_S;
2’d1: /* East */
assign Left = Cin_W;
2’d2: /* South */
assign Left = Cin_N;
2°d3: /% West */
assign Left = Cin_E;
2’d4: /* Local */
assign Left = Cin_Local;
2’d5: /* Control Bit */
assign Left = CtrlBit;
2’d6: /* Constant Zero */
assign Left = 1°b0;
2’d7: /* Constant One */
assign Left = 1’bi;
default
assign Left = 1’bz;
endcase
end /* Left Decoding */

always Q(RightSource or start)
begin
case (RightSource)
2°d0: /* North #*/
assign Right = Cin_S;
2°d1l: /* East */
assign Right = Cin_W;
2°d2: /* South */
assign Right = Cin_N;
2°d3: /* West */
assign Right = Cin_E;
2’d4: /* Local #*/
assign Right = Cin_Local;
2’d5: /* Control Bit */
assign Right = CtrlBit;
2’d6: /* Constant Zero */
assign Right = 1°b0;
2°d7: /* Constant One */
assign Right = 1°bi1;
default
assign Right = 1’bz;
endcase
end /* Right Decoding */

/% 3k sk ok ok ok ok sk ok ok ok ok sk ok ok ok sk ok kok ok /

/* Output Assignment */
/% 3k sk ok ok ok ok sk ok ok ok ok sk ok ok ok sk ok kok ok /

always Q(posedge(CLK) or start)
begin

Left_reg = Left;
Right_reg = Right;
end

Sel2 #(1) LeftSel(Left, Left_reg, Cin_left, CarryPipeline, start);
Sel2 #(1) RightSel(Right, Right_reg, Cin_right,
(CarryPipeline || ((RightSource === 4°d4) &&
(AddSig === 1°b1))),
start);

endmodule

89

/*******************************/

/* Specifications for Config.v */
[/ F kR ko k sk ko ks koo k ok ok ok ok

/* The Config module contains two configuration memories, and the logic to
deocde those memories into the actual configuration words (listed below).
Also in this module are the constant configurations.

This module does not handle the OR plane.

Note that the high bit of ProgAdd selects between the two programmable
contexts for programming.

The Hardwired Contexts:

Ctx0: Write Context
L3_V1 : <WEmain (1 bit), 5’b0, WEconfig (1 bit), 1’bO>
Fed into BOTH function ports.
L3_V2 : <2’b0, RowAddress (3 bits), ColAddress (3 bits)>
Decoded intro a control bit by C/R II, through FP1.
L3_V3 : Memory Address (A port)
L3_V4 : Data (B port)

In this context, the L3_H lines would be driven with their
matching L3_V line (ie: L3_H1 = L3_V1), on a one-cycle delay.

On a real chip, these lines would be driven in at least one row,
so that the north-side inputs (programming) are available to the
other sides.

Ctxl: Read Context
Uses L3_V1 as the memory address, and
L3_V2 as the main memory/config memory selection (Fm Port).

L3_V3 is the output line.
Row selection is performed by the perimeter L3 controllers.

Inputs:

Getx : Global Context Select (2 bits)

ProgAdd: Programming Address (8 bits)

ProgDara: Programming Data (8 bits)

PWE: Programming Write Enable (1 bit)

PRE: Programming Read Enable (1 bit)

CLK: Global Write Clock (1 bit)

start : The model-specific initalization forces this module to re-read its
files.

Outputs:
MSB, LSB, CarryPipeline (1 bit each) : BFUcore configuration
TS_Enable, MAddisource, MAdd2source : BFUcore configuration

RightSource, LeftSource (3 bits each) : BFUcore configuation

Fa_a, Fa_b (9 bits each) : ALU Function Port

90

Fm_a, Fm_b (9 bits each) : MEM Function Port

A_a, A_b (10 bits each) : A Address Port
B_0, B_O (10 bits each) : B Address Port

Ni_a, N1_b (10 bits each) : Network Port 1
N2_a, N2_b (10 bits each) : Network Port 2

FPi_a, FP1_b (9 bits each) : Floating Port 1
FP2_a, FP2_b (9 bits each) : Floating Port 2

L1_Enable (4 bits): Level-1 Driver Enables
L2_1_Enable (2 bits): Level-2 Driver 1 Enables
L2_2_Enable (2 bits): Level-2 Driver 2 Enables

L2_1 (2 bits): Level-2 Driver 1 Selector
L2_2 (2 bits): Level-2 Driver 2 Selector

L3_V4, L3_V3, L3_V2, L3_V1 (2 bits each): Level-3 Driver Selectors
L3_H4, L3_H3, L3_H2, L3_H1 (2 bits each): Level-3 Driver Selectors

TS_A, TS_B, TS_Fa, TS_Fm (4 bits each): Time-Switch Register Values
TS_FP1, TS_FP2, TS_WE, TS_CR (4 bits each): Time-Switch Register Values
TS_MAdd1, TS_MAdd2 : Time-Switch Register Values

CRI_a, CRI_b (18 bits each) : Compare/Reduce I Configuration
CRII (42 bits) : Compare/Reduce II Configuration

CRsel_1, CRsel_2, CRsel_3, CRsel_4 (4 bits each): NOR Plane Input Selectors
CRIIsel (1 bit) : Compare/Reduce II Input Selector
CtrlBitsel (1 bit) : Control Bit Selector

*/

/ kK k ok ok kK k ok ok kkkkk /

/* Module Config */
/ kK k ok ok kK k ok ok kkkkk /

module Config(start, Getx, ProghAdd, ProgData, PWE, PRE, CLK,
DatalOut,
LSB, MSB, RightSource, LeftSource, TS_Enable,
MAddisource, MAdd2source, CarryPipeline,
Fa_a, Fa_b, Fm_a, Fm_b, A_a, A_b, B_a, B_b,
Ni_a, Ni_b, N2_a, N2_b, FP1_a, FP1_b, FP2_a, FP2_b,
L1_Enable, L2_1_Enable, L2_2_Enable,
L2_1, L2_2,
L3_v4, L3_v3, L3_Vv2, L3_V1,
L3_H4, L3_H3, L3_H2, L3_H1,
TS_A, TS_B, TS_Fa, TS_Fm, TS_FP1, TS_FP2, TS_WE, TS_CR,
TS_MAdd1l, TS_MAdd2, CRI_a, CRI_b, CRII,
CRsel_1, CRsel_2, CRsel_3, CRsel_4, CRIIsel, CtrlBitsel);

/ kK ko ok kK okkkkk /

91

/* Parameters */
/ kK ko ok kK okkkkk /

/* X and Y position of the BFU.

These are used for the constant configuations */
parameter X = 0;
parameter Y = 0;

/%K kK ok ok ok sk ok ok ok ok sk sk k ok ok sk ok ok /

/* I/0 Declarations */
/%K kK ok ok ok sk ok ok ok ok sk sk k ok ok sk ok ok /

input [1:0] Getx;
input [7:0] ProgAdd, ProgData;
input PWE, PRE, CLK, start;

output [7:0] DataOut;
reg [7:0] Datalut;

output LSB, MSB, TS_Enable, MAddisource, MAdd2source, CarryPipeline;
output [2:0] RightSource, LeftSource;

reg LSB, MSB, TS_Enable, MAddlsource, MAdd2source, CarryPipeline;
reg [2:0] RightSource, LeftSource;

output [8:0] Fa_a, Fa_b, Fm_a, Fm_b;
reg [8:0] Fa_a, Fa_b, Fm_a, Fm_b;

output [9:0] A_a, A_b, B_a, B_b;
reg [9:0] A_a, A_b, B_a, B_b;

output [9:0] Ni_a, Ni_b, N2_a, N2_b;
reg [9:0] Ni_a, Ni_b, N2_a, N2_b;

output [8:0] FP1_a, FPi_b, FP2_a, FP2_b;
reg [8:0] FPi_a, FP1i_b, FP2_a, FP2_b;

output [3:0] Li_Enable;

output [1:0] L2_1_Enable, L2_2_Enable;
reg [3:0] Li_Enable;

reg [1:0] L2_1_Enable, L2_2_Enable;

output [1:0] L2_1, L2_2;

output [1:0] L3_V4, L3_V3, L3_V2, L3_V1;
output [1:0] L3_H4, L3_H3, L3_H2, L3_H1;
reg [1:0] L2_1, L2_2;

reg [1:0] L3_V4, L3_V3, L3_V2, L3_Vi;
reg [1:0] L3_H4, L3_H3, L3_H2, L3_H1i;

output [3:0] TS_A, TS_B, TS_Fa, TS_Fm, TS_FP1;

output [3:0] TS_FP2, TS_WE, TS_CR, TS_MAdd1, TS_MAdd2;
reg [3:0] TS_A, TS_B, TS_Fa, TS_Fm, TS_FP1;

reg [3:0] TS_FP2, TS_WE, TS_CR, TS_MAdd1, TS_MAdd2;

92

output [17:0] CRI_a, CRI_b;
output [41:0] CRII;

reg [17:0] CRI_a, CRI_b;
reg [41:0] CRII;

output [3:0] CRsel_1, CRsel_2, CRsel_3, CRsel_4;
output CRIIsel, CtrlBitsel;

reg [3:0] CRsel_1, CRsel_2, CRsel_3, CRsel_4;
reg CRIIsel, CtrlBitsel;

/*************************************/

/* Define the Configuration Memories */
[/ F kR sk kKo kR kKR ok kR skok Kk kK ok

regl7:0] Ctx2[45:0];
reg[7:0] Ctx3[45:0];

/% 3k ok ok ok ok sk ok ok ok ok sk ok k ok sk ok ok ok ok %k /

/* Handle Programming */
/% 3k ok ok ok ok sk ok ok ok ok sk ok k ok sk ok ok ok ok %k /

always Q(posedge(CLK) && (PWE === 1°’b1))
begin
if (ProgAdd[6] === 1°b0)
begin
if (ProgAdd[7] === 1°b0)
Ctx2[ProghAdd[5:0]] = ProgData;
else

Ctx3[ProghAdd[5:0]] = ProgData;
end
end

/[F kK k ok ok kK ok ok ok kkkkkk /

/* Handle Reading */
/[F kK k ok ok kK ok ok ok kkkkkk /

always Q(posedge(CLK) && (PRE === 1°’b1))
begin
if (ProgAdd[7] === 1°b0)
DataOut = Ctx2[ProgAdd[5:0]];
else

DataOut = Ctx3[ProgAdd[5:0]];
end

/ K kodok ok ok ok ko skok sk sk ok ok ok ok skok ok ok /

/* Temporary Register */

/ K kodok ok ok ok ko skok sk sk ok ok ok ok skok ok ok /

/* Note that this are required because verilog does not support
bit-selects of memory elements */

93

reg [7:0] TempReg;

/**************************/

/* Handle Context Changes */
[/ Fokkk ok kR skok Kk ko kR ko ok /

always Q(start or Gectx or negedge(PWE))

begin
if (Getx === 2’40)
begin
MSB = 1°b0;
LSB = 1’b0;

RightSource = 3’d0;
LeftSource = 3°d0;

MAdd2source =
MAddisource =
TS_Enable = 1
CarryPipeline = 1°b0;

Fa_a
Fa_b
Fm_a
Fm_b

Ni_a
Ni_b
N2_a
N2_b

{
{
{
{

{1’vo,
{1'b1,
{1’vo,
{1'b1,

2'bi11,
2'bi11,
2'bi11,
2'bi11,

{2'b11
{2'b11
{2'b11
{2'b11

FPi_a = {1°b1
FP1_b = {1°b1
FP2_a = {1°b0,
FP2_b = {1°b0,

17b0;
17b0;

"b0;

B

B

87d0};
8°d21%};
87d0};
8°d21%};

87d23%};
87d23%};
87d24};
87d24};

87d24};
87d24};
87d23%};
87d23%};

87d22};
87d22};
8°d21%};
8°d21%};

L1_Enable = 4°b0000;

L2_1 = 2°d0;

L2_2 = 2°d0;

L2_1_Enable =
L2_2_Enable =
L3_V1 = 2’d0;
L3_V2 = 2’d0;
L3_V3 = 2’d0;
L3_V4 = 2’d0;
L3_H1 = 2’d3;

27100;
27100;

94

L3_H2 = 2°d2;
L3_H3 = 2’d1;
L3_H4 = 2°d0;
TS_A = 4°4d0;
TS_B = 4°d0;
TS_Fa = 4°d0;
TS_Fm = 4°d0;

TS_FP1 = 4°40;
TS_FP2 = 4°40;
TS_CR = 4°d0;
TS_WE = 4°d0;
TS_MAdd1l = 4°d0;
TS_MAdd2 = 4°d0;

CRI_a
CRI_b

{2°d0,2°d0,2°d0,2°d0,2°d0,2°d0,2°d0,2°d0,2°d0};
{2°d0,2°d0,2°d0,2°d0,2°d0,2°d0,2°d0,2°d0,2°d0};

CRII = {2’d3, 2’d3,Num2CR(Y),Num2CR(X),
27d3,2°d3,2°d3,2°d3,2’d3,2’d3,2°d3,
27d3,2°d3,2°d3,2°d3,2°d3,27d3};

CRsel_1 = 4°d40;
CRsel_2 = 4°40;
CRsel_3 = 4°d0;
CRsel_4 = 4°40;

CtrlBitsel = 1°b0;
CRIIsel = 1°bO;

end
if (Getx === 2’d1)
begin
MSB = 1°b0;
LSB = 1°b0;

RightSource = 3’d0;
LeftSource = 3°d0;

MAdd2source = 1°b0;
MAddlsource = 1°b0;
TS_Enable = 1’b0;
CarryPipeline = 1°b0;

Fa_a = {1’b0, 4’b0000, 4’d12};

Fa_b = {1’b0, 4’b0000, 4’d12};
Fm_a = {1°b0, 8’d22};
Fm_b = {1°b0, 8°d22};
A_a = {2°b11, 8°d21};
A_b = {2°b11, 8°d21};
B_a = {2’b00, 8°d30};
B_b = {2’b00, 8°d30};

Ni_a = {2’b11, 8°d0};

95

Ni_b = {2°b11, 8’d0};
N2_a = {2°b00, 8°d30};
N2_b = {2°b00, 8’d30};
FPi_a = {1°b0, 8°d30};
FP1_b = {1°b0, 8°d30};
FP2_a = {1°b0, 8°d30};
FP2_b = {1°b0, 8°d30};

L1_Enable = 4°b0000;

L2_1 = 2°4d0;

L2_2 = 2°4d0;
L2_1_Enable = 2’b00;
L2_2_Enable = 2’b00;
L3_V1 = 2°d0;

L3_V2 = 2°d0;

L3_V3 = 2°d0;

L3_V4 = 2°d0;

L3_H1 = 2°d0;

L3_H2 = 2°d0;

L3_H3 = 2°d0;

L3_H4 = 2°d0;

TS_A = 4°4d0;

TS_B = 4°d0;

TS_Fa = 4°d0;

TS_Fm = 4°d0;

TS_FP1 = 4°40;
TS_FP2 = 4°40;
TS_CR = 4°d0;
TS_WE = 4°d0;
TS_MAdd1l = 4°d0;
TS_MAdd2 = 4°d0;

CRI_a
CRI_b

{2°d0,2°d0,2°d0,2°d0,2°d0,2°d0,2°d0,2°d0,2°d0};
{2°d0,2°d0,2°d0,2°d0,2°d0,2°d0,2°d0,2°d0,2°d0};

CRII = {2’d3,2°d3,2’d3,2’d3,2°d3,2°d3,2’d3,
27d3,2°d3,2°d3,2°d3,2’d3,2’d3,2°d3,
27d3,2°d3,2°d3,2°d3,2°d3,2’d3,2°d3};

CRsel_1 = 4°d40;
CRsel_2 = 4°40;
CRsel_3 = 4°d0;

CRsel_4 = 4°d0;
CtrlBitsel = 1°b0;
CRIIsel = 1°bO;

end

if (Getx === 2°d2)

96

begin

TempReg = Ctx2[0];

MSB =
LSB =

TempReg[7];
TempReg[6] ;

RightSource = TempReg[5:3];
LeftSource = TempReg[2:0];

TempReg = Ctx2[1];
MAdd2source = TempReg[3];
MAddisource = TempReg[2];
TS_Enable = TempReg[1];
CarryPipeline = TempReg[0];

TempReg = Ctx2[6];

Fa_a
Fa_b
Fm_a
Fm_b

{TempReg[0],Ctx2[2]};
{TempReg[1], Ctx2[3]};
{TempReg[2], Ctx2[4]1};
{TempReg[3], Ctx2[5]};

TempReg = Ctx2[11];

A_a =
A_b
B_a
B_b

{TempReg[1:0], Ctx2[71};
{TempReg[3:2], Ctx2[81};
{TempReg[5:4], Ctx2[91};
{TempReg[7:6], Ctx2[10]%};

TempReg = Ctx2[16];

Ni_a
Ni_b
N2_a
N2_b

{TempReg[1:0], Ctx2[12]%};
{TempReg[3:2], Ctx2[13]};
{TempReg[5:4], Ctx2[14]1%};
{TempReg[7:6], Ctx2[15]%};

TempReg = Ctx2[21];

FP1_a
FP1_b
FP2_a
FP2_b

= {TempReg[0], Ctx2[17]1%};
= {TempReg[1], Ctx2[18]%};
= {TempRegl[2], Ctx2[191};
{TempReg[3], Ctx2[20]%};

TempReg = Ctx2[22];
L1_Enable = TempReg[3:0];

TempReg = Ctx2[23];
L2_1 = TempReg[1:0];

L2_2

TempReg[3:2];

TempReg = Ctx2[24];
L2_1_Enable = TempReg[1:0];
L2_2_Enable = TempReg[3:2];

TempReg = Ctx2[25];

L3_V1
L3_V2
L3_V3
L3_V4

= TempReg[1:0];
TempReg[3:2];
TempReg[5:4];
TempReg[7:6];

97

TempReg = Ctx2[26];
L3_H1 = TempRegl[1:0];

L3_H2 = TempRegl[3:2];
L3_H3 = TempRegl[5:4];
L3_H4 = TempRegl7:6];

TempReg = Ctx2[27];
TS_A = TempReg[3:0];
TS_B = TempReg[7:4];

TempReg = Ctx2[28];
TS_Fa = TempReg[3:0];
TS_Fm = TempRegl7:4]1;

TempReg = Ctx2[29];
TS_FP1 = TempReg[3:0];
TS_FP2 = TempReg[7:4];

TempReg = Ctx2[30];
TS_CR = TempReg[3:0];
TS_WE = TempRegl7:4]1;

TempReg = Ctx2[31];
TS_MAdd1 = TempReg[3:0];
TS_MAdd2 = TempRegl7:4];

TempReg = Ctx2[36];
CRI_a = {TempReg[1:0], Ctx2[33], Ctx2[32]%};
CRI_b = {TempReg[3:2], Ctx2[35], Ctx2[34]1};

TempReg = Ctx2[42];
CRII = {TempRegl[1:0], Ctx2[41], Ctx2[40],
Ctx2[39], Ctx2[38], Ctx2[371};

TempReg = Ctx2[43];
CRsel_1 = TempReg[3:0];
CRsel_2 = TempRegl[7:4];

TempReg = Ctx2[44];
CRsel_3 = TempReg[3:0];
CRsel_4 = TempRegl[7:4];

TempReg = Ctx2[45];

CtrlBitsel = TempReglO];

CRIIsel = TempReg[i];
end

if (Getx === 2°d3)
begin
TempReg = Ctx3[0];
MSB = TempRegl[7];
LSB = TempReg[6];
RightSource = TempReg[5:3];
LeftSource = TempReg[2:0];

98

TempRe
MAdd2s
MAddis

g = Ctx3[1];
ource = TempRegl[3];
ource = TempReg[2];

TS_Enable = TempRegl[1];

CarryP

TempRe
Fa_a =
Fa_b
Fm_a
Fm_b

TempRe
A_a =

A b
B_a
B_b

TempRe
Ni_a =
Ni_b
N2_a
N2_b

TempRe
FP1i_a
FP1_b
FP2_a
FP2_b

TempRe

ipeline = TempRegl0];

g = Ctx3[6];
{TempReg[0],Ctx3[2]};
{TempReg[1], Ctx3[3]};
{TempReg[2], Ctx3[4]1};
{TempReg[3], Ctx3[5]};

g = Ctx3[11];

{TempReg[1:0], Ctx3[71};
{TempReg[3:2], Ctx3[81};
{TempReg[5:4], Ctx3[91};
{TempReg[7:6], Ctx3[10]1%};

g = Ctx3[16];
{TempReg[1:0], Ctx3[12]%};
{TempReg[3:2], Ctx3[13]};
{TempReg[5:4], Ctx3[141%};
{TempReg[7:6], Ctx3[15]%};

g = Ctx3[21];

= {TempRegl[0], Ctx3[171};
{TempReg[1], Ctx3[18]};
{TempReg[2], Ctx3[19]%};
{TempReg[3], Ctx3[20]%};

g = Ctx3[22];

L1_Enable = TempReg[3:0];

TempRe
L2_1 =
L2_2 =

TempRe

g = Ctx3[23];
TempReg[1:0];
TempReg[3:2];

g = Ctx3[24];

L2_1_Enable = TempReg[1:0];
L2_2_Enable = TempReg[3:2];

TempRe
L3_v1
L3_V2
L3_V3
L3_v4

TempRe
L3_H1
L3_H2
L3_H3
L3_H4

g = Ctx3[25];

= TempReg[1:0];
= TempReg[3:2];
= TempReg[5:4];
= TempReg[7:6];

g = Ctx3[26];

= TempReg[1:0];
= TempReg[3:2];
= TempReg[5:4];
= TempReg[7:6];

99

TempReg = Ctx3[27];
TS_A = TempReg[3:0];
TS_B = TempReg[7:4];

TempReg = Ctx3[28];
TS_Fa = TempReg[3:0];
TS_Fm = TempReg[7:4];

TempReg = Ctx3[29];
TS_FP1 = TempReg[3:0];
TS_FP2 = TempReg[7:4];

TempReg = Ctx3[30];
TS_CR = TempReg[3:0];
TS_WE = TempRegl7:4]1;

TempReg = Ctx3[31];
TS_MAdd1 = TempReg[3:0];
TS_MAdd2 = TempRegl7:4];

TempReg = Ctx3[36];
CRI_a = {TempReg[1:0], Ctx3[33], Ctx3[32]};
CRI_b = {TempReg[3:2], Ctx3[35], Ctx3[34]1};

TempReg = Ctx3[42];
CRII = {TempRegl[1:0], Ctx3[41], Ctx3[40],
Ctx3[39], Ctx3[38], Ctx3[371};

TempReg = Ctx3[43];
CRsel_1 = TempReg[3:0];
CRsel_2 = TempRegl[7:4];

TempReg = Ctx3[44];
CRsel_3 = TempReg[3:0];
CRsel_4 = TempRegl[7:4];

TempReg = Ctx3[45];
CtrlBitsel = TempReglO];
CRIIsel = TempReg[i];
end
end /* Context Changes */

/********************************/

/* Number to CRconfig Converter */
[F kR ko kok ko kR ok sk ok ko skok ok /

function [5:0] Num2CR;

input [2:0] Value;

reg [1:0] Out[2:0];

integer 1i;

begin
for (i=0;i<3;i=i+1)
begin
if (Value[i] == 1°b0)

100

Out[i]=2°Db01;
else
Out[i]=2’b10;
end
Num2CR = {0ut[2],0ut[1],0ut[0]};
end
endfunction

endmodule

101

/********************************/

/* Specifications for Control.v */
[Ak Ak ook Kk KRRk Kk Kok

/* Control.v is an assembly of most of the control logic in a BFU cell.

includes everything except Comp/Reduce I.
This module takes in all the parameters of the NORplane as well.
The inputs to Control are:

CRin : The 13 neighborhood Compare/Reduce values.
FP1 : The output of Floating Port 1.
FP2 : The output of Floating Port 2.

CLK : A clock.

start : The standard simulator reset.
Getx : The global context selection.
ProgAdd : Programming Address (OR plane)
ProgData : Programming Data (OR plane)
PWE : Programming WE (OR plane)

PRE : Programming RE (OR plane)

CRIIconfig : The configuration for Comp/Reduce II.
CRIIsel : The input selector for Comp/Reduce II.

It

CRsell, CRsel2, CRsel3, CRseld4 : Selector configurations for the NOR array.

CrtlBitsel : The selector for the control bit.

TSenable : Enable for Time-Switch Registers.
TScycle : Incoming Time-Switch Cycle.

TS_CRconf, TS_FPiconf, TS_FP2conf : Configuation for Time-Switch Registers.

The outputs of Control are:

CtrlBit : The Control Bit
CtrlByte : The Control Byte

OR_Config : The read-out data from the OR plane configuration
*/

/ kK k ok ok kK k ok ok kkkkk /

/* Include Files */
/ kK k ok ok kK k ok ok kkkkk /

‘include "ORplane.v"

‘ifdef selector_defined
‘else
‘include "Selector.v'"
‘endif

‘ifdef TSregister_defined

‘else
‘include "TSregister.v"

102

‘endif

‘ifdef CompReduce_defined
‘else
‘include '"CompReduce.v"
‘endif

/ kK ok ok ok sk ok ok ok ok sk k ok sk ok k /

/* Module Control */
/ kK ok ok ok sk ok ok ok ok sk k ok sk ok k /

module Control (CRin, FP1, FP2, CtrlBit, CtrlByte, CLK, Gctx,
ProghAdd, ProgData, PWE, PRE, start,
OR_Config,
CRIIconfig, CRIIsel, CRsell, CRsel2, CRsel3, CRsel4,
CtrlBitsel, TSenable, TScycle, TS_CRconf, TS_FPiconf,
TS_FP2conf);

/%K kK ok ok ok sk ok ok ok ok sk sk k ok ok sk ok ok /

/* I/0 Declarations */
/%K kK ok ok ok sk ok ok ok ok sk sk k ok ok sk ok ok /

input [12:0] CRin;
input [7:0] FP1, FP2;
input CLK, start;
input [1:0] Getx;

input [7:0] ProgAdd, ProgData;
input PWE, PRE;

input [41:0] CRIIconfig;
input CRIIsel, CtrlBitsel;
input [3:0] CRsell, CRsel2, CRsel3, CRsel4;

input TSenable;
input [3:0] TScycle, TS_CRconf, TS_FPiconf, TS_FP2conf;

output [7:0] OR_Config;
output [7:0] CtrlByte;

output CtrlBit;

/[F kK k ok ok kK ok ok ok kkkkkk /
/* Internal Wires */

/dkkkkokkokokok koo ko kokok /
/* The registered inputs */
wire [12:0] CRin_reg;
wire [7:0] FP1_reg, FP2_reg;

/* The input to C/R II */

103

wire [7:0] CRIIin;

/* The 4 selected CR for the OR array */
wire CR_OR1, CR_OR2, CR_OR3, CR_OR4;

/* The Bit outputs of the OR and CRII */
wire CRIIout, ORout;

/% 3k ok ok ok sk ok ok ok ok sk ok ok ok ok 3k ok sk ok koK /
/* Time-Switch Registers */
/% 3k ok ok ok sk ok ok ok ok sk ok ok ok ok 3k ok sk ok koK /

TSregister #(13) TS_CR(CRin, TScycle, CRin_reg, TSenable, TS_CRconf,
CLK, start);

TSregister #(8) TS_FP1(FP1, TScycle, FP1i_reg, TSenable, TS_FPlconf,
CLK, start);

TSregister #(8) TS_FP2(FP2, TScycle, FP2_reg, TSenable, TS_FP2conf,
CLK, start);

/ %k kK ok ok ok sk ok ok sk ok sk k kK k ok k /

/* Input Selectors */
/ %k kK ok ok ok sk ok ok sk ok sk k kK k ok k /

Sel2 #(8) CRIIin_sel(FP1_reg, FP2_reg, CRIIin, CRIIsel, start);
Sell6 CR_OR1_sel({4°d0,CRin_reg}, CR_OR1, CRsell, start);
Sell6 CR_OR2_sel({4°d0,CRin_reg}, CR_OR2, CRsel2, start);

Sell6 CR_OR3_sel({4°d0,CRin_reg}, CR_OR3, CRsel3, start);
Sell6 CR_OR4_sel({4°d0,CRin_reg}, CR_OR4, CRsel4, start);

/ %k kK ok ok ok sk ok ok ok ok sk kk ok /
/* Main Modules */

/ %k kK ok ok ok sk ok ok ok ok sk kk ok /
CompReduce #(21) CRII({CRIIin, CRin_reg}, CRIIconfig, CRIIout, start);
ORplane ORarray({CR_OR1, CR_OR2, CR_OR3, CR_OR4, FP2_reg, FP1_reg},

Getx, CLK, {ORout, CtrlByte}, ProghAdd, ProgData,
PWE, PRE, OR_Config, start);

/ %k kK ok ok ok sk ok ok sk ok sk k kK k ok k /
/* Output Selector */
/ %k kK ok ok ok sk ok ok sk ok sk k kK k ok k /

Sel2 #(1) CtrlBit_sel(CRIIout, ORout, CtrlBit, CtrlBitsel, start);

endmodule

104

/*********************************/

/* Specifications for NORplane.v */
[/ F AR A A AR F K F KKK

/* ORplane is the model of the MATRIX control logic OR plane. The inputs
to this module are the the 20 main inputs to the OR plane. Internally,
they will each be inverted, and then both polarities are fed into the
OR plane itself. The configuration of the OR plane is read of a file,
and is senstive to the global context changes.

The inputs of ORplane:

Data : The 20-bit wide input vector.
Gectx : The two bit global context.

CLK : The global CLK.

start : The standard simulation reset.

Proghdd : Programming Address
ProgData : Programming Data
PWE : Programming WE

PRE : Programming RE

The outputs of ORplane is the 9-bit output vector and
OR_Config, the output of the configuration memories during a read.

*/

/ kK k ok ok kK k ok ok kkkkk /

/* Include Files */
/ kK k ok ok kK k ok ok kkkkk /

‘ifdef selector_defined
‘else
‘include "Selector.v'"
‘endif

/% 3k kK ok ok ok sk ok ok ok ok sk ok ok sk ok sk ok /

/* Module ORplane */
/% 3k kK ok ok ok sk ok ok ok ok sk ok ok sk ok sk ok /

module ORplane(Data, Getx, CLK, Out, ProgAdd, ProgData, PWE, PRE,
OR_Config, start);

/%K kK ok ok ok sk ok ok ok ok sk sk k ok ok sk ok ok /

/* I/0 Declarations */
/%K kK ok ok ok sk ok ok ok ok sk sk k ok ok sk ok ok /

input [19:0] Data;

input [1:0] Getx;

input [7:0] ProgAdd, ProgData;
input CLK, PWE, PRE, start;

output [7:0] OR_Config;
reg [7:0] OR_Config;

105

output [8:0] Out;

/%K kK ok ok ok sk ok ok ok ok sk sk k ok ok sk ok ok /

/* Output Registers */
/%K kK ok ok ok sk ok ok ok ok sk sk k ok ok sk ok ok /

reg [8:0] OR_out; /* Output of the OR plane */

/***********************************/

/* Define the Configuration Memory */
[/ F ko ko kK ks koK sk ok sk ok ok ok ok

reg[7:0] ReadMem[44:0]; /* This accepts data */
reg[39:0] ORMem[8:0]; /* This is basis for the OR array */

/ %k kK ok ok ok sk ok ok ok ok sk kk ok /

/* Handle Reads */
/ %k kK ok ok ok sk ok ok ok ok sk kk ok /

always Q(posedge(CLK) && (PRE === 1°’b1))
begin
OR_Config = ReadMem[ProgAdd[5:0]];
end

/ %k kK ok ok ok sk ok ok sk ok sk k kK k ok k /

/* Program ReadMem */
/ %k kK ok ok ok sk ok ok sk ok sk k kK k ok k /

always Q(posedge(CLK) && (PWE === 1°’b1))
begin
if (ProgAdd[6] === 1’b1)
begin

ReadMem[ProgAdd[6:0]] = ProgData;

/ %k sk ok ok ok ok sk ok ok ok sk ok sk kk ok ok k /

/* Setup the ORMem */
/ %k sk ok ok ok ok sk ok ok ok sk ok sk kk ok ok k /

ORMem[0] = {ReadMem[4],ReadMem[3],ReadMem[2],
ReadMem[1] ,ReadMem[0]};

ORMem[1] = {ReadMem[9],ReadMem[8],ReadMem[7],
ReadMem[6] ,ReadMem[5]};

ORMem[2] = {ReadMem[14],ReadMem[13],ReadMem[12],
ReadMem[11] ,ReadMem[10]7};

ORMem[3] = {ReadMem[19],ReadMem[18] ,ReadMem[17],
ReadMem[16] ,ReadMem[15]7};

ORMem[4] = {ReadMem[24],ReadMem[23],ReadMem[22],
ReadMem[21] ,ReadMem[20]7};

ORMem[5] = {ReadMem[29],ReadMem[28],ReadMem[27],

106

ReadMem[26] ,ReadMem[25]7};

ORMem[6] = {ReadMem[34],ReadMem[33],ReadMem[32],
ReadMem[31] ,ReadMem[30]7};
ORMem[7] = {ReadMem[39],ReadMem[38],ReadMem[37],
ReadMem[36] ,ReadMem[35]7};
ORMem[8] = {ReadMem[44],ReadMem[43],ReadMem[42],
ReadMem[41] ,ReadMem[40]7};
end

end

/% 3k ok ok ok ok sk ok ok ok ok sk ok ok ok sk ok ok ok sk ok /

/* Define the OR Plane */
/% 3k ok ok ok ok sk ok ok ok ok sk ok ok ok sk ok ok ok sk ok /

initial
begin
$async$or$array (ORMem,
{"Datal[19],Datal[19], "Data[18],Datal18],
“Datal[17],Datal17], "Datal[16],Datal[16],
“Datal[15],Datal[15], "Datal[14],Datal[14],
“Datal[13],Datal13], "Datal[12],Datal[12],
“Datal[11],Datal11], "Datal[10],Datal[10],
“Datal[9],Datal9], "Datal8],Datal8],
“Datal7],Datal7], Datal6],Datals],
“Datalb],Datal5], "Datal[4],Datal4],
“Datal3],Datal3], Datal2],Datal2],
“Datal[1],Datal1], "Datal0],Datal0]},
{OR_out[8],0R_out[7],0R_out[6],0R_out[5],
OR_out[4],0R_out[3],0R_out[2],0R_out[1],
OR_out[01});
end

/ %k kK ok ok ok sk ok ok sk ok sk k kK k ok k /
/* Output Selector */
/ %k kK ok ok ok sk ok ok sk ok sk k kK k ok k /

Sel2 #(9) OutSel(9’b0,0R_out,0ut,Getx[1],start);

endmodule

107

/* The following is necessary because this file may be read from many inlcude
statements and should be ignored on all but the first */

‘define CompReduce_defined

/***********************************/

/* Specifications for CompReduce.v */
[/ F A A A A A A A A A F A A A F A F KA KK

/* CompReduce module models the Comparison/Reduction operation of the MATRIX
control logic. It takes in a (parameterized-length) input word, and
compares it to a configuration word, which can include '"don’t care' and
"fail" bits. If all bits pass their test, the output of the module is
high, otherwise the output is low. See TN130 for more details including
the actual bit-encoding.

The inputs to CompReduce are:

Data : The Data input.
Config : The configuration word. Twice as large as the Data input.
start : The standard simulator reset.

The output is Match.

There are actually two modules in this file. The basic CompReduce is
described above. The second is CompReduceI, which adds a double-context
configuration word to the basic CompReduce.

*/

/ kK k ok ok kK k ok ok kkkkk /

/* Include Files */
/ kK k ok ok kK k ok ok kkkkk /

‘ifdef selector_defined
‘else
‘include "Selector.v'"
‘endif

/% ks ok ok ok ok sk ok ok ok ok sk ok sk sk k ok ok ok ok /
/* Module CompReduce */
/% ks ok ok ok ok sk ok ok ok ok sk ok sk sk k ok ok ok ok /

module CompReduce (Data, Config, Match, start);

/* Define the size of the Data and Config words */
parameter size = 1;

input [size-1:0] Data;
input [(2*size)-1:0] Config;

input start;

output Match;

108

reg Match;

/% 3k ok ok ok ok sk ok ok ok ok sk ok k ok sk ok ok ok ok %k /

/* Internal Variables */
/% 3k ok ok ok ok sk ok ok ok ok sk ok k ok sk ok ok ok ok %k /

integer 1ij;

/ %k kK kk ok sk ok ok k ok kkk /
/* Begin Model */
/ %k kK kk ok sk ok ok k ok kkk /

always Q@(Data or Config or start)
begin

/* Initialize Match to true, then update with comparisons to each bit */
Match = 1°b1;

for (i=0; i<size; i=i+1)
begin
if (Datali]l===1’b0)
Match = Match && Configl[ix2];
else
Match = Match && Configl[(i*2)+1];
end

end

endmodule

/% 3k ok ok ok ok sk ok ok ok ok sk ok ok sk sk %k ok sk ok ok /
/* Module CompReducel */
/% 3k ok ok ok ok sk ok ok ok ok sk ok ok sk sk %k ok sk ok ok /

module CompReduceI (Data, Configh, ConfigB, Ctrl, Match, start);

/* Define the size of the Data and Config words */
parameter size=1;

input [size-1:0] Data;

input [(2*size)-1:0] Configh, ConfigB;
input Ctrl, start;

output Match;

/ kkodokkokokok ko ok ok ok kokokk /

/* Internal Wire */

/ kK kk ok kK okkokkkkkk /

wire [(2*size)-1:0] Config;

109

/ ok ok ok ok ok ok ok ok ok o sk ok o ok o skok ok sk ok ok /

/* Configuration Selector */

/ ok ok ok ok ok ok ok ok ok o sk ok o ok o skok ok sk ok ok /

Sel2 #(size*2) CtxSel(Configh, ConfigB, Config, Ctrl, start);
/% 3k ok ok ok sk ok ok ok ok sk ok ok ok ok 3k ok sk ok koK /

/* The CompReduce Module */

/% 3k ok ok ok sk ok ok ok ok sk ok ok ok ok 3k ok sk ok koK /

CompReduce #(size) CR(Data, Config, Match, start);

endmodule

110

/******************************/

/* Specifications for Fport.v */
[/ F A Ak A KKK K KK/

/* An Fport is the switch used to feed data to the BFU function and floating
ports. It consists of a NetSwitch, and a few selectors which are used to
configure the port, based on incoming configuration data. No register
appears at this level of the simuluation. See TN130 for a block diagram
of the port’s operation.

The inputs to an Fport (in addition to the main network inputs)

Config_a, Config_b : The configuration Contexts.
Each of these is a 9-bit value.

Ctrl : Local Control Bit

And, of cource:
Input start is a model-specific initialization input, used to force the
module to evaluate its inputs.

*/

/ kK k ok ok kK k ok ok kkkkk /

/* Include Files */
/ kK k ok ok kK k ok ok kkkkk /

‘ifdef selector_defined
‘else
‘include "Selector.v'"
‘endif

‘ifdef netswitch_defined
‘else
‘include "NetSwitch.v"
‘endif

/ %k kK ok ok ok sk ok ok ok ok sk ok kk /

/* Module Fport */
/ %k kK ok ok ok sk ok ok ok ok sk ok kk /

module Fport(Local, Li1_Ni, Li_N2, L1_NE, L1_E1, Li1_E2, Li_SE, L1_S1, L1_S2,
Li_Sw, Li_wWi, Li_W2, L1_NW,
L2_Ni1, L2_N2, L2_E1, L2_E2, L2_S1, L2_S2, L2_Wi, L2_W2,
L3_vi, L3_V2, L3_V3, L3_V4, L3_H1, L3_H2, L3_H3, L3_H4, CByte,
Config_a, Config_b, Ctrl, Out, start);

input [7:0] Local, Li_N1, L1_N2, L1_NE, L1_E1, L1_E2, L1_SE, L1_S1, L1_S2;
input [7:0] L1_SW, Li_Wi, Li_w2, L1_NW;

input [7:0] L2_Ni, L2_N2, L2_E1, L2_E2, L2_S1, L2_S2, L2_Wi, L2_W2;

input [7:0] L3_Vi, L3_V2, L3_V3, L3_V4, L3_H1, L3_H2, L3_H3, L3_H4, CByte;

111

input [8:0] Config_a, Config_ b;
input Ctrl;

output [7:0] Out;
input start;

/[F kK k ok ok kK ok ok ok kkkkkk /

/* Internal Wires */
/[F kK k ok ok kK ok ok ok kkkkkk /

wire [8:0] Config; /* Final configuration word */

/******************************/

/* Delacare the major modules */
[F Ak oA K KKKk kok

NetSwitch switch(Local, Li_Ni, Li_N2, Li_NE, Li_E1, Li_E2, L1_SE, L1_S1,
Li_S2, L1_SW, Li_Wi, Li_W2, L1_NW,
L2_Ni, L2_N2, L2_E1, L2_E2, L2_S1, L2_S2, L2_Wi, L2_W2,
L3_Vi, L3_V2, L3_V3, L3_V4, L3_H1, L3_H2, L3_H3, L3_H4,
CByte,
Configl[4:0], Config[7:0], Configl[8], Out, start);

Sel2 #(9) Ctx_Sel(Config_a, Config b, Config, Ctrl, start);

endmodule

112

/*******************************/

/* Specifications for NAport.v */
[/ FHA A A A A A A A A A KA A A KKKk]

/* An NAport is the switch used to feed data to the BFU L2 and L3 network
drivers and address ports. It consists of a NetSwitch, and a few
selectors which are used to to configure the port, based on incoming
configuration data. No registers are included at this level of
simulation. See TN130 for a block diagram of the port’s operation.

The inputs to an NAport (in addition to the main network inputs)

Config_a, Config_b : The configuration Contexts.
Each of these is a 10-bit value.

FPout : Alternate SourceSel (5 bits)
Ctrl : Local Control Bit

And, of cource:
Input start is a model-specific initialization input, used to force the
module to evaluate its inputs.

*/

/ kK k ok ok kK k ok ok kkkkk /

/* Include Files */
/ kK k ok ok kK k ok ok kkkkk /

‘ifdef selector_defined
‘else
‘include "Selector.v'"
‘endif

‘ifdef netswitch_defined
‘else
‘include "NetSwitch.v"
‘endif

/ kK k ok ok kK k ok ok kkkkk /

/* Module NAport */
/ kK k ok ok kK k ok ok kkkkk /

module NAport(Local, Li1_Ni, Li_N2, L1_NE, Li_Ei, Li_E2, L1_SE, L1_S1, L1_S2,
Li_Sw, Li_wWi, Li_W2, L1_NW,
L2_Ni1, L2_N2, L2_E1, L2_E2, L2_Si, L2_S2, L2_Wi, L2_W2,
L3_vi, L3_V2, L3_V3, L3_V4, L3_H1, L3_H2, L3_H3, L3_H4, CByte,
Config_a, Config b, FPout, Ctrl, Out, start);

input [7:0] Local, Li_N1, L1_N2, L1_NE, L1_E1, L1_E2, L1_SE, L1_S1, L1_S2;
input [7:0] L1_SW, Li_Wi, Li_w2, L1_NW;

input [7:0] L2_Ni, L2_N2, L2_E1, L2_E2, L2_S1, L2_S2, L2_Wi, L2_W2;

input [7:0] L3_Vi, L3_V2, L3_V3, L3_V4, L3_H1, L3_H2, L3_H3, L3_H4, CByte;

113

input [9:0] Config_a, Config_ b;
input [7:0] FPout;
input Ctrl;

output [7:0] Out;
input start;

/[F kK k ok ok kK ok ok ok kkkkkk /

/* Internal Wires */
/[F kK k ok ok kK ok ok ok kkkkkk /

wire [4:0] SourceSel; /* Final Source Selector */
wire [9:0] Config; /* Final configuration word */

/******************************/

/* Delacare the major modules */
[F Ak oA K KKKk kok

NetSwitch switch(Local, Li_Ni, Li_N2, Li_NE, Li_E1, Li_E2, L1_SE, L1_S1,
Li_S2, L1_SW, Li_Wi, Li_W2, L1_NW,
L2_Ni, L2_N2, L2_E1, L2_E2, L2_S1, L2_S2, L2_Wi, L2_W2,
L3_Vi, L3_V2, L3_V3, L3_V4, L3_H1, L3_H2, L3_H3, L3_H4,
CByte,
SourceSel, Config[7:0], Config[8], Out, start);

Sel2 #(10) Ctx_sel(Config_a, Config_ b, Config, Ctrl, start);

Sel2 #(5) source_sel(Configl[4:0], FPout[4:0], SourceSel, ~“Config[9], start);

endmodule

114

/*
/*
/*

/*

*/
/*
/*
/*

mo

*********************************/

Specifications for Lidrivers.v */
seokskokokokok ok ok sk sk ok skok sk sk ok sk ok sk sk skok ok sk sk sk okok ok ok /

Lidrivers represent the drivers that enable the BFU’s output
Level 1 lines. When enabled, the drive the BFU output along the
appropriate wires. When disabled, they drive the lines to ground.

The inputs to Lidrivers are:

BFUout : The output of the BFUcore
Enables : The 4 enable bits in the order N,E,S,W (msb->1sb)

start : The standard simualtion reset signal
The outputs of Lidrivers:

L1_N, L1_E, L1_S, L1_W : The appropriate Level 1 output lines.

*******************/

Module Lidrivers */
ook sk skeskok ok sk o ok sk skeskok sk ok ke okok /

dule Lidrivers (BFUout[7:0], Enables[3:0], start,
L1_N[7:0], L1_E[7:0], L1_S[7:0], L1_W[7:0]);

input [7:0] BFUout;
input [3:0] Enables;
input start;

output [7:0] L1_N, L1 _E, L1_S, L1_W;
reg [7:0] L1_N, L1_E, L1_S, L1_U;

/* Handle the Enables */
always Q@(Enables or start)
begin

if (Enables[3]===1’b1)
assign L1_N = BFUout;
else
assign L1_N = 8°d0;

if (Enables[2]===1’b1)
assign L1_E = BFUout;
else
assign L1_E = 8°d0;

if (Enables[1]===1’b1)
assign L1_S = BFUout;
else

assign L1_S = 8°d0;

115

if (Enables[0]===1’b1)
assign L1_W = BFUout;
else
assign L1_W = 8°d0;
end

endmodule

116

/*********************************/

/* Specifications for L2driver.v */
[/ F AR A A AR F K F KKK

/* An L2driver drives the Level-2 network lines. When enabled it drives one
of its input onto its output. When disabled, it drives a zero.
The driver also includes an optional register.

The inputs to L2driver are:

Niout, N2out, FPlout, FP2out : The incoming signals that can be driven.
DRsel_A : Two-bit configuration word for the input selector.

Enable : A two-bit word containing <driver enable, register enable>
CLK : A clock

start : The standard simulator reset signal

The output of L2driver is Out, the final output of the driver.

*/

/ kK k ok ok kK k ok ok kkkkk /

/* Include Files */
/ kK k ok ok kK k ok ok kkkkk /

‘ifdef selector_defined
‘else
‘include "Selector.v'"
‘endif

/% 3k kK ok ok ok sk ok ok ok ok sk ok ok sk ok sk ok /

/* Module L2driver */
/% 3k kK ok ok ok sk ok ok ok ok sk ok ok sk ok sk ok /

module L2driver (Niout, N2out, FPlout, FP2out, Out, DRsel,
Enable, CLK, start);

input [7:0] Niout, N2out, FPlout, FP2out;
input [1:0] DRsel, Enable;
input CLK, start;

output [7:0] Out;
reg [7:0] Out;

[F kR ko kok ko kR ok sk ok ko skok ok /
/* Internal Registers and Wires */

/********************************/

wire [7:0] data_A, data_B; /* Intermediate selector data */
wire [7:0] SelData; /* The selected data */

wire [7:0] FinalData; /* The final, selected and registered data */

117

reg [7:0] pipeline; /* The optional register */

/Fkkkkkkkkkkkk /[

/* Selectors */
/Fkkkkkkkkkkkk /[

Sel2 #(8) Sel_A(Niout, N2out, data_A, DRsel[0], start);
Sel2 #(8) Sel_B(FPlout, FP2out, data_B, DRsel[0], start);
Sel2 #(8) Sel_Data(data_A, data_B, SelData, DRsel[1], start);

Sel2 #(8) Sel_Final(SelData, pipeline, FinalData, Enable[0], start);

/**********************************/

/* Maintain the Pipeline Register */
[/ F koo ok ok sk k ok sk ok koK ok ok ok koK ok /

always Q(posedge(CLK) or start)
begin
pipeline = SelData;
end

/% 3k sk ok ok ok ok sk ok ok ok ok sk ok ok ok sk ok kok ok /

/* The Actual Driver */
/% 3k sk ok ok ok ok sk ok ok ok ok sk ok ok ok sk ok kok ok /

always Q@(Enable or start)
begin
if (Enable[1]===1’b1)
assign Out = FinalData;
else
assign Out = 8°d0;
end

endmodule

118

/*********************************/

/* Specifications for L3decode.v */
[/ F AR A A AR F K F KKK

/* L3decode decodes the incoming Level-3 Network enable lines and outputs
the actual enables for the L3drivers.

Parameters: (X,Y) BFU address
Inputs:

L3_Vien : Level-3 Enable, Vertical-1 Line. (4 bits)
L3_V2en : Level-3 Enable, Vertical-2 Line. (4 bits)
L3_V3en : Level-3 Enable, Vertical-3 Line. (4 bits)
L3_V4en : Level-3 Enable, Vertical-4 Line. (4 bits)
L3_Hlen : Level-3 Enable, Horizontal-1 Line. (4 bits)
L3_H2en : Level-3 Enable, Horizontal-2 Line. (4 bits)
L3_H3en : Level-3 Enable, Horizontal-3 Line. (4 bits)
L3_H4en : Level-3 Enable, Horizontal-4 Line. (4 bits)

start : a model-specific initialization input, used to force the
module to evaluate its inputs.

Ouputs: (one bit each)

Vien : Enable L3_V1.
V2en : Enable L3_V2.
V3en : Enable L3_V3.
V4en : Enable L3_V4.
Hien : Enable L3_H1.
H2en : Enable L3_H2.
H3en : Enable L3_H3.
H4en : Enable L3_H4.

*/

/% 3k kK ok ok ok sk ok ok ok ok sk ok ok sk ok sk ok /

/* Module L3decode */
/% 3k kK ok ok ok sk ok ok ok ok sk ok ok sk ok sk ok /

module L3decode(L3_Vien, L3_V2en, L3_V3en, L3_V4en,
L3_Hlen, L3_H2en, L3_H3en, L3_H4en,
Vien, V2en, V3en, V4en, Hlen, H2en, H3en, H4en,
start);

/* Default Parameters */
parameter X=0;
parameter Y=0;

/* I/0 specifications */
input [3:0] L3_Vien, L3_V2en, L3_V3en, L3_V4en;

119

input [3:0] L3_Hien, L3_H2en, L3_H3en, L3_H4en;
input start;
output Vien, V2en, V3en, V4en, Hlen, H2en, H3en, H4en;

reg Vien, V2en, V3en, V4en, Hlen, H2en, H3en, H4en;

/[F kK k ok ok kK ok ok ok kkkkkk /
/* Begin Decoding */
/[F kK k ok ok kK ok ok ok kkkkkk /

always Q(start or L3_Vien) /* Vertical 1 */

begin
if (L3_Vien===Y)
Vien = 1°b1;
else
Vien = 1°0b0;
end

always Q(start or L3_V2en) /* Vertical 2 */

begin
if (L3_V2en===Y)
V2en = 1°b1;
else
V2en = 1°0b0;
end

always Q(start or L3_V3en) /* Vertical 3 */

begin
if (L3_V3en===Y)
V3en = 1°b1;
else
V3en = 1°00;
end

always Q(start or L3_V4en) /* Vertical 4 */

begin
if (L3_V4en===Y)
V4en = 1°b1;
else
Vden = 1°00;
end

always Q(start or L3_Hlen) /* Horizontal 1 */

begin
if (L3_Hlen===X)
Hien = 1°b1;
else
Hien = 1°0b0;
end

always Q(start or L3_H2en) /* Horizontal 2 */
begin

120

if (L3_H2en===X)
H2en = 1°b1;
else
H2en = 1°0b0;
end

always Q(start or L3_H3en) /* Horizontal 3 */

begin
if (L3_H3en===X)
H3en = 1°b1;
else
H3en = 1°00;
end

always Q(start or L3_H4en) /* Horizontal 4 */

begin
if (L3_H4en===X)
H4en = 1°b1;
else
H4en = 1°00;
end
endmodule

121

/*********************************/

/* Specifications for L3driver.v */
[/ F AR A A AR F K F KKK

/* An L3driver drives the Level-3 network lines. It is a true tristate
driver. The driver also includes a register.

The inputs to L2driver are:

Niout, N2out, FPlout, FP2out : The incoming signals that can be driven.

DRsel : Two-bit configuration words for the input selector.
Enable : The one-bit driver enable

CLK : A clock

start : The standard simulator reset signal

The output of L3driver is Out, the final output of the driver.

*/

/ kK k ok ok kK k ok ok kkkkk /

/* Include Files */
/ kK k ok ok kK k ok ok kkkkk /

‘ifdef selector_defined
‘else
‘include "Selector.v'"
‘endif

‘ifdef trireg_defined
‘else
‘include "Trireg.v"
‘endif

/% 3k kK ok ok ok sk ok ok ok ok sk ok ok sk ok sk ok /

/* Module L3driver */
/% 3k kK ok ok ok sk ok ok ok ok sk ok ok sk ok sk ok /

module L3driver (Niout, N2out, FPlout, FP2out, Out, DRsel,
Enable, CLK, start);

input [7:0] Niout, N2out, FPlout, FP2out;
input [1:0] DRsel;

input Enable;

input CLK, start;

output [7:0] Out;

/********************************/

/* Internal Registers and Wires */
[F kR ko kok ko kR ok sk ok ko skok ok /

122

wire [7:0] data_A, data_B; /* Intermediate selector data */
wire [7:0] SelData; /* The selected data */

/Fkkkkkkkkkkkk /[
/* Selectors */

/Fkkkkkkkkkkkk /[
Sel2 #(8) Sel_A(Niout, N2out, data_A, DRsel[0], start);

Sel2 #(8) Sel_B(FPlout, FP2out, data_B, DRsel[0], start);
Sel2 #(8) Sel_Data(data_A, data_B, SelData, DRsel[1], start);

/ %k kK ok ok ok sk ok ok sk ok sk k kK k ok k /
/* Tristate Driver */
/ %k kK ok ok ok sk ok ok sk ok sk k kK k ok k /

Trireg #(8) Driver(SelData, Enable, CLK, start, Out);

endmodule

123

/*****************************/

/* Specifications for MAdd.v */
[/ F A A A A A A F A F KA KKKk

/* MAdd is the decoder for the Multiplier—Add inputs to a BFU. See TN130 for
complete description of this part of MATRIX.

Inputs to MAdd:

HW1, HW2 : Hardwired input for MAddl and MAdd2. For the current revision
these are assume to be L1_N1, and L1_NW, respectively.

FP1, FP2 : Outputs of the Floating Port.

Sourcel, Source2 : Source selector configuration.

TSenable : Enable Time-Switching

TScycle : Current Time-Switch Cycle

TS_MAdd1, TS_MAdd2 : Time-Switch Configutation.

CLK : A clock

start : The simulator reset.

Outputs of MAdd:
MAdd1, MAdd2 : The final MAdd values.

*/

/ kK k ok ok kK k ok ok kkkkk /
/* Include Files */
/ kK k ok ok kK k ok ok kkkkk /
‘ifdef selector_defined
‘else
‘include "Selector.v'"
‘endif

‘ifdef TSregister_defined
‘else
‘include "TSregister.v"
‘endif

/ F kK kk ok kkkkkkkk [

/* Module MAdd */
/ F kK kk ok kkkkkkkk [

module MAdd(HW1, HW2, FP1, FP2, Sourcel, Source2, TSenable, TScycle,
TS_MAdd1, TS_MAdd2, CLK, start, MAdd1l, MAdd2);

input [7:0] HW1, HW2, FP1, FP2;

input Sourcel, Source2, CLK, start;
input TSenable;

input [3:0] TScycle, TS_MAdd1l, TS_MAdd2;

output [7:0] MAdd1, MAdd2;

124

/********************************/

/* Internal Wires and Registers */
[F kR ko kok ko kR ok sk ok ko skok ok /

reg [7:0] HW2reg;

wire [7:0] MAddisel_out, MAdd2sel_out;

/Fkkkkkkkkkkkk /[

/* Selectors */

/Fkkkkkkkkkkkk /[

Sel2 #(8) MAddisel(HW1, FP1, MAddlsel_out, Sourcel, start);

Sel2 #(8) MAdd2sel(HW2reg, FP2, MAdd2sel_out, Source2, start);

/% 3k ok ok ok sk ok ok ok ok sk ok ok ok ok 3k ok sk ok koK /
/* Time-Switch Registers */
/% 3k ok ok ok sk ok ok ok ok sk ok ok ok ok 3k ok sk ok koK /

TSregister #(8) TSregi(MAddlsel_out, TScycle, MAddl, TSenable, TS_MAdd1i,

CLK, start);
TSregister #(8) TSreg2(MAdd2sel_out, TScycle, MAdd2, TSenable, TS_MAdd2,
CLK, start);

/******************************/

/* Maintain Internal Register */
[Fokkk kK ko ok ok ks ks ok ok ok ok ok ok /

always Q(posedge(CLK) or start)
begin
HW2reg = HW2;

end

endmodule

125

A.3 BFUcore Modules

X

/********************************/

/* Specifications for BFUcore.v */
[Ak Ak ook Kk KRRk Kk Kok

/*

*/

4 BFU core is the assembly of a main MATRIX memory and ALU.
contain any of the network port/switches or control logic.

The modules included in a BFUcore are:

It does not

ALU, ALUdecode, MEM, MEMdecode, CarryDecode, WEdecode, and Selector

The inputs to BFUcore are:

4,B : 8-Bit Address/Data Ports

Fa,Fm : 8-Bit Function Ports (ALU/Memory)
RightCarry : Carry from LSB direction
LeftCarry : Carry from MSB direction
CLK : A Clock

Maddl : Multiplier-Add data 1 (special data input)
Madd2 : Multiplier-Add data 2 (special data input)

LSB, MSB : Configuration Data
TSenable : Configuration Data

TS_WE : Configuration Data
TimeStep : Global broadcast timestep

The Outputs of BFUcore are:

Out : 8-Bit output bus

Cout : Carry-Out

CCs : Control Context Select — Used by the control block outside this
module

AddSig : Signals an ADD op - Used by the CarryDecoder

WEconf : Write Configuration Memory - Used outside this module

REconf : Read Configuration Memory - Used outside this module

Input start is a model-specific initialization input, used to force the

module to evaluate its inputs.

/ kK k ok ok kK k ok ok kkkkk /

/* Include Files */
/ kK k ok ok kK k ok ok kkkkk /

‘include "ALU.v"
‘include "ALUdecode.v"
‘include "MEM.v"
‘include "MEMdecode.v'"
‘include "TSand.v"

126

/* The following prevents Selector from getting re-compiled many times */
‘ifdef selector_defined
‘else
‘include "Selector.v"
‘endif

/ kK ok ok ok sk ok ok ok ok sk k ok sk ok k /

/* Module BFUcore */
/ kK ok ok ok sk ok ok ok ok sk k ok sk ok k /

module BFUcore(A[7:0], B[7:0], Fal[7:0], Fm[7:0], LeftCarry, RightCarry, CLK,
Madd1[7:0], Madd2[7:0], Out[7:0], Cout, LSB, MSB, TSenable,
TS_WE, TimeStep, CCS, WEconf, REconf, AddSig, start);

input [7:0] A, B, Fa, Fm;
input LeftCarry, RightCarry;
input [7:0] Maddl, Madd2;
input CLK;

input LSB, MSB, TSenable;
input start;

input [3:0] TS_WE, TimeStep;

output [7:0] Out;
reg [7:0] Out;

output Cout, CCS;
output WEconf, REconf;

output AddSig;
reg AddSig;

/[F kK k ok ok kK ok ok ok kkkkkk /

/* Internal wires */
/[F kK k ok ok kK ok ok ok kkkkkk /

/* ALU I/0s */
wire [7:0] ALU_A, ALU_B;
wire [7:0] ALUout;

/* These connect the ALUdecoder to the ALU (and Memory) */

wire A_Pass, B_Pass, NAND, NOR, XOR, ShiftAR, ShiftAL, ShiftBR;
wire ShiftBL, ADD, MULT, MULTA, MULTAA, MULTcont, InvertA, InvertB;
wire ALU_Cin, WE;

/* Memory I/0s */

wire [7:0] mem_data, mem_A, mem_B;

wire WEmem;

/* These connect the Fm_decoder to the things it controls */

wire Mode, Ain_sel, Bin_sel, Data_sel;

/**************************************/

127

/* Declarations for the major modules */
[/ F A A A A A A A F A F A A KA KK KK KAk

MEM memblock(mem_data, A, B, mem_A, mem_B, Mode, WEmem, CLK);
MEMdecode Fm_decode(Fm, Mode, Ain_sel, Bin_sel, Data_sel, WEconf, REconf);

ALU alublock(ALU_A, ALU_B, ALU_Cin, Maddi, Madd2, ALUout, Cout,
A_Pass, B_Pass, NAND, NOR, XOR, ShiftAR, ShiftAL, ShiftBR,
ShiftBL, ADD, MULT, MULTA, MULTAA, MULTcont, InvertA, InvertB,
start,CLK);

ALUdecode Fa_decode(Fa, ALU_A, ALU_B, LeftCarry, RightCarry, LSB, MSB,
start, ALU_Cin, A_Pass, B_Pass, NAND, NOR, XOR,
ShiftAR, ShiftAL, ShiftBR, ShiftBL, ADD, MULT, MULTA,
MULTAA, MULTcont, InvertA, InvertB, CCS, WE);

TSand #(1) WE_timeswitch(WE, TimeStep, WEmem, TSenable, TS_WE, start);

/**********************************/

/* Delcarations for the Selectors */
/st ok s o ok sk sk sk o o sk sk s o s ok sk sk o s ok sk sk sk ok ok ok sk sk ok /

Sel2 #(8) A_sel(A, mem_A, ALU_A, Ain_sel, start);
Sel2 #(8) B_sel(B, mem_B, ALU_B, Bin_sel, start);
Sel2 #(8) D_sel(B, ALUout, mem_data, Data_sel, start);

/*****************************/

/* Maintain the Output Ports */
[/ FHA A A A A A F A F A A A A A F KAk]

initial
begin
assign Out = ALUout;
assign AddSig = ADD;
end

endmodule

128

/*
/*
/*

/*

*/
/*
/*
/*
/*

mo

************************/

Specifications: ALU.v */
ok ok ok ok Kok Kok Kok KKk kKK

This module emulates the basic combinational ALU without control or
I/0 logic.

This module does not include scan/reduce logic.

Note that this model differs from expected silicon behavior as follows:
In the real ALU, the high-byte of the multiply will be available ONLY
on the cycle after the multiply is performed. In this model, it
stays around until a new multiply is performed.

A few I/0 specs:
The default Cout is "0O"

Input start is a model-specific initialization input, used to force the
module to evaluate its inputs.

Modified 6 May 1996 by spon - passB corrected */

Fokskokokokok ok kkokok /

ALU Module */

Fokskokokokok ok kkokok /

dule ALU (Ain[7:0], Bin[7:0], Cin, Madd1[7:0], Madd2[7:0], Out[7:0], Cout,

A_Pass, B_Pass, NAND, NOR, XOR, ShiftAR, ShiftAL, ShiftBR,
ShiftBL, ADD, MULT, MULTA, MULTAA, MULTcont, Inverth, InvertB,
start, CLK);

/* The main data inputs */
input [7:0] Ain, Bin;
input Cin;

/* Input data for the multiplier adds */
input [7:0] Maddl, Madd2;

/* Initialization */
input start;

/* Clock */
input CLK;

/* The outputs */
output [7:0] Out;
output Cout;

reg [7:0] Out;
reg Cout;

/* Function Select Inputs. For this verilog model, they are assumed to
be one-hot encoded. */

129

input A_Pass, B_Pass, NAND, NOR, XOR, ShiftAR, ShiftAL, ShiftBR, ShiftBL;
input ADD, MULT, MULTA, MULTAA, MULTcont;

/* Additional Control Inputs */
input InvertA, InvertB;

/* Some internal "wires" */

reg [7:0] A, B; /* Internal (maybe inverted) A and B inputs */
reg [8:0] ADDresult; /* The adder result */

reg [15:0] MULTresult; /* The multiplier result */

reg [7:0] TempShift; /# An interum shift result */

/* Internal Register */
reg [7:0] MCONTreg; /* Register for Multiply Continue */
/dkkkkokkokokok koo ko kokok /

/* BEGIN MODELING */
/[F kK k ok ok kK ok ok ok kkkkkk /

/* Maintain A and B */
always Q@(Invertd or start)

begin
if (Invertd)
assign A = “Ain[7:0];
else
assign A = Ain[7:0];
end
always Q@(InvertB or start)
begin
if (InvertB)
assign B = “Bin[7:0];
else
assign B = Bin[7:0];
end

/* Begin to test for, and handle, each function. Because they are assumed
to be one-hot, one and only one will activate at a time. */

always Q(A_Pass or B_Pass or NAND or NOR or XOR or ADD or ShiftAR or
ShiftAL or ShiftBR or ShiftBL or MULT or MULTA or MULTAA or
MULTcont or start)
begin
if (A_Pass)
begin
assign Out = A[7:0];
assign Cout = 1’b0;
end
if (B_Pass)
begin
assign Out = B[7:0]; /* Fixed spon 6 May 1996 */
assign Cout = 1’b0;

130

end

if (WAND)
begin
assign Out = ~“(A[7:0] & B[7:0]);
assign Cout = 1’b0;
end
if (NOR)
begin
assign Out = “(A[7:0] | B[7:0]);
assign Cout = 1’b0;
end
if (XO0R)
begin
assign Out = (A[7:0] ~ B[7:0]);
assign Cout = 1’b0;
end

if (ADD)
begin
assign ADDresult = (A[7:0] + B[7:0] + Cin);
assign Out = ADDresult[7:0];
assign Cout = ADDresult[8];
end

if (ShiftAR)
begin
assign TempShift = (A[7:0] >> 1);
assign Out = {Cin, TempShift[6:0]};
assign Cout = A[0];
end
if (ShiftAL)
begin
assign TempShift = (A[7:0] << 1);
assign Out = {TempShift[7:1], Cin};
assign Cout = A[7];
end
if (ShiftBR)
begin
assign TempShift = (B[7:0] >> 1);
assign Out = {Cin, TempShift[6:0]};
assign Cout = B[0];
end
if (ShiftBL)
begin
assign TempShift = (B[7:0] << 1);
assign Out = {TempShift[7:1], Cin};
assign Cout = B[7];
end

if (MULT)
begin
assign MULTresult = (A[7:0] * B[7:0]);
assign Out = MULTresult[7:0];

131

assign Cout = 1’b0;
end
if (MULTA)
begin
assign MULTresult = (A[7:0] * B[7:0]) + Maddi[7:0];
assign Out = MULTresult[7:0];
assign Cout = 1’b0;
end
if (MULTAA)
begin
assign MULTresult = (A[7:0]*B[7:0])+Madd1[7:0]+Madd2[7:0];
assign Out = MULTresult[7:0];
assign Cout = 1’b0;
end
if (MULTcont)
begin
assign MULTresult = (A[7:0]*B[7:0]);
assign Out = MCONTregl[7:0];
assign Cout = 1’b0;
end
end /* Functions */

/* Maintain MCONTreg */
always Q(posedge(CLK) or start)
begin
#1;
MCONTreg = MULTresult[15:8];
end

endmodule

132

/*******************************/

/* Specifications: ALUdecode.v */
[/ FHA A A A A A A A A A KA A A KKKk]

/* This module represents the decoder logic for the ALU function port of a
BFU Cell. It takes the 8 bit function input and decodes it to the ALU
functions.

Verilog Code Specification:

Input Fin[7:0] is the function port to be decoded.

ALU_A, and ALU_B are the raw inputs to the ALU. There are used here to
help detemine the carry.

Inputs CinL and CinR are the "left" and '"right'" carries from adjacent cells.
Exactly which direction is determined outside this cell.

Inputs LSB and MSB are static configuration bits which define the
beginning and end of datapaths.

Input start is a model-specific initialization input, used to force the
module to evaluate its inputs.

Output CinALU is the Cin that the ALU will actually use.

The function outputs (A_Pass, B_Pass, NAND, NOR, XOR, ShiftAR, ShiftAL,
ShiftBR, ShiftBL, ADD, MULT, MULTA, MULTAA, MULTcont)
are 1-hot (one on at a time).
Brief description of non-obvious names:

ShiftAR: Shift input A to the right (MSB->LSB)

ShiftAL: Shift input A to the left (MSB<-LSB)

ShiftBR: Shift input B to the right (MSB->LSB)

ShiftBL: Shift input B to the left (MSB<-LSB)

(note that all shifts use carry in and out)

MULT: AxB \

MULTA: (A*B)+Madd1 > Low byte out here

MULTAA: (A*B)+Maddi+Madd2 /

MULTcont: Continue previous cycle multiply. Output high byte.

Outputs InvertA and InvertB are additional control signals for the ALU.
Output CCS is the control context select.

Output WE is the write enable line for the memory. 4 local bit will
determine which port’s (Fa,Fm) WE is actually used.

Outputs Latch_Maddl and Latch_Madd2 are signals to latch the multiplier

adds. Maddl is latched from the NW cell diagonal connection.
*/

/ %k sk ok ok ok ok sk ok ok ok sk ok sk kk ok ok k /
/* ALUdecode Module */
/ %k sk ok ok ok ok sk ok ok ok sk ok sk kk ok ok k /

module ALUdecode (Fin[7:0], ALU_A, ALU_B, CinL, CinR, LSB, MSB, start, CinALU,

133

A_Pass, B_Pass, NAND, NOR, XOR, ShiftAR, ShiftAL,
ShiftBR, ShiftBL, ADD, MULT, MULTA, MULTAA, MULTcont,
Invertd, InvertB, CCS, WE);

/* Inputs */

input [7:0] Fin; /* This is the function port */
input [7:0] ALU_A, ALU_B; /* The ALU inputs */
input CinL, CinR, LSB, MSB; /* Carry logic */
input start; /# Initialization */

/* Output Carry */
output CinALU;
reg CinALU;

/* These are the ALU functions */

output A_Pass, B_Pass, NAND, NOR, XOR, ShiftAR, ShiftAL, ShiftBR, ShiftBL;
output ADD, MULT, MULTA, MULTAA, MULTcont;

reg A_Pass, B_Pass, NAND, NOR, XOR, ShiftAR, ShiftAL, ShiftBR, ShiftBL;
reg ADD, MULT, MULTA, MULTAA, MULTcont;

/* Additional Control signals */
output Invertd, InvertB;
reg InvertA, InvertB;

/* Control Context Select */
output CCS;
reg CCS;

/* Memory Write Enable */
output WE;
reg WE;

/ %k kK ok ok ok sk ok ok ok ok sk kk ok /
/* Decode Logic */
/ %k kK ok ok ok sk ok ok ok ok sk kk ok /

/* Assign the fixed bits */
initial
begin
assign CCS = Fin[6];
assign WE = Fin[7];
end

always Q@(Fin[5:0] or start)
begin

/* Start by clearing value of the one-hot outputs. */
A_Pass = 1’b0;
B_Pass = 1’b0;

NAND = 1°b0;
NOR = 1’b0;
X0R = 1’Db0;

ShiftAR = 1°bO0;
ShiftAL = 1°bO0;

134

ShiftBR 1°b0;
ShiftBL = 1’bO0;

ADD = 1’bO;
MULT = 1’b0;
MULTA = 1°b0;

MULTAA = 1°b0;
MULTcont = 1°’b0;

assign CinALU = 1°b0; /#* Default Cin */

/* Decode the function */
case (Fin[3:0])
4°40:
begin
MULT = 1’b1;
assign Invertd = Fin[4];
assign InvertB = Fin[5];
end
4°d1:
begin
MULTA = 1°b1;
assign Invertd = Fin[4];
assign InvertB = Fin[5];
end
4°d42:
begin
MULTAA = 1°b1;
assign Invertd = Fin[4];
assign InvertB = Fin[5];
end
4°43:
begin
MULTcont = 1°’b1i;
assign Invertd = Fin[4];
assign InvertB = Fin[5];
end

4°d4: /# Shift with Force-Carry */
begin
assign InvertA
assign InvertB
case(Fin[5:4])
27b00:
begin
ShiftAR = 1°bi1;
assign CinALU = CinL;
end
2’b10:
begin
ShiftBR = 1°bi1;
assign CinALU = CinL;
end
2’b01:
begin

17b0;
17b0;

135

ShiftAL = 1°bi1;
assign CinALU = CinR;
end
2’b11:
begin
ShiftBL = 1°bi1;
assign CinALU = CinR;
end
endcase
end
4°d5: /* Shift with Skip-Bit #*/
begin
assign Invertd = 1°b0;
assign InvertB = 1°b0;
case(Fin[5:4])
27b00:
begin
ShiftAR = 1°bi1;
assign CinALU = ((MSB
end
2’b10:
begin
ShiftBR = 1°bi1;
assign CinALU = ((MSB
end
2’b01:
begin
ShiftAL = 1°bi1;
assign CinALU = ((LSB
end
2’b11:
begin
ShiftBL = 1°bi1;
assign CinALU = ((LSB

end
endcase
end
4°d6: /* Shift with Insert 0 */
begin
assign Invertd = 1°b0;
assign InvertB = 1°b0;

case(Fin[5:4])
2°b00:
begin
ShiftAR = 1°bi;

&& ALU_A[T])

&& ALU_B[T7])

&& ALU_A[O])

& ALU_B[0])

("MSB && Cinl));

("MSB && Cinl));

("LSB && CinR));

("LSB && CinR));

assign CinALU = ((MSB && 1°b0) || ("MSB && CinL));

end
2°b10:
begin
ShiftBR = 1°bi;

assign CinALU = ((MSB && 1°b0) || ("MSB && CinL));

end
2°b01:
begin

136

ShiftAL = 1°bil;
assign CinALU = ((LSB && 1°b0) || ("LSB && CinR));
end
2°b11l:
begin
ShiftBL = 1°bi;
assign CinALU = ((LSB && 1°b0) || ("LSB && CinR));
end
endcase
end
4°d7: /* Shift with Insert 1 */
begin
assign Invertd = 1°b0;
assign InvertB = 1°b0;
case(Fin[5:4])
2°b00:
begin
ShiftAR = 1°bi;
assign CinALU = ((MSB && 1’b1) || ("MSB && CinL));
end
2°b10:
begin
ShiftBR = 1°bi;
assign CinALU = ((MSB && 1’b1) || ("MSB && CinL));
end
2°b01:
begin
ShiftAL = 1°bil;
assign CinALU = ((LSB && 1’b1) || ("LSB && CinR));
end
2°b11l:
begin
ShiftBL = 1°bi;
assign CinALU = ((LSB && 1’b1) || ("LSB && CinR));
end

endcase
end

4°d8: /* Add */
begin

assign Invertd = Fin[4];
assign InvertB = Fin[5];
ADD = 1°b1;
assign CinALU = CinR;
end
4°d9: /* Add-0 */
begin

assign Invertd = Fin[4];
assign InvertB = Fin[5];
ADD = 1°b1;
assign CinALU = ((LSB && 1°b0) || ("LSB && CinR));
end
4°d10: /* Add-1 */
begin

137

Fin[4];
Fin[5];

assign InvertA
assign InvertB
ADD = 1°’b1;
assign CinALU = ((LSB && 1°b1) || ("LSB && CinR));

end

4°d11: /* Unusued Opcode - Treat as an Add-1 */

begin
assign InvertA
assign InvertB
ADD = 1°’b1;
assign CinALU = ((LSB && 1°b1) || ("LSB && CinR));

end

Fin[4];
Fin[5];

4°d12: /* Pass */
begin
if (Fin[5]==1"b1)
begin
B_Pass = 1’b1;
assign Invertd = 1°b0;
assign InvertB = Fin[4];
end
else
begin
A_Pass = 1’b1;
assign Invertd = Fin[4];
assign InvertB = 1°b0;
end

end
4°di13:
begin
NAND = 1’bi;
assign Invertd = Fin[4];
assign InvertB = Fin[5];
end
4°di4:
begin
NOR = 1°b1;
assign Invertd = Fin[4];
assign InvertB = Fin[5];
end
4°di15:
begin
X0R = 1°b1;
assign Invertd = Fin[4];
assign InvertB = Fin[5];
end
endcase
end /* Decode */

endmodule

138

/% 3k sk ok ok ok sk ok ok ok ok sk ok ok ok sk ok sk kk ok ok k /

/* Specifications: MEM.v */
/% 3k sk ok ok ok sk ok ok ok ok sk ok ok ok sk ok sk kk ok ok k /

/* This module emuates the 256x8 memory block which the main MATRIX BFU
memory.

Reads happen during the first half of the clock cycle.
In mode=1, it looks like two 128x8 memories, controlled by the two
address ports.
In mode=0, it looks like a single 256x8 memory outputing to both output
port and controlled by addr_A.
*/

/ F Kk kkkkkokkkkk [/

/* MEM Module */
/ F Kk kkkkkokkkkk [/

module MEM(datal7:0], addr_A[7:0], addr_B[7:0], Aout[7:0], Bout[7:0],
mode, WE, clk);

/* Clock */
input clk;

/* Data and Address inputs */
input [7:0] data, addr_A, addr_B;

/* Write Enable */
input WE;

/* Mode select */
input mode;

/* Output Ports */
output [7:0] Aout, Bout;
reg [7:0] Aout, Bout;

/* Define the two 128x8 memory blocks */
reg [7:0] A_block[127:0];
reg [7:0] B_block[127:0];

/Fkkkkkkkk [

/* Reads */
/Fkkkkkkkk [

always Q(posedge clk)

begin
if (mode===1’b0) /* Mode=0 (256 byte block) */
begin
if (addr_A[7]1===1’b0)

begin
#1 Aout = A_block[addr_A[6:0]];
#1 Bout = A_block[addr_A[6:0]];

139

end
else
begin
#1 Aout = B_block[addr_A[6:0]11;
#1 Bout = B_block[addr_A[6:0]1];
end

end
else /* Mode=1 (2x128 byte block) */

begin
#1 Aout = A_block[addr_A[6:0]11;
#1 Bout = B_block[addr_B[6:0]1];
end

end /* reads */

/Fkkkkkkkkk [/
/* Writes */
/Fkkkkkkkkk [/

always Q(negedge clk)
begin
if (WE)
begin
if (addr_A[7]===1"b0)
A_blockl[addr_A[6:0]1=datal7:0];
else
B_blockl[addr_A[6:0]1=datal7:0];
end
end /* writes */

endmodule

140

/**********************************/

/* Specification for: MEMdecode.v */
[F kAo oo KKKk

/* This module represents the decoder logic for the MEM/MUX function port of
a BFU cell. Its takes the the 8 bit input and decodes it to the memory

and mux control lines.

Input Fin[7:0] is the function port input.

Bit 7: Unused

Bit 6: Unused

Bit 5: Mode

Bit 4: ALU A Select (Ain_sel)

Bit 3: ALU B Select (Bin_sel)

Bit 2: Memory Data Select (Data_sel)

Bit 1: Configuration Memory Write-Enable (WEconf)
Bit 0: Configuration Memoru Read-ENable (REconf)

*/

/ %k sk ok ok ok ok sk ok ok ok sk ok sk kk ok ok k /

/* MEMdecode module */
/ %k sk ok ok ok ok sk ok ok ok sk ok sk kk ok ok k /

module MEMdecode (Fin[7:0], Mode, Ain_sel, Bin_sel, Data_sel, WEconf, REconf);
input [7:0] Fin;

output Mode, Ain_sel, Bin_sel, Data_sel, WEconf, REconf;
reg Mode, Ain_sel, Bin_sel, Data_sel, WEconf, REconf;

/[F kK k ok ok kK ok ok ok kkkkkk /
/* Begin Decoding */
/[F kK k ok ok kK ok ok ok kkkkkk /

/* Assign the inputs appropriately */
initial
begin
assign Mode = Fin[5];
assign Ain_sel = Fin[4];
assign Bin_sel = Fin[3];
assign Data_sel = Fin[2];
assign WEconf = Fin[1];
assign REconf = Fin[0];
end /* Decoding */

endmodule

141

[/ F AR A A AR F K F KKK
/* Specifications for WEdecode.v */
[/ F AR A A AR F K F KKK

/* WEdecode decodes the Write Enable for the BFU memory. Its inputs are:

WE_Fa, WE_Fm : Write Enables from the ALU and Memory function ports.

WEsource : Selects WE source

TS_Enable : Enables Time-Switch Logic
TS_WE : TimeStep configuration data
TimeStep : Global timestep

The output of WEdecode is the final Write Enable

Input start is a model-specific initialization input, used to force the
module to evaluate its inputs.

*/

/% 3k kK ok ok ok sk ok ok ok ok sk ok ok sk ok sk ok /

/* Module WEdecode */
/% 3k kK ok ok ok sk ok ok ok ok sk ok ok sk ok sk ok /

module WEdecode(WE_Fa, WE_Fm, WEsource, TS_Enable, TS_WE, TimeStep, WE, start);

input WE_Fa, WE_Fm, WEsource;
input TS_Enable;

input [3:0] TS_WE, TimeStep;
input start;

output WE;
reg WE;

always Q(start or TS_Enable or TS_WE or TimeStep)
begin

if (TS_Enable) /* Use TimeStep */
begin
if (TS_WE !'= TimeStep) /* TimeStep doesn’t match */
assign WE = 1°b0;

else
begin /* TimeStep Matches */
if (WEsource)
assign WE = WE_Fm;
else
assign WE = WE_Fa;

end
end

else /* Do not use TimeStep */
begin
if (WEsource)
assign WE
else

WE_Fm;

assign WE = WE_Fa;

142

end
end

endmodule

143

A.4 Helper Modules

/* The following is necessary because this file may be read from many inlcude
statements and should be ignored on all but the first */

‘define netswitch_defined
/F ok ok ok ok ok ok ok ok ok ko ok ok ok kok sk ok sk skok sk sk sk k ok ok ok /

/* Specifications for NetSwitch.v */
[F kAo oo KKKk

/* A NetSwitch is the primary network swiching mechanism in MATRIX. It consists
of a 30->1 selector followed by another 2->1 selector, both 8-bits wide.
(See TN130 for block diagrams).

The inputs (all 8-bits) to the main switch, in order (0-29):

0 : Local : The local BFU.

1 : L1_N1 : Level-1 Network, From North-1 cell.
2 : L1_N2 : Level-1 Network, From North-2 cell.
3 : L1_NE : Level-1 Network, From NorthEast cell.
4 : L1_E1 : Level-1 Network, From East-1 cell.
5 : L1_E2 : Level-1 Network, From East-2 cell.
6 : L1_SE : Level-1 Network, From SouthEast cell.
7 : L1_S1 : Level-1 Network, From South-1 cell.
8 : L1_S2 : Level-1 Network, From South-2 cell.
9 : L1_SW : Level-1 Network, From SouthWest cell.
10 : L1_W1 : Level-1 Network, From West-1 cell.
11 : L1_W2 : Level-1 Network, From West-2 cell.
12 : L1_NW : Level-1 Network, From NorthWest cell.

13 : L2_N1 : Level-2 Network, North-1 Line.
14 : L2_N2 : Level-2 Network, North-2 Line.
15 : L2_E1 : Level-2 Network, East-1 Line.
16 : L2_E2 : Level-2 Network, East-2 Line.
17 : L2_S1 : Level-2 Network, South-1 Line.
18 : L2_8S2 : Level-2 Network, South-2 Line.
19 : L2_W1 : Level-2 Network, West-1 Line.
20 : L2_W2 : Level-2 Network, West-2 Line.

21 : L3_V1 : Level-3 Network, Vertical-1 Line.
22 : L3_V2 : Level-3 Network, Vertical-2 Line.
23 : L3_V3 : Level-3 Network, Vertical-3 Line.
24 : L3_V4 : Level-3 Network, Vertical-4 Line.
25 : L3_H1 : Level-3 Network, Horizontal-1 Line.
26 : L3_H2 : Level-3 Network, Horizontal-2 Line.
27 : L3_H3 : Level-3 Network, Horizontal-3 Line.
28 : L3_H4 : Level-3 Network, Horizontal-4 Line.

29 : CByte : Control Byte.

144

30 : Constant O
31 : Conatant 1

A few definitions are in order:

On the Level-2 network, "1'" and '"2" lines are defined as the distance to the
the broadcasting L2 switch, divided by 2. Therefore the "1" line could
either come from 1 or 2 cells away, and the "2" line could come from
eitehr 3 or 4 cells away.

On the Level-3 network, Verical is defined as North-South and Horizontal is

defined as East-West. Since they apply uniformly to the entire chip,
the numberings (from 1-4) are arbitrary.

Other inputs to the NetSwitch are:

SourceSel (5 bits) : Source selector - selects from the 30 main inputs.
StaticByte (8 bits) : The alternate data.
StaticSel (1 bit) : Selects between main and alternate data inputs.

Note that if SourceSel is greater than 29, the main data will be zero.
A1l of this produces a single, 8-bit output.

And, of cource:
Input start is a model-specific initialization input, used to force the
module to evaluate its inputs.

*/

/ kK k ok ok kK k ok ok kkkkk /

/* Include Files */
/ kK k ok ok kK k ok ok kkkkk /

/* The following prevents Selector from getting re-compiled many times */
‘ifdef selector_defined
‘else
‘include "Selector.v"
‘endif

/ %k sk ok ok ok ok sk ok ok ok sk ok sk kk ok ok k /

/* Module NetSwitch */
/ %k sk ok ok ok ok sk ok ok ok sk ok sk kk ok ok k /

module NetSwitch(Local, L1_N1, Li_N2, L1_NE, L1_Ei1, L1_E2, L1_SE, L1_S1, L1_S2,
Li_Sw, Li_Wi, Li_W2, L1i_NW,
L2_Ni1, L2_N2, L2_Ei, L2_E2, L2_S1, L2_S2, L2_Wi, L2_W2,
L3_vi, L3_V2, L3_V3, L3_V4, L3_H1, L3_H2, L3_H3, L3_H4, CByte,
SourceSel, StaticByte, StaticSel, Out, start);

input [7:0] Local, Li_N1, L1_N2, L1_NE, L1_E1, L1_E2, L1_SE, L1_S1, L1_S2;
input [7:0] L1_SW, Li_Wi, Li_w2, L1_NW;

145

input
input

input
input
input

[7:0]
[7:0]

[4:0]
[7:0]

L2_N1, L2_N2, L2_E1, L2_E2, L2_S1, L2_S2, L2_Wi, L2_W2;
L3_V1, L3_V2, L3_V3, L3_V4, L3_H1, L3_H2, L3_H3, L3_H4, CByte;

SourceSel;
StaticByte;
StaticSel;

output [7:0] Out;

input start;

/[F kK k ok ok kK ok ok ok kkkkkk /

/* Internal Wires */
/[F kK k ok ok kK ok ok ok kkkkkk /

wire [7:0] Main; /* the main input, after selection */

/% 3k ok ok ok ok sk ok ok ok ok sk ok ok ok sk ok k ok sk ok k /

/* Define the Selectors */
/% 3k ok ok ok ok sk ok ok ok ok sk ok ok ok sk ok k ok sk ok k /

Sel32 MainSel(Local, L1_Nt, L1_N2, L1_NE, L1_E1, L1_E2, L1_SE, Li_Si, L1_S2,

Li_SW, Li_Wi, Li_W2, L1_NW,
L2_Ni, L2 N2, L2_E1, L2_E2, L2_S1, L2_S2, L2_Wi, L2_W2,

L3_V1, L3_V2, L3_V3, L3_V4, L3_H1, L3_H2, L3_H3, L3_H4, CByte,
8°d0, 8’d1,

Main, SourceSel, start);

Sel2 #(8) S_Sel(StaticByte, Main, Out, StaticSel, start);

/* And thats all there is! */
endmodule

146

/* The following is necessary because this file may be read from many inlcude

statements and should be ignored on all but the first */

‘define selector_defined

/*********************************/

/*

Specifications for Selector.v */

/*********************************/

/*

*/

L selector is is used to choose one input from a set of inputs and pass
this value to the output (a multiplexor). There are three types of
selectors in this file. Sel2 is a 2 input selector, Sel8 is an 8 input
selector, Sell6 is a 16 input selector, and Sel32 is a 32 input
selector. Sel2 and Sel8 are parameterized in the size of the inputs
and output, while Sell16 is fixed at 1-bit and Sel32 are fixed at

8-bit I/0.

Unfortunately, due to some problems (probably bugs) with VerilogXL it was
impossible to construct a single device with parameterized inputs and
bus-size, or even parameterized inputs. So, this is what was possible.

Input start is a model-specific initialization input, used to force the
module to evaluate its inputs.

/ F kK kk ok kkkkkkkk [

/* Module Sel2 */
/ F kK kk ok kkkkkkkk [

module Sel2(In0O, Inl, Out, ctrl, start);

/* Define the Bus Width parameter*/
parameter BusW=1;

/* The I/0 sizes are set accordingly: */
input [BusW-1:0] InO, Ini;

input ctrl;

output [BusW-1:0] Out;
reg [BusW-1:0] Out;

input start;
/[F kK k ok ok kK ok ok ok kkkkkk /

/* Begin Selector */
/[F kK k ok ok kK ok ok ok kkkkkk /

always @(ctrl or start)

begin
if (ctrl===0)
assign Out = InO;

else
assign Out

Ini;

147

end

endmodule

/ F kK kk ok kkkkkkkk [

/* Module Sel8 */
/ F kK kk ok kkkkkkkk [

module Sel8(In0, Ini, In2, In3, In4, Inb5, In6, In7,
Out, ctrl, start);

parameter BusW = 8;

input [(BusW-1):0] InO, Ini, In2, In3, In4, In5, In6, InT7;
input [2:0] ctrl;

output [(BusW-1):0] Out;
reg [(BusW-1):0] Out;

input start;

/[F kK k ok ok kK ok ok ok kkkkkk /

/* Begin Selector */
/[F kK k ok ok kK ok ok ok kkkkkk /

always @(ctrl or start)
begin
case(ctrl)
5°d0: assign Out=InO;
5’d1: assign Out=Ini;
5’d2: assign Out=In2;
5’d3: assign Out=In3;
5’d4: assign Out=In4;
5’d5: assign Out=Inb;
5’d6: assign Out=In6;
5°d7: assign Out=In7;
default assign Out=8’d0;
endcase
end

endmodule
/ %k kK ok ok ok sk ok ok ok ok sk ok kk /
/* Module Selil6 */
/ %k kK ok ok ok sk ok ok ok ok sk ok kk /
module Sel16(In, Out, ctrl, start);
/* Note: For reasons I cannot understand (probably a bug), you need

to put in a constant when concatinating inputs. Therefore this
input is large to accomodate a constant in the high bit position */

148

input [16:0] In;
input [3:0] ctrl;

output Out;
reg Out;

input start;

/[F kK k ok ok kK ok ok ok kkkkkk /

/* Begin Selector */
/[F kK k ok ok kK ok ok ok kkkkkk /

always @(ctrl or start)
begin
assign Out = In[ctrl];
end

endmodule

/ %k kK ok ok ok sk ok ok ok ok sk ok kk /

/* Module Sel32 */
/ %k kK ok ok ok sk ok ok ok ok sk ok kk /

module Sel32(In0, Inil, In2, In3, In4, In5, In6, In7, In8, 1In9,
Ini10, Inil, Ini12, Ini3, Ini4, Inib5, Ini16, Inl7, Ini8, Ini9,
In20, In21, In22, In23, In24, In25, In26, In27, In28, In29,
In30, In31, Out, ctrl, start);

input [7:0] InO, Ini, In2, In3, In4, In5, In6, In7, In8, In9;
input [7:0] In10, Inii, Ini2, Ini3, Ini4, Ini15, Ini6, Ini7, Ini8, Ini9;
input [7:0] In20, In21, In22, In23, In24, In25, In26, In27, In28, In29;
input [7:0] In30, In31;

input [4:0] ctrl;

output [7:0] Out;
reg [7:0] Out;

input start;

/[F kK k ok ok kK ok ok ok kkkkkk /

/* Begin Selector */
/[F kK k ok ok kK ok ok ok kkkkkk /

always @(ctrl or start)
begin
case(ctrl)
5°d0: assign Out=InO;
5’d1: assign Out=Ini;
5’d2: assign Out=In2;
5’d3: assign Out=In3;
5’d4: assign Out=In4;
5’d5: assign Out=Inb;

149

5°deé:
5°d7:
5°d8:
5°d9:

57d10:
5’di11:
5’d12:
57d13:
5’d14:
5’d15:
5’d16:
57d17:
57d18:
57d19:
57d20:
5’d21:
57d22:
57d23:
5’d24:
57d25:
57d26:
57d27:
57d28:
57d29:
57d30:
5’d31:
default assign Out=8’d0;

endcase
end

endmodule

assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign

Out=Ins6;
Qut=In7;
Out=In8;
Out=In9;
Out=Ini0;
OQut=Inii;
Out=Ini2;
Out=Ini3;
OQut=Ini4;
Out=Ini5;
Out=Ini6;
OQut=Ini7;
Out=Ini8;
Out=Ini9;
Out=In20;
Out=In21;
Out=In22;
Out=In23;
Out=In24;
Out=In25;
Out=In26;
OQut=In27;
Out=In28;
Out=In29;
Out=In30;
Out=In31;

150

/* The following is necessary because this file may be read from many inlcude
statements and should be ignored on all but the first */

‘define TSregister_defined

/***********************************/

/* Specifications for TSregister.v */
[/ F Rk ks kR kR kok kR skok Kk kK ok

/* A TSregister is a Time-Switch register. It is basically a normal clocked
register (always enabled), except that it can optionally enabled by
comparing an incoming cycle value to a stored configuration word. See
TN130 for more details of this.

TSregister is parameterized to the width of the Data.

The TSregister structure also contains a reset signal which can force the
register to load zeros.

The inputs to TSregister are:

Data : The data input

Cycle : The current cycle

TSenable : Enables the Time-Switch Logic
Config : The configuration word

CLK : A clock
start : The simulation reset signal

Out is the only output.

*/

/% ks ok ok ok ok sk ok ok ok ok sk ok sk sk k ok ok ok ok /

/* Module TSregister */
/% ks ok ok ok ok sk ok ok ok ok sk ok sk sk k ok ok ok ok /

module TSregister (Data, Cycle, Out, TSenable, Config, CLK, start);
/* Set default Data width */
parameter Width = 8;
/* Set I/0 accordingly */
input [Width-1:0] Data;
input [3:0] Cycle, Config;
input TSenable, CLK, start;
output [Width-1:0] Out;
reg [Width-1:0] Out;

/[F kK k ok ok kK ok ok ok kkkkkk /

151

/* Internal State */
/[F kK k ok ok kK ok ok ok kkkkkk /

reg Enable; /#* The result of the Cycle-Config comparison */

/ %k kK ok ok ok sk ok ok sk ok sk k kK k ok k /

/* Maintain Enable */
/ %k kK ok ok ok sk ok ok sk ok sk k kK k ok k /

initial
begin
assign Enable = (Cycle == Config);
end

/ %k kK ok ok ok sk ok ok ok ok sk kk ok /

/* Handle Start */
/ %k kK ok ok ok sk ok ok ok ok sk kk ok /

always Q(start)
begin
#1 Out = Data;
end

/ %k kK ok ok ok sk ok ok sk ok sk k kK k ok k /
/* Everything Else */
/ %k kK ok ok ok sk ok ok sk ok sk k kK k ok k /

always Q(posedge(CLK))

begin
if (Enable || “TSenable)
begin
#1 Out = Data;
end
end
endmodule

152

/***********************************/

/* Specifications for TSand.v */
[/ F A A A A A A A A A F A A A F A F KA KK

/* A TSand is a Time-Switch AND gate. It takes a single input (parameterized
width) and bit-wise ANDs it with the result of a Time-Switch comparison.
If TSenable is off, the comparison is always true.

The inputs to TSregister are:

Data : The data input

Cycle : The current cycle

TSenable : Enables the Time-Switch Logic
Config : The configuration word

start : The simulation reset signal

Out is the only output.
*/

/ %k kK ok ok ok sk ok ok ok ok sk ok kk /

/* Module TSand */
/ %k kK ok ok ok sk ok ok ok ok sk ok kk /

module TSand (Data, Cycle, Out, TSenable, Config, start);

/* Set default Data width */
parameter Width = 1;

/* Set I/0 accordingly */
input [Width-1:0] Data;
input [3:0] Cycle, Config;
input TSenable, start;

output [Width-1:0] Out;
reg [Width-1:0] Out;

/ %k kK ok ok ok sk ok ok ok ok sk kk ok /

/* Maintain Out */
/ %k kK ok ok ok sk ok ok ok ok sk kk ok /

always Q(start or TSenable or Cycle or Config)
begin

if (TSenable === 0)

assign Out = Data;
else if (Cycle === Config)

assign Out = Data;
else

assign Out = 0;

end

153

endmodule

154

/* The following is necessary because this file may be read from many inlcude
statements and should be ignored on all but the first */

‘define tribuf_defined

/*******************************/

/* Specifications for Tribuf.v */
[/ FHA A A A A A A A A A KA A A KKKk]

/* Tribuf is a non-clocked tristate buffer, which passes on ctrl=1.
Tribuf takes the bit-widths of the data lines as a parameter.
Inputs:

In : The Input

Ctrl : The control bit

start : A model-specific initialization input, used to force the
module to evaluate its inputs.

Out : The Output

*/

/ kK k ok ok kK k ok ok kkkkk /

/* Module Tribuf */
/ kK k ok ok kK k ok ok kkkkk /

module Tribuf(In, Ctrl, start, Out);

/* Set the default parameter */
parameter size = 1;

input [size-1:0] In;
input Ctrl, start;

output [size-1:0] Out;
reg [size-1:0] Out;

integer 1ij;

/ %k kK kk ok sk ok ok k ok kkk /
/* Begin model */
/ %k kK kk ok sk ok ok k ok kkk /

always Q@(Ctrl or start)
begin
case (Ctrl)
1°b0
begin
#1;
deassign Out;
for (i=0; i<size; i=i+1)

155

Out[i]l=1’bz;
end
1’b1l : #1 assign Out = In;
default
begin
#1;
deassign Out;
for (i=0; i<size; i=i+1)
Out[i]l=1’bz;
end
endcase
end

endmodule

156

/* The following is necessary because this file may be read from many inlcude
statements and should be ignored on all but the first */

‘define trireg_defined

/e ok sk ok sk ok sk ok s ok s ok o ok sk ok ok sk e sk ek ok sk ok skok e sk ke ok /
/* Specifications for Trireg.v */
/e ok sk ok sk ok sk ok s ok s ok o ok sk ok ok sk e sk ek ok sk ok skok e sk ke ok /

/* TriReg is a clocked tristate buffer (register), which passes on ctrl=1.

TriReg takes the bit-widths of the data lines as a parameter.

Inputs:

In : The Input

Ctrl : The control bit.
CLK : A clock

start : A model-specific initialization input, used to force the
module to evaluate its inputs.

Out : The Output

*/

/ kK k ok ok kK k ok ok kkkkk /

/* Module Trireg */
/ kK k ok ok kK k ok ok kkkkk /

module Trireg(In, Ctrl, CLK, start, Out);

/* Set the default parameter */
parameter size = 1;

input [size-1:0] In;
input Ctrl, CLK, start;

output [size-1:0] Out;
reg [size-1:0] Out;

integer 1ij;

/ %k kK kk ok sk ok ok k ok kkk /
/* Begin model */
/ %k kK kk ok sk ok ok k ok kkk /

always Q(posedge(CLK) or start)
begin
case (Ctrl)
1°b0
begin
#1;
for (i=0; i<size; i=i+1)

157

Out[i]l=1’bz;
end
1’bl : #1 Out = In;
default
begin
#1;
for (i=0; i<size; i=i+1)
Out[i]l=1’bz;
end
endcase
end

endmodule

158

Bibliography

1]

Michael Bolotski, Thomas Simon, Carlin Vieri, Rajeevan Amirtharajah, and
Thomas F. Knight Jr. Abacus: A 1024 processor 8ns simd array. In Advanced
Research in VLSI 1995, 1995.

Timothy Bridges. The gpa machine: A generally partitionable msimd architec-
ture. In Proceedings of the Third Symposium on The Frontiers for Massively
Parallel Computations, pages 196-202. TEEE, 1990.

Dev C. Chen and Jan M. Rabaey. A reconfigurable multiprocessor ic for rapid
prototyping of algorithmic-specific high-speed dsp data paths. I[EEE Journal of
Solid-State Circuits, 27(12):1895-1904, December 1992.

Chi-Jui Chou, Satish Mohanakrishnan, and Joseph B. Evans. Fpga implemen-
tation of digital filters. In International Conference on Signal Processing Appli-
cations and Technology, 1993.

André DeHon. Reconfigurable Architectures for General-Purpose Computing.
PhD dissertation, Massachusetts Institute of Technology, Department of Elec-
trical Engineering and Computer Science, 1996. Draft version - expected com-

pletion: July, 1996.

Dave Epstein. Chromatic raises the multimedia bar. Microprocessor Report,

9(14):23 ff., October 23 1995.

Carla Golla, Fulvio Nava, Franco Cavallotti, Alessandro Cremonesi, and Giulio
Casagrande. 30-msamples/s programmable filter processor. [EEE Journal of
Solid-State Circuits, 25(6):1502-1509, December 1990.

159

[3]

[10]

[11]

[12]

[13]

[14]

Greg Goslin and Bruce Newgard. 16-TAP, §-Bit FIR Filter Applications Guide.
Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124, November 1994. http:

//www.xilinx.com/appnote/fir_filt.pdf.

Paul Gronowski, Peter Bannon, Michael Bertone, Randel Blake-Campos, Gre-
gory Bouchard, William Bowhill, David Carlson, Ruben Castelino, Dale Donchin,
Richard Fromm, Mary Gowan, Anil Jain, Bruce Loughlin, Shekhar Mehta,
Jeanne Meyer, Robert Mueller, Andy Olesin, Tung Pham, Ronald Preston, and
Paul Robinfeld. A 433mhz 64b quad-issue risc microprocessor. In 1996 [FEFE
International Solid-State Circuits Conference, Digst of Technical Papers, pages
222-223. IEEE, February 1996.

Mark Horowitz, John Hennessy, Paul Chow, Glenn Gulak, John Acken, Anant
Agarwal, Chorng-Yeung Chu, Scott McFarling, Steven Przybylski, Steven
Richardson, Arturo Salz, Richard Simoni, Don Stark, Peter Steenkiste, Steven
Tjiang, and Malcom Wing. A 32b microprocessor with on-chip 2k byte instruc-
tion cache. In 1987 IEEE International Solid-State Curcuits Conference, Digst
of Technical Papers, pages 30-31. IEEE, February 1987.

David Jones and David Lewis. A time-multiplexed fpga architecture for logic em-
ulation. In Proceedings of the IEFE 1995 Custom Integrated Circuits Conference,
pages 495-498. IEEE, May 1995.

Ethan Mirsky. Matrix micro-architecture. Transit Note 130, MIT Artificial

Intelligence Laboratory, November 1995.

Ethan Mirsky and André DeHon. Matrix: A reconfigurable computing archi-
tecture with configurable instruction distribution and deployable resources. In
Proceedings of the IEEE Workshop on FPGAs for Custom Computing Machines,
April 1996.

Kouhei Nadehara, Miwako Hayashida, and Ichiro Kuroda. A Low-Power, 32-bit
RISC Processor with Signal Processing Capability and its Multiply-Adder, volume
VIII of VLSI Signal Processing, pages 51-60. TEEE, 1995.

160

[15]

[18]

[19]

[20]

[21]

[22]

Gary J. Nutt. Microprocessor implementation of a parallel processor. In Proceed-
ings of the Fourth Annual International Symposium on Computer Architecture,

pages 147-152. ACM, 1977.

Peter Ruetz. The architectures and design of a 20-mhz real-time dsp chip set.
IEEE Journal of Solid-State Circuits, 24(2):338-348, April 1989.

M. Shiraishi, M. Koizumi, A. Yamaguchi, and H. Hoike. User programmable
16bit 50ns dsp. In Proceedings of the IEFEE 1992 Custom Integrated Clircuits
Conference, pages 6.4.1-6.4.4. IEEE, May 1992.

Michael Slater. Microunity lifts veil on mediaprocessor. Microprocessor Report,

9(14):11 ff., October 23 1995.

Lawrence Snyder. An inquiry into the benefits of multigauge parallel computa-
tion. In Proceedings of the 1985 International Conference on Parallel Processing,

pages 488-492. IEEE, August 1985.

Edward Tau, lan Eslick, Derrick Chen, Jeremy Brown, and André DeHon. A
first generation dpga implementation. In Proceedings of the Third Canadian
Workshop on Field-Programmable Devices, pages 138-143, May 1995.

Jef van Meerbergen, Frank Welten, Frans van Wijk, Jan Stoter, Jos Huisken,
Antoine Delaruelle, and Karel Van Eerdewijk. An 8 mips cmos digital signal
processor. In 1985 IEEFE International Solid-State Circuits Conference, Digst of
Technical Papers, pages 84-85. IEEE, February 1986.

Alfred K. Yeung and Jan M. Rabaey. A 2.4 gops data-drivern reconfigurable
multiprocessor ic for dsp. In Proceedings of the 1995 IEEFE International Solid-
State Clircuits Conference, pages 108-109. IEEE, February 1995.

161

